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Abstract— The mid-infrared wavelength region is important for a number of application areas, two of which are optical fibre and free 

space communications. Silicon photonics can provide inexpensive photonic chips for such applications due to excellent electronic and 

photonic properties. In this paper, the realisation of active silicon and germanium photonic devices for the mid-infrared spectral region 

are given. High speed Si depletion type modulators, Si and Ge injection modulators operating at wavelengths up to 8 micrometers, and 

high speed Si detectors are presented. These devices are integrated with drivers and amplifiers and show very good performance, e.g. 

data rate in excess of 20 Gb/s. 
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I. INTRODUCTION  

The mid-infrared (MIR) wavelength range (2-20 m) has 
attracted lot of attention recently. This is mainly due to a 
number of molecules and substances having very strong 
absorption bands in this spectral range and hence photonic 
devices operating in the MIR can offer sensitive and selective 
sensors for healthcare, environmental monitoring, industrial 
process control, defense and security, to mention a few. On the 
other hand, the MIR has two atmospheric transmission 

windows (3-5 and 8-14 m) and free space communications 
operating in these wavelength ranges can be developed.  

Due to an exponential increase in data traffic new spectral 

regions will be needed. The 2 m wavelength range is 
attractive due to the development of low loss optical fibres and 
thulium doped fibre amplifiers (TDFA) in this range. To 
address this future need, we have developed high speed Si 
modulators and detectors, as well as passive photonic devices. 
We have also theoretically investigated modulation in Si and 
Ge at longer wavelengths and experimentally verified them 
using Si and Ge injection modulators at longer wavelengths. 
All these devices have been fabricated using Silicon-on-
Insulator (SOI) and Ge-on-Si (GOS) material platforms.  

In Section II passive SOI and GOS devices are introduced, 
Section III presents different types of Si and Ge modulators, 
Section IV shows the realisation of a Si MIR detector, and 
finally conclusions are given in Section V.  

II. PASSIVE SI AND GE DEVICES 

The SOI platform is the most popular platform in the near-
IR (NIR) wavelength range. However, due to high material loss 

of SiO2 [1], this platform cannot be used beyond 4 m [2]. We 
have shown in a number of publications that MIR SOI devices 
can match performance of much more mature SOI NIR 

counterparts if operating beyond 4 m [e.g. 3-7]. Low loss 
waveguides (~1 dB/cm), couplers, splitters (0.1 dB/splitter), 
interferometers, and spectrometers have been demonstrated. 
These devices have been used for subsequent demonstrations 
of active devices and for integrated circuits for 
communications and sensing.  

For wavelengths beyond 4 m, we have developed a 
subwavelength suspended Si platform and experimentally 
demonstrated a library of passive devices operating at 

wavelengths up to 7.7 m, reaching the transparency limit of Si 
[8-10]. The waveguide propagation loss was as low as 0.8 
dB/cm, bend loss 0.005 dB/bend, and multimode interference 
(MMI) splitter and Mach Zehnder interferometer (MZI) 
insertion losses were smaller than 0.5 and 1 dB, respectively.  

For even longer wavelengths (up to 13 m) we have 
developed a low loss Ge-on-Si platform [e.g. 11] and 
demonstrated photonic devices such as MMIs, MZIs, grating 
couplers, Vernier ring resonator filters and sensors [e.g. 11-14]. 
We have also investigated nonlinear effects in Ge waveguides 

[15-16]. The waveguide loss was 0.6 dB/cm at 3.8 m [11], 2.5 

dB/cm at 7.5 m, but it increased to ~15 dB/cm at 8.5 m [17]. 
We are currently investigating the reasons for such a high loss 
at longer wavelengths but in the meantime, we have developed 
a suspended Ge platform (Fig. 1).  

This paper has been presented at the XVIII International Symposium 

INFOTEH-JAHORINA 2019. 
This work was supported by EPSRC in the UK through the following 

grants: EP/N00762X/1, EP/L021129/1, EP/N013247/1 and EP/L01162X/1. 



