
  

International Journal of Electrical Engineering and Computing  
Vol. 3, No. 1 (2019) 

 

1 
 

Original research paper 
UDC 519.857:004.021]:669.295.018.8 

 DOI 10.7251/IJEEC1901001G 

 

A three-phase mapreduce-based algorithm for 

searching biomedical document databases 

Milana Grbić 

 
Department of Mathematics and Computer Science, Faculty of Natural Science and Mathematics, University of Banja Luka, Republic of Srpska, 

Bosnia and Herzegovina 

 

  milana.grbic@pmf.unibl.org 

 

 
Abstract—Retrieving information from large document databases is in the focus of scientific research in recent years. In this paper, a 

parallel algorithm for searching biomedical documents based on the MapReduce technique is presented. The algorithm consists of three 

phases: preprocessing phase, document representation phase, and searching phase. In the first phase, lemmatization and elimination of 

stop words are performed. In the second phase, each of the documents is represented as a list of pairs (word, tf-idf index of the word). 

The third phase represents the main searching procedure. It uses a specially designed ranking criterion, which is based on a 

combination of the term frequency - inverse document frequency (tf-idf) index and the indicator function for each query word. Four 

different versions of ranking criteria are proposed and analyzed. The algorithm performances are tested on different subsets of the 

large and well-known PubMed biomedical document database. The results obtained by the experiments indicate that the proposed 

parallel algorithm succeeds in finding high-quality results in a reasonable time. Comparing to the sequential variant of the algorithm, 

the experiments show that the parallel algorithm is more efficient since it finds high-quality solutions in significantly less time. 
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I.  INTRODUCTION  

Over the past decades, a huge number of biomedical 
documents have been recorded. As a consequence, there is a 
growing need for the development of efficient software tools 
for searching related literature, such as scientific papers, review 
articles, and journal texts. Activities which include the 
development of such tools fall into a special area of 
information sciences called information retrieval. Information 
retrieval is finding information (e.g. texts or documents) from a 
large collection of data, that satisfies specific information 
queries [1] The information retrieval has a lot of applications, 
for example in managing digital libraries, developing search 
engines,  media search and so on [2]. As a result of intensive 
research, a lot of new technologies and solutions have been 
developed in this field, such as web search engines, junk-email 
filters, news clipping services, etc. [3].   

In this paper, the problem of finding relevant biomedical 
documents for a given set of query words is analyzed. At the 
beginning of the overall searching procedure, it is useful to find 
an appropriate form for document representation, which can 
make the searching process easier. Also, it is necessary to 
establish a criterion for determining the relevance of 
documents for the given words. Finally, it is required to check 
the documents from the corpus against the established criterion 
and perform the sort of documents by their relevance. 

The main contribution of this paper is in adapting the 
MapReduce parallel programming technique for solving the 

problem of searching large biomedical document databases. 
After standard procedures of lemmatization and eliminating 
stop words, in the main searching phase, the proposed 
algorithm uses a specially designed function as the ranking 
criterion for determining the relevance of each document in the 
document database. After that, the list of documents, sorted by 
relevance is created. 

The remainder of the paper is organized as follows. In the 
next section, the most relevant results related to the 
development of searching tools of biomedical documents are 
listed. In Section III the proposed algorithm is described in 
details. Section IV contains experimental results obtained on 
the subset of a PubMed biomedical database. The last section 
concludes the paper and proposes some directions for future 
work.  

II. LITERATURE REVIEW 

Existing document searching tools can be classified into 
three categories: 

i. those that perform the query only in the fields of 
citations; 

ii. those that perform the query in the full-text article; 

iii. those that further process the retrieved citations to 
organize them and/or to retrieve further 
information [1, 4]. 

One of the most popular services is the PubMed (available 

on https://www.ncbi.nlm.nih.gov/pubmed/), which is a part of 
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the National Center for Biotechnology Information (NCBI). 

