BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 53-63

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

SIGN DOMINATING SWITCHED INVARIANTS OF A GRAPH

B. Chaluvaraju and V. Chaitra

ABSTRACT. In this paper, we newly constructed the sign dominating outer (inner) switched graph $\mu_d^o(G)$ ($\mu_d^i(G)$) of a graph G = (V, E) and establish their properties. Also we determine number of edges and its relation between $\mu_d^o(G)$ and $\mu_d^i(G)$ in some special classes of graphs are explored.

1. INTRODUCTION

All the graphs considered in this paper are finite, nontrivial, simple and undirected. Let G = (V, E) be a simple graph with vertex set V(G) = V of order |V| = n, edge set E(G) = E of size |E| = m and let v be a vertex of V. The open neighborhood of v is $N(v) = \{u \in V/uv \in E(G)\}$ and closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. The graph G^c is called complement of a graph G, if G and G^c have the same vertex set and two vertices are adjacent in G if and only if they are not adjacent in G^c . A subset S of V is called vertex independent set if no two vertices in S are adjacent in G. A clique in a graph is an induced complete subgraph. The maximum order of a clique in the graph G is called the clique number of G, denoted by $\omega(G)$. A collection of independent edges of a graph G is called a matching of G. If there is a matching consists of all vertices of G it is called a perfect matching. For standard terminology and notation in graph theory, we refer [6].

A sign dominating function of a graph G is a function $f: V \to \{-1, 1\}$ such that $f(N[v]) \ge 1$ for all $v \in V$. The sign domination number of a graph G is $\gamma_s(G) = min\{w(f): f \text{ is sign dominating function}\}$. The concept of sign domination was initiated by Dunbar et al. [5]. For complete review on theory of domination and its related parameters, we refer [7], [8] and [13].

²⁰¹⁰ Mathematics Subject Classification. 05C69, 05C70.

Key words and phrases. Domination, sign domination, k-complement, k(i)-complement.

In a graph G, let $P = \{V_1, V_2, \dots, V_k\}$ be a partition of V of order $k \ge 1$. The *k*-complement of a graph G denoted as G_k^P is defined as follows: for all V_i and V_j in $P, i \ne j$ remove the edges between V_i and V_j and add the edges which are not in G. The k(i)-complement of a graph G denoted as $G_{k(i)}^P$ is defined as: for each set V_r in the partition P, remove the edges of G inside V_r and add the missing edges between them. The concept of generalized complement of a graph was studied by Sampathkumar et al. [9] and [10]. Analogously, the concept of 2-complement and 2(i)-complement of a graph is also known as switched graph, where switching of Gassigns +1 or -1 to each vertex of a graph G. This type of switched graph was introduced by Van-Lint et al. [12].

Further, let V_1 and V_{-1} be set of vertices assigned 1 and -1 in *G* respectively. We denote $\rho^+(G) = \rho^+ = |V_1|$ and $\rho^-(G) = \rho^- = |V_{-1}|$. For more details on Generalized complements (switched invariants) and its related concept, we refer [1], [3], [4], [5] and [11].

2. Sign dominating outer switched graph

The sign dominating outer switched graph of G denoted as $\mu_d^o(G)$ is defined as: for V_1 and V_{-1} of G remove the edges between V_1 and V_{-1} and add the edges which are not there in G.

THEOREM 2.1. Let G be a nontrivial graph. Then

- (i) μ^o_d(G) is a totally disconnected graph if and only if G is totally disconnected graph.
- (ii) V_1 is independent set if and only if $\mu^o_d(G)$ is totally disconnected graph.

PROOF. (i) Let G be totally disconnected graph. Every vertex of G belongs to V_1 . In construction of $\mu_d^o(G)$, no new edge is added or any edge is deleted. Hence $G \cong \mu_d^o(G)$. Conversely, if $\mu_d^o(G)$ is totally disconnected graph, then in G no two vertices of V_1 (or V_{-1}) are connected. Also in G, vertices of V_1 and V_{-1} cannot be connected as a vertex v of V_1 which is adjacent to a vertex of V_{-1} should be adjacent to at least one vertex of V_1 such that $f(N[v]) \ge 1$. Hence G is totally disconnected graph.

(ii) If $\mu_d^o(G)$ is totally disconnected graph, then it is obvious that V_1 is independent set as every vertex of $\mu_d^o(G)$ is assigned 1. Conversely, suppose V_1 is independent set. To prove $\mu_d^o(G)$ is totally disconnected, we shall prove G is totally disconnected. Suppose G is not totally disconnected and a vertex $v \in V_1$ be adjacent to a vertex of V_{-1} . But this vertex v should be adjacent to another vertex in V_1 as $f(N[v]) \ge 1$ which is a contradiction to V_1 being independent. Hence G is totally disconnected.