  

International Journal of Electrical Engineering and Computing  
Vol. 3, No. 1 (2019) 

 

33 
 

 

 

First, Ge was grown on a thin SOI wafer by reduced 
pressure chemical vapour deposition (RPCVD). A rib Ge 
waveguide was then formed by lithography and etching, holes 
on both sides of the rib were etched, and finally hydrofluoric 
(HF) acid and tetramethylammonium hydroxide (TMAH) used 
to remove SiO2 and thin Si layers, respectively. Loss of 2.65 

dB/cm was measured at a wavelength of 7.7 m [18]. Further 
work is underway to demonstrate such waveguides at 

wavelengths up to 13 m, as well as to fabricate 
subwavelength variation of the suspended Ge.  

 

 

Figure 1.  Suspended Ge rib waveguide.  

In summary, there are several group IV based platforms 
that can be used in the MIR. In our work shown in sections III 
and IV we have used SOI and GOS as the most popular 
platforms to demonstrate optical modulators and detectors in 
the MIR.  

III. SILICON MODULATORS 

Due to its centro-symmetric crystalline structure, silicon 
does not have Pockels effect and therefore optical modulation 
is usually performed through thermal or carrier effects. Hybrid 
modulators have also been shown using III-V bonded devices 
on Si, polymers, graphene or via integration with LiNbO3. 
Whilst these hybrid solutions can result in efficient modulators, 
they are not CMOS compatible and would find significant 
barriers for large volume markets. In this section, CMOS 
compatible MIR solutions are presented, namely thermal 
modulators in Si, and carrier effect (plasma dispersion) 
modulators in Si and Ge.  

A. Thermal modulators 

Silicon has a large thermo-optic effect (change in refractive 

index with temperature) of dn/dT = 1.70  10-4 °C-1 at a 

wavelength of 3.8 m, which is in many cases undesirable 
characteristic of Si as resonant devices (e.g. ring resonators) 
change their responses significantly with temperature. On the 
other hand, this large thermo-optic coefficient can be used to 
modulate optical response although with low bandwidth. We 
have investigated modulators that were based on heaters placed 
above one arm of a MZI (Fig. 2). The MZI used SOI rib 
waveguides with silicon height H=400 nm, waveguide width 
W=1300 nm, etch depth D=220 nm, and buried oxide layer 

(BOX) thickness HBOX=2 μm. 12 MMIs with tapered input 
and output ports are used as the splitter/coupler for the MZI.  

 

 

Figure 2.  MZI with Si spiral waveguides in both arms (blue) and a heater in 

one arm (orange).  

An aluminium heater, which acts as a phase shifter, is 
placed above one of the MZI arms, and because there is high 
optical absorption in metals a SiO2 layer is used to isolate the 
heater from the optical mode. MZIs exhibited modulation 
depths of up to 30.5 dB, insertion losses of 1.3-2.2 dB, -3dB 
bandwidths of up to 23.8kHz, and power consumption of 47 
mW [19]. For high speed application plasma dispersion effects 
need to be used.  

B. Plasma dispersion effects in Si 

The free-carrier plasma effect (abbreviated here as FCE for 
free-carrier effect) relies on altering the electron and hole 
concentration in crystalline silicon or germanium, which alters 
the absorption coefficient ( ) and the refractive index ( ) of 
the bulk material. The electroabsorption and electrorefraction 
due to a change in charge carrier concentrations can be 
calculated from simple expressions, that we have derived for Si 
and Ge [20,21] for  vs  and  , and  vs  and  

 at near-infared (NIR) and mid-infrared (MIR) 
wavelengths. These expressions have been calculated from 
absorption spectra of doped silicon and germanium wafers, and 
from using Kramers-Kronig (KK) equations to calculate the 
refractive index change at different charge carrier 
concentrations. The main conclusion from the theoretical work 
we have conducted is that FCE is generally larger in Ge than in 
Si. Also at longer wavelengths modulators exploiting free-
carrier electro-absorption are likely to be more effective than 
those using electrorefraction. There are three main methods to 
utilise FCE: carrier injection, carrier accumulation, and carrier 
depletion. Modulators based on the first are the simplest to 
fabricate, and those based on the the third have the highest 
bandwidth. We have therefore used them at longer wavelengths 
and for high bandwidth modulators at the 2 μm wavelength 
range, respectively.  