PubMed is designed for searching abstracts by taking query 

words as an input, adding Boolean operators into the user 

queries and using automatic term mapping (ATM). Through 

its ATM process, PubMed service automatically compares and 

maps the words from the user query to the lists of pre-indexed 

terms (e.g. Medical Subject Headings MeSH). As a result of 

this search, PubMed retrieves documents containing the query 

terms and if the user query can be mapped into a MeSH 

concept, PubMed also retrieves documents indexed with those 

MeSH terms. The wide usage of the PubMed service caused 

that this service has been expanded for more specific purposes 

[5]. Some tools comparable to the PubMed, like RefMed, 

MedlineRanker, MiSearch, and iPubMed, base their search on 

keywords and/or look for particular citations, title, and 

authors. Searching documents with RefMed has a few 

iterations. First, RefMed bases its search of query words in the 

title and abstract of the document and returns a list of 

documents as the result. After that, it explicitly asks the user 

for feedback about the relevance of listed documents. RefMed 

uses the obtained answers for forming the ranking function. 

This procedure is subsequently repeated until the user 
receives satisfying results [6]. MedlineRanker is a web 

server which uses a given set of abstracts for learning the most 

discriminative words related to the topic. The obtained set of 

words is used for ranking new abstracts [7]. MiSearch forms 

the profile of the user by automatically saving information of 

citations viewed by the user during browsing. By using that 

profile, it calculates the rank of the future search results and 

places on the top those articles which are most likely to be 

seen by user [8]. Interactive PubMed (iPubMed) has two 

unique features: allows interactive and approximate search [9].  
Another service, also maintained by NCBI, is the PubMed 

Central (https://www.ncbi.nlm.nih.gov/pmc/). Unlike the 
PubMed which is designed for searching abstracts, PubMed 
Central is designed for searching full texts. Since 2000. it has 
been available as a free archive of biomedical and life sciences 
journal literature at the U.S. National Institutes of Health's 
National Library of Medicine (NIH/NLM). Beside the PubMed 
Central, some other services for searching full biomedical texts 
are in common use, like eTBLAST and QUERTLE [1]. 
eTBLAST compares documents in the database with the input 
query and finds the documents that match best the keywords 
extracted from the query by analyzing the word alignment [10]. 
QUERTLE is a “relationship-driven biomedical search” tool, 
which performs queries based on the meaning and the context 
of documents [11]. 

Several information retrieval methods, like boolean queries 
and index structures, similarity queries and vector model and 
latent semantics indexing are presented in [12]. One of the 
crucial steps for finding information stored in literature is the 
term identification process. The overview of the state-of-the-art 
approaches dealing with this task is presented in [13]. 

There is a number of tools designed for searching specific 
queries. For example, the information extraction system for 
locating protein-protein interaction data and collecting those 
data in Biomolecular interaction network database (BIND) has 
been presented in [14]. Hoffman and Valencia [15] proposed 
the so-called iHOP (Information Hyperlinked over Proteins) 
web service that uses genes and proteins as hyperlinks between 
the sentence and abstracts, which enables better navigation 

through information from PubMed. The comparison between 
metadata and full-text searching for gene names in two 
biomedical literature domains is presented in [16]. 

To our knowledge, current solutions do not completely 
address the specific demand of prioritizing some query words 
in the searching process. The aim of our work is to develop 
such a searching algorithm, which enables this specific 
searching task. 

III. THE THREE-PHASE PARALLEL SEARCHING ALGORITHM 

A. Problem definition 

Searching biomedical document databases belongs to a 
class of information retrieval (IR) problems, particularly to the 
problems of searching document libraries. The enormous 
growth of biomedical data and the need for finding relevant 
data with specific purposes, like biocuration, in vitro 
experiments and gene annotations, make this problem specific 
to other IR problems. It is well known that biomedical data are 
Big data and they can be broken by 3V characteristics: 
Volume, Velocity, and Variety. Therefore, big data 
technologies are increasingly used for biomedical informatics 
research and the problem of searching biomedical documents 
can be a matter of specific investigation. Although there is a 
number of sophisticated searching tools available, to our 
knowledge, a searching task which involves the relevance of 
specific words has not been adequately addressed. The problem 
considered in this paper deals with this challenge and the 
solution can improve the efficiency of specific searching 
requests which arises in biomedical science.  