THEOREM 2.2. Let G be a nontrivial graph. Then, there is no perfect matching between vertices of V_1 and V_{-1} .

PROOF. In a graph G, a vertex assigned -1 is adjacent to at least two vertices assigned 1, there cannot be a perfect matching between V_1 and V_{-1} . Thus the required result follows.

THEOREM 2.3. For any nontrivial graph G,

$$(\mu_d^o(G))^c \cong \mu_d^o(G^c).$$

PROOF. Let u and v be two non adjacent vertices of G. Then they are adjacent in G^c . We prove the result in following cases:

Case 1. If u and v belongs to same set V_1 or V_{-1} , then they are non adjacent in $\mu_d^o(G)$, implies they are adjacent in $(\mu_d^o(G))^c$. Also they are adjacent in $\mu_d^o(G^c)$.

Case 2. If u and v belongs to different sets, then they are adjacent in $\mu_d^o(G)$, implies they non adjacent in $(\mu_d^o(G))^c$. Also they are non adjacent in $\mu_d^o(G^c)$.

From above two cases, the required result follows.

THEOREM 2.4. Let $G = K_{p,q}$ be a complete bipartite graph with bipartition P_1 and P_2 such that $|P_1| = p$ and $|P_2| = q$ with $p \leq q$. If $\left|\frac{q}{2}\right| = r$, then

$$m(\mu_d^o(G)) = (q-r)(p+r).$$

PROOF. Let $G = K_{p,q}$. Since $p \leq q$, degree of every vertex of P_1 is greater than or equal to degree of every vertex of P_2 . Let every vertex of P_1 be assigned 1. Since a vertex assigned -1 should be adjacent to at least two vertices assigned 1, number of vertices assigned -1 in P_2 should be $\left\lfloor \frac{q}{2} \right\rfloor = r$. p vertices of P_1 and (q-r) vertices of P_2 which are assigned 1 forms an induced bipartite graph. Now in $\mu_d^o(G)$, (q-r) vertices assigned 1 and r vertices assigned -1 are adjacent. These (q-r) vertices are adjacent to p vertices in $\mu_d^o(G)$. Hence $\mu_d^o(G)$ is complete bipartite graph K_{r_1,r_2} , where $|r_1| = q - r$ and $|r_2| = r + p$.

To prove our next result we make use of the following result due to Bohdan Zelinka [2].

THEOREM 2.5. Let $G = K_{p,q}$ be a complete bipartite graph with bipartition P_1 and P_2 such that $|P_1| = p$ and $|P_2| = q$, with $p \leq q$. Then

(i) for $p = 1, \gamma_s(G) = q + 1$.

(ii) for
$$2 \leq p \leq 3$$
, $\gamma_s(G) = \begin{cases} p & \text{if } q \text{ is even,} \\ p+1 & \text{if } q \text{ is odd.} \end{cases}$
(iii) for $p \geq 4$, $\gamma_s(G) = \begin{cases} 4 & \text{if both } p \text{ and } q \text{ are even,} \\ 6 & \text{if both } p \text{ and } q \text{ are odd,} \\ 5 & \text{if one out of } p \text{ or } q \text{ is even.} \end{cases}$

THEOREM 2.6. Let $G = K_{p,q}$ be a complete graph with $p \leq q$. If $\left\lfloor \frac{q}{2} \right\rfloor = r$, $r_1 = q - r$ and $r_2 = p + r$, then

(i) for $r_2 = 1$, $\gamma_s(\mu_d^o(G)) = r_1 + 1$.

(ii) for
$$2 \leq r_2 \leq 3$$
, $\gamma_s(\mu_d^o(G)) = \begin{cases} r_2 & \text{if } r_1 \text{ is even,} \\ r_2 + 1 & \text{if } r_1 \text{ is odd.} \end{cases}$
(iii) for $r_2 \geq 4$, $\gamma_s(\mu_d^o(G)) = \begin{cases} 4 & \text{if both } r_1 \text{ and } r_2 \text{ are even,} \\ 6 & \text{if both } r_1 \text{ and } r_2 \text{ are odd,} \\ 5 & \text{if one out of } r_1 \text{ or } r_2 \text{ is even.} \end{cases}$

PROOF. From Theorem 2.4, if G is complete bipartite graph, then $\mu_d^o(G)$ is also complete bipartite graph isomorphic to K_{r_1,r_2} , where $r_1 = q - r$ and $r_2 = p + r$. From Theorem 2.5, the desired results follows.