C. Si depletion modulators 

Using the equations reported in [20] we have designed a 
depletion phase shifter, shown in Fig. 3, and implemented it in 
both MZI and ring resonator configurations. 220 nm SOI was 
used and wide band Y-splitters in MZMs such that realized 
modulators could operate at both 1550 nm and 1950 nm. Ring 
resonators were integrated with drivers designed by our group. 
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Figure 3.  Si depletion modulator 

During the design process, two important dimension 
parameters have been swept to analyse their effects. The first is 
the separation between the high doping sections and the optical 
waveguide core. When varying the doping separation, there is a 
trade-off between device bandwidth and free carrier loss. The 
device bandwidth rises as the high doping separation decreases, 
due to reduced access resistance. However, when the high 
doping is too close to the waveguide core, the overlap between 
the optical mode and free carriers in the high doping region 
increases, resulting in significant optical loss. Therefore, a 
trade-off between device bandwidth and device loss should be 
considered. 

The PN junction position is the second major parameter. the 
device has the lowest loss and highest efficiency when it is 
placed near the centre of the waveguide, because the maximum 
overlap of the optical mode and depletion region is achieved. 
The bandwidth, however, increases when the junction position 
is close to the edge of the waveguide core, because in this case 
the PN junction is partially in the slab region of the waveguide 
and has a reduced cross-section compared to in the core region. 
This results in lower capacitance and hence higher bandwidth. 
However, achieving this condition comes at the cost of 
significantly higher loss and lower efficiency. If the doping 
separation is chosen properly, the simulated bandwidth should 
be greater than 75 GHz regardless of junction position. In our 
design, we chose a 0 nm junction offset. 

Fabricated device modulation efficiency at 4 V reverse bias 
was 2.68 V·cm for 1950 nm and 2.02 V·cm for 1550 nm. The 
slightly lower efficiency at 1950 nm was due to a larger optical 
mode caused by a lower overlapping factor with the depletion 
region in the PN junction. The device operated at a data rate of 
20 Gbit/s with an extinction ratio of 5.8 dB and 30 Gbit/s with 
an extinction ratio of 7.1 dB for 1950 nm and 1550 nm, 
respectively [22]. The wavelength should have very little effect 
on the bandwidth, and the difference was mainly caused by the 
bandwidth limit of our 2 μm measurement setup, due mostly to 
the bandwidth limit of the high-speed detector used. The ring 
modulator operated in carrier depletion mode with 43 pm 
resonance shift under 4 V reverse bias. Driven by a low power 
integrated driver the ring operated in a hybrid carrier injection 
and depletion mode at a data rate of 3 Gbit/s with extinction 
ratio of 2.30 dB and power consumption of 2.38 pJ/bit in the 2 
μm wavelength range.  

D. Si injection modulators 

To demonstrate injection Si modulators at longer 
wavelength and to compare our theoretical predictions with 
experimental results we used 340 nm SOI wafers with the 

buried oxide layer thickness of 2 μm, to fabricate rib 
waveguides 1175 nm wide and etched 240 nm (Fig. 4). 
Simulations using the Lumerical Mode Solutions EME solver 
showed that these waveguides would support the fundamental 
TE mode only. The SiO2 top cladding thickness was 1 μm. The 
P++ and N++ Ohmic contact regions had doping 
concentrations of 1e20 cm-3

 of boron and 9e19 cm-3 of 
phosphorus, respectively. The Si had a p-type background 
doping of 1.5e17 cm-3. Both electroabsorption (spiral 
waveguide) and electrorefraction (MZI) modulators were 
fabricated and characterised.  