Let a document database be given. The input for the 
problem is the list of query words. Optionally, the level of 
importance of each query word can be assigned by a numerical 
value. The greater numerical value means the more importance 
given to the word. The task is to find the most relevant 
documents that contain given query words, where the searching 
process is guided by a specific ranking function. The output of 
the algorithm is the list of documents containing the query 
words and sorted by the ranking criteria. 

In a more practical explanation, to the user is offered a 
simple interface which allows the input of query words which 
are the subject of the search. The user can further define the 
level of importance of each query word by assigning a 
numerical value to each word. As it is mentioned, the greater 
numerical value means the more importance of a word. After 
the user set the input data, the algorithm enters into the 
searching phase, which will be explained in details in the 
following sections. As a result, the user gets a list of documents 
containing the input words. The list is sorted by the criteria 
which will be discussed at the end of this section. 

B. Parallel computing environment 

In recent years there are a fast growth parallel computing 
environments, like multi-core, many-core, GPU or cluster 
frameworks. Two most commonly used cluster computing 
frameworks are Apache Spark on Hadoop and Open MP/MPI 
[17]. Apache Spark is a platform developed at UC Berkley that 
exploits in-memory computation for solving iterative 
algorithms. The advantage of this platform is that it can be run 
in traditional clusters such as Hadoop [18]. OpenMP/MPI 
efficiently exploits multi-core clusters architectures such as 
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Beowulf. It combines the MPI (Message Passing Interface) 
paradigm with shared memory multiprocessing. As it is stated 
in [17], Spark efficiently deals with fault tolerance support and 
data replication, but it has a clear impact on the speed. On the 
other side, OpenMP/MPI provides a solution mostly oriented to 
high-performance computing but vulnerable to faults. Spark on 
Hadoop framework offers a distributed file system with failure 
and data replication management and allows the addition of 
new nodes at runtime. In our paper, we use the advantage of 
the Spark platform, since it provides a set of tools for data 
analysis and management that is easy to use and deploy. 

As it is already mentioned, Spark is based on the concept of 
maintaining data in memory rather than on disk. It is able to 
efficiently deal with iterative computational procedures that 
recursively perform operations over the same data. Resilient 
Distributed Datasets (RDDs) are fundamental data units in the 
Spark environment. Formally, RDD is a distributed memory 
abstraction that provides in-memory computation on large 
clusters in a fault-tolerant manner. There are two ways of 
creating RDD. The first one is to apply some deterministic 
operations on data in stable storage while the second one is to 
apply these operations on other RDDs. By default, the Spark 
keeps RDD in the memory, but if there is not enough RAM it 
can split them to the disk [19]. 

The MapReduce programming model is one of the most 
successful implementations for processing and generating large 
data sets. In the core of the MapReduce model, there is a map 
function that processes key/value pairs to generate a set of the 
intermediate key/values pairs. These intermediate key/values 
pairs are the input for the reduce function, which merges all 
intermediate values associated with the same intermediate key 
[20]. This programming paradigm has already been proven as a 
successful technique for processing big datasets of clinical, 
biomedical, and biometric data [21]. To our knowledge, this 
paradigm has not been used for the information retrieval 
problem, especially in the field of biomedical documents. 

The proposed searching algorithm consists of three phases. 
In the first phase, which is described in more details in 
Subsection C, data preprocessing is performed. In the second 
phase (Subsection D), documents are transformed into a more 
suitable and informative form. And finally, in the third phase, 
described in Subsection E, documents search based on the set 
of query words is done. 