THEOREM 2.7. Let G be a nontrivial graph. If $G \cong K_n$ with $n \ge 3$ vertices, then

(i)
$$\mu_d^o(G) \ncong K_n$$
.
(ii) $\rho^-(G) = \begin{cases} \frac{n-2}{2} & \text{if } n \text{ is even,} \\ \frac{n-1}{2} & \text{if } n \text{ is odd.} \end{cases}$

(iii) $\mu_d^o(G) = G_{\rho^+} + G_{\rho^-}$, where G_{ρ^+} and G_{ρ^-} are clique graphs of G with

$$m(\mu_d^o(G)) = \begin{cases} \rho^+(G) = \frac{n+2}{2} \text{ and } \rho^-(G) = \frac{n-2}{2} & \text{if } n \text{ is even,} \\ \rho^+(G) = \frac{n+1}{2} \text{ and } \rho^-(G) = \frac{n-1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

$$\begin{array}{l} (\text{iv}) \ m(\mu_{d}^{o}(G)) = \begin{cases} \displaystyle \frac{n^{2} - 2n + 4}{4} & \text{if n is even,} \\ \displaystyle \frac{n^{2} - 2n + 1}{4} & \text{if n is odd.} \end{cases} \\ (\text{v}) \ \gamma_{s}(\mu_{d}^{o}(G)) = \begin{cases} \displaystyle 2 & \text{if both $\rho^{+}(G)$ and $\rho^{-}(G)$ are odd,} \\ \displaystyle 4 & \text{if both $\rho^{+}(G)$ and $\rho^{-}(G)$ are even,} \\ \displaystyle 3 & \text{if one is odd and other is even.} \end{cases}$$

PROOF. (i) If possible let $\mu_d^o(G) \cong K_n$ with $n \ge 3$ vertices, then we consider following two cases:

Case 1. Let v be a vertex of $V_1(G)$ and w be a vertex of $V_{-1}(G)$. In $\mu_d^o(G)$ adjacency of vertices within V_1 and within V_{-1} are retained as it is in G. Remove edge connecting vertices v and w and connect v to vertices other than w in V_{-1} . Hence in $\mu_d^o(G)$, v is not connected to w which is a contradiction to $\mu_d^o(G)$ being complete graph.

Case 2. Suppose $V = V_1$ or V_{-1} . As $V \neq V_{-1}$ implies $V = V_1$. Hence $G \cong \mu_d^o(G)$. But G is not a complete graph with $V = V_1$ for $n \ge 3$. Hence $\mu_d^o(G) \ncong K_n$ for $n \ge 3$.

(ii) Let v be a vertex of a graph G. Then consider the following two cases:

Case 3. If n is even, then v is adjacent to odd number of vertices. Out of which $\frac{n-2}{2}$ vertices are assigned 1 and $\frac{n-2}{2}$ vertices are assigned -1. The remaining $(n-1)^{th}$ vertex cannot be assigned -1 as it makes the weight of every vertex either 0 or -2 depending on v being assigned 1 or -1. So the $(n-1)^{th}$ vertex is assigned 1 and v is also assigned 1. Hence $\rho^{-}(G) = \frac{n-2}{2}$.

Case 4. If *n* is odd, then *v* is adjacent to even number of vertices. Out of which $\frac{n-1}{2}$ vertices are assigned 1, remaining $\frac{n-1}{2}$ vertices are assigned -1 and *v* is assigned 1 so as $f(N[v]) \ge 1$ for all $v \in V$. Hence $\rho^-(G) = \frac{n-1}{2}$.

(iii) Any vertex v in a graph G is adjacent to n-1 vertices, in $\mu_d^o(G)$ we remove edges between vertices of V_1 and V_{-1} and no new edge is added. Hence $\mu_d^o(G) = G_{\rho^+} + G_{\rho^-}$, where G_{ρ^+} is graph induced by vertices of V_1 and G_{ρ^-} is graph induced by vertices of V_{-1} in G. Also in $\mu_d^o(G)$, each G_{ρ^+} and G_{ρ^-} is complete. From (ii), if n is even, then $\rho^+(G) = \frac{n+2}{2}$ and $\rho^-(G) = \frac{n-2}{2}$. And if n is odd, then $\rho^+(G) = \frac{n+1}{2}$ and $\rho^-(G) = \frac{n-1}{2}$. (iv) when n is even:

$$\begin{split} \rho^+(G) &= \frac{n+2}{2} \quad and \quad \rho^-(G) = \frac{n-2}{2}, \\ m(\mu_d^o(G)) &= \frac{1}{2} \left[\frac{n+2}{2} \left(\frac{n+2}{2} - 1 \right) + \frac{n-2}{2} \left(\frac{n-2}{2} - 1 \right) \right], \\ m(\mu_d^o(G)) &= \frac{1}{4} \left(n^2 - 2n + 4 \right). \end{split}$$

when n is odd:

$$\begin{split} \rho^+(G) &= \frac{n+1}{2} \quad and \quad \rho^-(G) = \frac{n-1}{2}, \\ m(\mu^o_d(G)) &= \frac{1}{2} \left[\frac{n+1}{2} \left(\frac{n+1}{2} - 1 \right) + \frac{n-1}{2} \left(\frac{n-1}{2} - 1 \right) \right], \\ m(\mu^o_d(G)) &= \frac{1}{4} \left(n^2 - 2n + 1 \right). \end{split}$$

(v) Since

$$\gamma_s(K_n) = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$

Case 5. If both $\rho^+(G)$ and $\rho^-(G)$ are odd, then

$$\gamma_s(\mu_d^o(G)) = \gamma_s(G_{\rho^+}) + \gamma_s(G_{\rho^-}) = 2.$$

Case 6. If both $\rho^+(G)$ and $\rho^-(G)$ are even, then

$$\gamma_s(\mu_d^o(G)) = \gamma_s(G_{\rho^+}) + \gamma_s(G_{\rho^-}) = 4.$$

Case 7. If one of $\rho^+(G)$ or $\rho^-(G)$ is odd and the other is even, then

$$\gamma_s(\mu_d^o(G)) = \gamma_s(G_{\rho^+}) + \gamma_s(G_{\rho^-}) = 3.$$

From all the above cases, the required results follows.

THEOREM 2.8. For a cycle C_n with $n \ge 3$ vertices,

$$m(\mu_d^o(G)) = -r^2 + r(n-4) + n,$$

where $\left\lfloor \frac{n}{3} \right\rfloor = r$.

wh

PROOF. Let $G \cong C_n$ with $n \ge 3$ vertices. In a cycle C_n , number of vertices assigned -1 are $\lfloor \frac{n}{3} \rfloor = r$ and number of vertices assigned 1 are n - r.

Construction of $\mu_d^o(G)$ is as follows: In G, since degree of vertex is 2, no two vertices assigned -1 are adjacent as $f(N[v]) \ge 1$ for every vertex $v \in V$.

Step 1. A vertex assigned -1 is adjacent to exactly two vertices assigned 1. In $\mu_d^o(G)$, remove two edges for one vertex assigned -1. Since there are r such vertices, number of edges removed are 2r and number of edges remaining in $\mu_d^o(G)$ are n - 2r.

Step 2. In $\mu_d^o(G)$ a vertex assigned -1 is adjacent to n - r - 2 vertices so we connect these by n - r - 2 edges. Repeat this process for all r vertices assigned -1. Therefore number of edges connecting vertices assigned -1 and vertices assigned 1 in $\mu_d^o(G)$ are r(n - r - 2) edges.

From above two steps, $m(\mu_d^o(G)) = n - 2r + r(n - r - 2) = -r^2 + r(n - 4) + n$ follows.

THEOREM 2.9. For a path P_n with $n \ge 2$ vertices,

$$m(\mu_d^o(G)) = -r^2 + n(r+1) - 4r - 1,$$

ere $\left\lceil \frac{n-4}{3} \right\rceil = r.$

PROOF. Let $G \cong P_n$ with $n \ge 2$ vertices, then end vertices and support vertices of a graph G cannot be assigned -1 as $f(N[v]) \ge 1$. Hence such vertices belongs to V_1 . After this assignment number of vertices left for assignment are n - 4. In a path, since degree of any vertex other than end vertex is 2, a vertex assigned -1should have exactly two neighbours assigned 1. So for a minimum of 3 vertices, only one vertex as -1 provided $f(N[v]) \ge 1$ for every $v \in V(G)$. Hence $\rho^-(G) = \left\lceil \frac{n-4}{3} \right\rceil = r(say)$ and $\rho^+(G) = n - r$.

Construction of $\mu_d^o(G)$ is as follows:

Step 1. Remove the edges between vertices of V_1 and V_{-1} :

A vertex assigned -1 is adjacent to exactly two vertices assigned 1, so remove two edges connecting them. This process is repeated for r vertices of V_{-1} . Then total number of edges deleted are 2r and edges left in $\mu_d^o(G)$ are n-1-2r.