The electroabsorption modulator (EAM) achieved a DC 
modulation depth of 34 dB and an AC data rate of 60 Mbit/s, 
while the electrorefraction modulator achieved a DC 
modulation depth of 22.2 dB with a  of 0.052 V.mm, and 
an AC data rate of 125 Mbit/s [23]. The MZI modulator 
measurements indicated that the free carrier effect equations 
for this wavelength accurately predicted the correlation 
between absorption coefficient and refractive index changes 
due to a change in free carrier concentration, while the 
measurements of excess loss from doping indicated that the 
equations also reasonably accurately predicted the absolute 
value of the free carrier absorption. 

 

 

Figure 4.  SOI pin structure 

E. Ge injection modulators 

We have also investigated mid-infrared electro-optic 
modulators based on the Ge-on-Si platform at wavelengths up 
to 8 μm. The cross section of the Ge phase shifter is shown in 
Fig. 5. A fabricated 1-mm-long EAM exhibited a DC 
modulation depth in excess of 35 dB at 3.8 μm wavelength, and 
a MZM with a 1–mm-long phase shifter at the same 
wavelength had a modulation depth of 13 dB with a Vπ·L of 
0.47 V·cm. When driven by a RF signal, 60 MHz OOK 
modulation was demonstrated in both the EAM and MZM 
devices. An EAM device has also been demonstrated at a 
wavelength of 8 μm, with a 2.5 dB modulation depth for a 7 V 
DC forward bias in a 2–mm-long PIN diode [24]. The 
measurements indicated that the injected free carrier absorption 
was more than 4.9 times greater at 8 μm than at 3.8 μm for the 
same carrier concentration, which was consistent with the 
theoretical predictions of [21]. The modulation efficiency of all 
of these modulators would be expected to increase significantly 
with optimisation of the Ohmic contact separation and with 
improved Ohmic contact fabrication. 
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Figure 5.  GOS pin structure.  

IV. DETECTORS 

One of the most important devices for integrated photonic 
circuits is a photodetector. A CMOS compatible waveguide 
integrated detector at the 2 μm range would complement III-V 
and fibre optic sources, TDFA and modulators reported in the 
previous section.  

We have utilised mid-bandgap absorption due to presence 
of divacancies in the silicon crystalline structure, as a result of 
inert ion implantation of boron into silicon. The most 
distinctive feature of the device fabrication process was the 
simplicity, since no heterogeneous integration was necessary. 
The detectors consisted of 220nm thick SOI waveguides with a 
lateral pin junction, similar to the injection Si modulators from 
section III. An etched window in the oxide cladding above the 
waveguide served as a mask to target the intrinsic region of the 
pin diode with the inert implantation. The heavily doped p and 
n-regions of the device were positioned 300 nm from the 
waveguide sidewall to manage propagation loss. Aluminum 
contacts were positioned several microns away from the 
waveguide. Coupling light from an external fibre to the 
detector was accomplished by inverted-taper waveguides that 
extend to the edge of the chip and provided broadband access. 
The width of the couplers tapered linearly from 1 µm to 180 
nm over a length of 200 nm and terminated within a few 
microns of the sample edge.  

A 1 mm long detector showed a 3 dB bandwidth of 12.5 
GHz while the 200 µm long device showed 15 GHz. The 
measured capacitance of our 1 mm long detector was 260 ± 10 
fF. With a 50 Ω load this provided an RC limited bandwidth of 
~ 12 GHz. The detector operated in avalanche mode at a date 
rate of up to 28 Gbit/s. External responsivity of the detector at 
2 µm was 0.3 ± 0.02 A/W [25], and we expect further 
improvement with an optimised waveguide and detector design 
to improve the modal confinement factor and reduce 
propagation loss. 

V. CONCLUSIONS 

We have shown several active devices realised in Si and Ge 
that operated in the MIR and that can find application if future 
MIR communications. Although the field of silicon MIR 
photonics is still in its infancy, the reported results show much 
promise for the realisation of efficient components and 
integrated circuits for several important application areas.  
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