C. The data preprocessing phase 

Data preprocessing is a common starting step in the text 
mining process. It includes several standard procedures, such 
as lemmatization and eliminating stop words [22]. In the 
beginning, all characters from the set  

{'.', '(', ')', '/', '%', '-', ',', ';', ':', '*', '[', ']', '#', '+', '\ ', '\$', '?', '!', '"'} 

 are identified so they can be removed in the process of 

eliminating stop words. After that, all letters are converted into 

the lower case. All words are the further subject of 

lemmatization process, i.e. the process of identifying basic 

forms of each word [23]. For the lemmatization of the text, 

WordNetLemmatizer (nltk.stem package available at 

http://www.nltk.org/api/nltk.stem.html) is used in this paper. 

Before eliminating standard stop words in English, the list of 

stop words is updated with punctation and some other special 

signs. In the proposed MapReduce algorithm, all these actions 

are performed using the mapValues function. 

D. The  representation phase 

The task of the second phase is to represent each document 
as a list of pairs (word, tf-idf index of the word). The term 
frequency - inverse document frequency (tf-idf) represents a 
statistical measure of the importance of a word for a given 
document from a corpus of documents. tf-idf is a commonly 
used metric with a property that the higher value of tf-idf 
index means the stronger connection between the word and the 
document [24]. For a given word t and a document d in a 
corpus of documents D, tf-idf is calculated as 

 
   tf-idf (t, d, D) = tf (t, d)* idf (t, D)           (1) 

where tf(t, d) is the number of occurrences of the word t in 
document d, while the value idf may be calculated  by the 
formula 

                    idf (t, D) = 𝑙𝑜𝑔
|𝐷|+1

𝑑𝑓(𝑡,𝐷)+ 1
 (2) 

The value df (t,D) is the number of different documents in 
the corpus D which contain the word t. |D| is the total number 
of documents in the corpus D. 

E. The searching phase 

After representing each document in the form of the 
corresponding list of pairs, the algorithm enters the main 
phase - searching for the most relevant documents. Let t1,t2,..., 
tn be query words and let d be a document from the corpus D. 
The relevance of document d for the words t1,t2,..., tn is 
calculated by the formula 

𝑓(𝑡1, 𝑡2, … , 𝑡𝑛 , 𝑑, 𝐷) = ∑ (𝑤𝑖 ∗  𝑡𝑓-𝑖𝑑𝑓(𝑡𝑖 , 𝑑, 𝐷)) +  𝛼 ∗ ∑ 𝐼(𝑡𝑖 , 𝑑)𝑛
𝑖=1

𝑛
𝑖=1   (3) 

As can be seen from the Eq. (3), the overall ranking 
criterion is a combination of two metric functions. The first 
one is the sum of tf-idf indices for each query word. In 
addition for each query word ti the value tf-idf (ti,d,D) is 
multiplied by the weighted factor wi. This approach enables 
the ranking criterion to be more robust since each query word 
can be given different importance in the overall search. If each 
weight is equal to 1, then each word is given the same 
importance. The second part of the ranking criterion is the sum 
of indicator function I(ti,d)  which takes value 1 if the word ti 
is present in document d, 0 otherwise. It should be noted that 
the sum of indicator functions is multiplied by binary 
parameter 𝛼 , taking values from {0,1}. Actually, if 𝛼 = 1 
indicator functions are taken into the account, otherwise not. 

Finally, if the value of the function f from the Eq. (3) for 
the document d1 is greater than the value of that function for 
the document d2, then the document d1 is more relevant for the 
given query words than document d2. 

Actually, by the Eq. (3), four different types of ranking 

criteria can be given: 

• Ranking criterion I: wi =1, for all i=1,...,n, and 𝛼 =
1 ∶ all query words have the same importance and 

indicator functions are taken into the account; 

• Ranking criterion II: wi =1, for all i=1,...,n, and 𝛼 =
0 : all query words have the same importance and 

indicator functions are omitted; 

http://www.nltk.org/api/nltk
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• Ranking criterion III: the weights of query words are 

different and 𝛼 = 1 : query words are given different 

importance and indicator functions are taken into  

account; 

• Ranking criterion IV: the weights of query words are 

different and 𝛼 = 0 ∶ query words are given different 

importance and indicator functions are omitted. 

Parameter variation allows the user to influence the 

searching procedure. If the parameter 𝛼 is equal to 1, then 

the more favored space of the search is the subset of 

documents which contains all the query words. On the other 

side, if the parameter 𝛼 is set to 0, then the requirement that 

the documents contain all query words is not so strict. By 

using weights of the query words, the user can additionally 

influence the search results. If all the query words should 

have the same importance, then all the weights should be 

the same (by default they are set to 1). Otherwise, if some 

query words are more important than others, the user can 

assign greater weights to them. As a consequence, the 

existence of those words in the documents will more 

influence on the overall value of the ranking function. 

Although weights of the query words in Eq.(3) can be 

arbitrary assigned, they should be chosen in such a way that 

the algorithm still stays stable. Preliminary experiments 

indicated that higher precision of the search is achieved if 

the value of function f for ranking criteria III and IV is not 

significantly different from the function f for ranking 

criteria I and II. In our experiment, the weights are chosen 

from the range [0,1] and values of function f are slightly 

less than in the case where all weights are equal to 1. 

IV. EXPERIMENTAL RESULTS 

In order to examine the characteristics of the proposed 
algorithm, comprehensive experiments have been performed. 
For all tests, Intel i7-4770 CPU@3.40GHz with 8GB RAM 
and Windows 7 operating system was used. For implementing 
MapReduce functions in the Spark-Hadoop environment, 
Python programming language was used.  All searching 
queries were executed on subsets of the PubMed document 
database which is publicly available and can be downloaded 
from the address ftp://ftp.ncbi.nlm.nih.gov/pub/pmc. 

The proposed algorithm was tested on four subsets of the 
PubMed database of different sizes: PubMed200, 
PubMed1000, PubMed5000, and PubMed10000, containing 
approximately 200, 1000, 5000 and 10000 documents, 
respectively. Each of these subsets was created by expanding 
the previous smaller subset. An exact number of documents 
and the total size of each subset are shown in Table 1. All 
documents are in the txt format. In all experiments the 
following set of 12 query words was used:  

{'nucleic', 'acid', 'polarization', 'atomic', 'electrostatic', 

'biological', 'experimental', 'rna', 'backbone', 'force', 'center', 

'md'}. 
TABLE 1. Total number of documents 

 

A. Experiment with ranking criterion I 

In the main experiment, each query word is given the same 
importance (for all i=1,...,n the values wi are set to 1), 
indicator functions are included ( 𝛼 = 1 ) and each of four 
document subsets is used. For the execution of the proposed 
parallel algorithm, six worker nodes in Spark-Hadoop 
environment are used. 

1) Results obtained on the PubMed200 subset 

Table 2 contains the list of the 10 most relevant document 
when the smallest subset PubMed200 was used as the test 
database. 

The third column contains the value f obtained for a 
document and given query words. For example, the value 
189.52 in the first row (document #1) is calculated by 
summing tf-idf indices from the list of the pairs (word, tf-idf 
index) 

[('center', 1.16), ('rna', 50.32), ('md', 38.13),('force', 25.55), 

('electrostatic', 7.71),('experimental', 10.88),('acid', 4.80), 

('atomic', 7.25), ('polarization', 6.23), ('backbone', 15.65), 

('biological', 2.11), ('nucleic', 7.71)], 
 

 
TABLE 2. Results on the PubMed200 subset 

 Document Value f 

1 Acc_Chem_Res_2010_Jan_19_43(1)_40-47 189.52 

2 Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741 162.76 

3 Acc_Chem_Res_2014_Sep_16_47(9)_2837-2845 82.01 

4 PMC5406124 77.95 

5 Acc_Chem_Res_2012_Jul_17_45(7)_1122-1131 76.99 

6 Acc_Chem_Res_2014_Sep_16_47(9)_2812-2820 70.09 

7 Acc_Chem_Res_2014_Oct_21_47(10)_3118-3126 64.92 

8 Acc_Chem_Res_2012_Aug_21_45(8)_1258-1267 63.04 

9 Acc_Chem_Res_2012_Dec_18_45(12)_2035-2044 60.81 

10 Acc_Chem_Res_2014_Jun_17_47(6)_1825-1835 58.86 

Subset Number of doc. Size (in MB) 

PubMed200 185 7.74 

PubMed1000 1086 51.1 

PubMed5000 4801 166 

PubMed10000 10389 354 

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
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and the number 12, since all query words are present in the 
document Acc_Chem_Res_2010_Jan_19_43(1)_40-47. On 
the other side, document #10 (Acc_Chem_Res_2014_-
Jun_17_47(6)_1825-1835) contains only 6 query words with 
the following tf-idf indices 

 

[('acid', 10.86), ('backbone', 0.63), ('rna', 3.00), 

('biological', 1.20),('nucleic', 36.47), ('electrostatic', 0.70)] 

 

most of which indices are smaller than for the previously 
considered document #1. 

 

2) Results obtained on the PubMed1000 subset 

The list of the top 10 documents obtained on the subset 
PubMed1000 is shown in Table 3. 

The highest value of the function f in the subset 
PubMed1000 is obtained for the document PMC5333189 and 
this value is significantly higher than for other top documents. 
The main reason is that the query word 'rna' appears more than 
550 times in that document, so tf-idf index of the word 'rna' is 
very high. Comparing the results from Table 3 to the results 
obtained on the subset PubMed200, it can be seen that the 

most relevant documents found in the PubMed200 are now at 
positions 3 and 6. 

 

3) Results obtained on the PubMed5000 subset 

In this section, the experiments are extended to the subset 
which contains about 5000 documents.  Top ten most relevant 
documents from this document subset (PubMed5000) are 
shown in Table 4. By comparing these results with the results 
obtained on the PubMed1000 subset, one can see that the first 
5 documents are the same. Also, it can be seen that documents 
which are in the smaller database at positions 6 and 7 are now 
at positions 8 and 9. 

As an illustration of the behavior of the function f, we 
compare tf-idf indices of the same document in different 
subsets. At Fig.1 we show tf-idf indices of the document 
PMC5371978, which appears at the position 8 in the subset 
PubMed1000 and at the position 6 in the subset PubMed5000. 
From Fig.1 it can be seen that for each query word, except the 
word 'md', tf-idf index is higher in the case of the subset 
PubMed5000 than of the subset PubMed1000. Different 
values of these indices are a consequence of the fact that the 
proportion of the df measure of a word, in the overall 
collection D is, in general, lower if the collection D is larger, 
and thus the overall idf and tf-idf measures are higher (Eq. (1), 
(2)). 

 
TABLE 3. Results on the PubMed1000 subset 

 Document     Value f       

1  PMC5333189   462.71 

2  ACS_Nano_2011_May_24_5(5)_3405-3418         239.96 

3  Acc_Chem_Res_2010_Jan_19_43(1)_40-47      182.73 

4  ACS_Chem_Biol_2013_Dec_20_8(12)_2697-2706  175.25 

5  ACS_Nano_2014_May_27_8(5)_4771-4781         165.02 

6  Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741   147.67 

7  ACS_Nano_2014_Aug_26_8(8)_7620-7629  143.04 

8  PMC5371978   130.71 

9  ACS_Nano_2014_May_27_8(5)_4559-4570   127.84 

10  ACS_Nano_2015_Oct_27_9(10)_9731-9740   126.46 

 

 
TABLE 4. Results on the PubMed5000 subset 

  Document  Value f 

1  PMC5333189 595.63 

2  ACS_Nano_2011_May_24_5(5)_3405-3418 309.29 

3  Acc_Chem_Res_2010_Jan_19_43(1)_40-47  235.15 

4  ACS_Chem_Biol_2013_Dec_20_8(12)_2697-2706  218.81 

5  ACS_Nano_2014_May_27_8(5)_4771-4781    207.88 

6  PMC5371978   198.92 

7 
 Acta_Crystallogr_D_Biol_Crystallogr_2013_Nov_1_69(Pt_11)_2174-
2185  

198.19 

8  Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741     187.97 

9  ACS_Nano_2014_Aug_26_8(8)_7620-7629 182.09 

10  ACS_Nano_2011_Feb_22_5(2)_693-729   181.04 
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4) Results obtained on the PubMed10000 subset 

In Table 5 we show top 10 results obtained on the 
PubMed10000 subset. As in two previous cases, the document 
PMC5333189 is again the most relevant. The second and the 
third results are also the same as in the case of the 
PubMed5000 subset. From Tables 4 and 5, one can see that 
several other documents appear in both tables but in different 
orders. 

B. Justification  of the proposed ranking criterion I 

In order to further examine the performances of different 
ranking criteria proposed in Subsection III-E, some additional 
experiments are performed. The algorithm is executed on the 
subset PubMed1000 three more times, once for each of the 
proposed ranking criteria II, III and IV. All the ranking criteria 
are calculated by varying parameters in Eq. (3). For 𝛼 =
1, 𝑤𝑖 = 1 for all i the first ranking criterion is formed. The 
second one (all query words have the same importance and 
indicator functions are omitted) is obtained for  𝛼 = 0  and 
 𝑤𝑖 = 1  for i=1,...,n. In the third and the fourth criteria the 
weights are different and are defined as follows: 

[('nucleic',0.3), ('acid', 0.5), ('polarization', 0.2),('atomic', 
0.2), ('electrostatic',0.1),('biological',0.4),( 'experimental', 0.1), 
('rna', 0.7), ('backbone', 0.6), ('force', 0.3), ('center',0.1), 
('md',0.01)]. 

In the third criterion 𝛼 = 1 , while in the fourth 𝛼 =
0. Table 6 contains some comparative results obtained by each 
of these four ranking criteria: the value of the function f 
(shown in the column Value f) and the position in the ranking 
list (column Pos.). From Table 6 it can be seen that the first 
and the second most relevant documents are the same for all 
four considered criteria. The document, which is on the third 
place in cases of the first and the second criteria, is at positions 
11 and 12 for the other two criteria. That is a consequence of 
the fact that the words with larger tf-idf indices are given 
relatively small weights. This is how we can influence the 
overall search in cases when we want to give more importance 
to some specific query words. In addition, by varying the 
value 𝛼 we can further influence the search results by favoring 
those documents which contain all or most of the query words. 

 

 

 
Figure1.  tf-idf indices of the document PMC5371978 in different documents subsets 

TABLE 5. Results on the PubMed10000 subset 

  Document Value f 

1 PMC5333189 557.43 

2 ACS_Nano_2011_May_24_5(5)_3405-3418 289.16 

3 Acc_Chem_Res_2010_Jan_19_43(1)_40-47 241.5 

4 
Acta_Crystallogr_D_Biol_Crystallogr_2013_Nov_1_69(Pt_11)_2174-

2185 
212.22 

5 PMC5371978 211.05 

6 ACS_Nano_2016_Jul_26_10(7)_7117-7124 206.45 

7 ACS_Nano_2011_Feb_22_5(2)_693-729 205.07 

8 ACS_Chem_Biol_2013_Dec_20_8(12)_2697-2706 204.57 

9 ACS_Nano_2014_May_27_8(5)_4771-4781 191.81 

10 Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741 174.92 
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C. Justification of using a parallel algorithm 

In order to justify the usage of MapReduce paradigm the 
sequential algorithm is also developed and the performances 
of the parallel and sequential variants are compared. Table 7 
contains execution times of both parallel and sequential 
algorithms for different document subsets. In the first column, 
the name of each subset is shown. In the last two columns, 
total execution times of parallel and sequential algorithms are 
shown, respectively, with the mark N/A in the case when 
sequential algorithm could not find a solution in a reasonable 
time. It should be noticed that obtained ranking lists of both 
algorithms are the same.  From Table 7 one can easily see that 
the parallel algorithm is significantly faster than the sequential 
one: for the smallest set about 20 times, for the subset 
PubMed1000 about 80 times, while for the set containing 
about 5000 documents the parallel algorithm is faster more 
than 150 times. 

V. CONCLUSION AND FUTURE WORK 

Developing practical methods for searching biomedical 
documents is of great interest in the scientific community. In 
this paper, a three-phase parallel searching algorithm is 
proposed. The algorithm is implemented in the Spark-Hadoop 
platform using the MapReduce paradigm. The searching 
criterion is specially designed as a combination of the tf-idf 
index with weighted factors and indicator functions. The 
benefit of this approach is that the user can influence the 
overall searching process by setting the parameters of the 
ranking function. The algorithm allows the user to prefer some 
query words by assigning larger weights to them. In addition, 
by setting the binary parameter 𝛼  to 1 or 0, the user can 
influence the search results in the sense whether the most 
relevant documents should contain all query words or not. 

The proposed algorithm is tested on the well-known 
PubMed biomedical document database. Experimental results 

clearly indicate the high usability of the proposed algorithm. 
Firstly, the algorithm succeeds to find satisfactory results in a 
reasonable time. Secondly, the obtained results are consistent 
with regards to the size of the document database. And finally, 
we show how to influence the final results by choosing 
different values of the ranking function parameters, as it is 
demonstrated in Subsection IV-B.  

This research can be extended in several ways. In order to 
decrease needed memory space, it could be useful to represent 
documents in a more efficient way by using some hashing 
technique and adopt ranking criteria to deal with such 
representation. Our parallel algorithm could also be combined 
with cluster-based approaches to browsing large document 
collections. The purpose of this hybridized approach could be 
the speeding up the searching process and the reducing of the 
overall searching space by considering only particular cluster 
representatives. 

 
TABLE 7 The time of execution 

Subset Time (in minutes) 

  Parallel Sequential 

PubMed200 0.72 14.6 

PubMed500 3.1 266.14 

PubMed5000 14 2180.32 

PubMed10000 45 N/A 
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TABLE 6. Results on the PubMed1000 obtained by using different ranking criteria 

Document Crit. I Crit. II Crit. III Crit. IV 

 Value f Pos. Value f Pos. Value f Pos. Value f Pos. 

PMC5333189   462.71 1 453.71 1 306.06 1 297.06 1 

ACS_Nano_2011_May_24_5(5)_3405-3418 239.96 2 230.96 2 158.22 2 149.22 2 

Acc_Chem_Res_2010_Jan_19_43(1)_40-47  182.73 3 170.73 3 69.01 11 57.01 12 

ACS_Chem_Biol_2013_Dec_20_8(12)_2697-

2706  
175.25 4 164.25 4 103.01 4 92.01 4 

ACS_Nano_2014_May_27_8(5)_4771-4781  165.02 5 157.02 5 112.69 3 104.69 3 

Acc_Chem_Res_2014_Jun_17_47(6)_1731-

1741   
147.7 6 138.69 6 95.88 6 86.88 6 

ACS_Nano_2014_Aug_26_8(8)_7620-7629   143.04 7 136.03 7 96.25 5 89.25 5 

PMC5371978 130.71 8 118.71 9 67.65 13 55.65 13 

ACS_Nano_2014_May_27_8(5)_4559-4570 127.84 9 120.84 8 89.52 7 82.52 7 

ACS_Nano_2015_Oct_27_9(10)_9731-9740 126.46 10 118.46 10 84.96 8 76.96 8 

ACS_Nano_2011_Feb_22_5(2)_693-729  121.03 11 111.03 13 42.54 19 32.54 21 

ACS_Nano_2015_Jan_27_9(1)_251-259  119.71 12 113.71 11 81.79 9 75.79 9 

ACS_Chem_Biol_2015_Mar_20_10(3)_652-

666  
105.34 15 96.34 15 68.05 12 59.05 11 
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