Step 2. Add edges between vertices of V_{-1} and V_1 which are non adjacent in G:

58

A vertex of V_{-1} is adjacent to exactly two vertices of V_1 and no vertex assigned -1. Hence in $\mu_d^o(G)$ a vertex of V_{-1} is adjacent to n - r - 2 vertices of V_1 . This process is repeated for r vertices of V_{-1} . Hence total edges added are r(n - r - 2).

From above two steps, $m(\mu_d^o(G)) = -r^2 + n(r+1) - 4r - 1$ follows.

THEOREM 2.10. Let G be a nontrivial graph with $m(\mu_d^o(G)) = m(G)$. Then one of the following condition holds:

(i) $G \cong \mu_d^o(G)$.

(ii) $\rho^{-}(G) = 0.$

(iii) For every v ∈ V₋₁, number of vertices adjacent to v is same as number of vertices of V₁ non adjacent to v.

PROOF. For a graph G,

(i) If $G \cong \mu_d^o(G)$, then $m(G) = m(\mu_d^o(G))$.

(ii) If $\rho^-(G) = 0$, then every vertex of G is assigned 1. Hence in $\mu_d^o(G)$ no new edges are added or deleted.

(iii) If any two vertices of V_{-1} (or V_1) are adjacent in G, then they are adjacent in $\mu_d^o(G)$. Now if a vertex v of V_{-1} is adjacent to k vertices of V_1 in G, then in $\mu_d^o(G)$, k edges are removed and if v is non adjacent to k vertices of V_1 , then kedges are added in $\mu_d^o(G)$. This holds for every vertex of V_{-1} . Hence total number of edges added and deleted are same in $\mu_d^o(G)$. Therefore $m(\mu_d^o(G)) = m(G)$. \Box

THEOREM 2.11. For any nontrivial graph G,

 $\gamma_s(\mu_d^o(G)) \leq n.$

Further equality is obtained if every vertex of G is an end vertex or a support vertex.

PROOF. If G is a graph with n vertices, then $\mu_d^o(G)$ is also a graph with n vertices for which $\gamma_s(\mu_d^o(G)) \leq n$ is obvious. If every vertex of G is either an end vertex or support vertex, then these vertices belong to V_1 . The equality follows. \Box

3. Sign dominating inner switched graph

The Sign dominating inner switched graph of G denoted as $\mu_d^i(G)$ is defined as: remove the edges of G inside V_1 , V_{-1} and add the missing edges joining vertices inside V_1 and V_{-1} .

THEOREM 3.1. Let G be a nontrivial graph. Then

(i) $\mu_d^i(G) \cong K_n$ if $G \cong K_n^c$.

(ii) $\mu_d^i(G) \ncong K_n^c$.

PROOF. (i) Let G be totally disconnected graph, then every vertex of G belongs to V_1 . In $\mu_d^i(G)$, every vertex of G is connected to remaining n-1 vertices of G. Hence $\mu_d^i(G)$ is complete graph.

(ii) On the contrary, if $\mu_d^i(G) \cong K_n^c$, then following cases arise

Case 1. In G, there are no edges between vertices of V_1 and between vertices of V_{-1} .

Case 2. In G, $\langle V_1 \rangle$ is complete.

Case 3. In G, $\langle V_{-1} \rangle$ is complete.

Since a vertex of V_{-1} should be adjacent to atleast two vertices of V_1 . Hence, Case 1 and Case 3 are not possible. If $\langle V_1 \rangle$ is complete, then $\gamma_s(G)$ is not minimum, which is a contradiction of our assumption. Thus the results follows.

THEOREM 3.2. For any nontrivial graph G,

- (i) $\mu_d^i(G))^c \cong \mu_d^i(G^c).$
- (ii) $(\mu_d^o(G))^c \cong \mu_d^i(G).$
- (iii) $m(\mu_d^o(G)) + m(\mu_d^i(G)) = \binom{n}{2}$.

PROOF. (i) Let u and v be two non adjacent vertices of a graph G. Then they are adjacent in G^c . We prove the result in following cases:

Case 1. If vertices u and v belongs to same set V_1 or V_{-1} , then they are adjacent in $\mu_d^i(G)$, implying that they are non adjacent in $(\mu_d^i(G))^c$. Also they are non adjacent in $\mu_d^i(G^c)$.

Case 2. If u and v belongs to different sets, then they are non adjacent in $\mu_d^i(G)$, implying they are adjacent in $(\mu_d^i(G))^c$. Also they are adjacent in $\mu_d^i(G^c)$.

From above two cases (i) follows.

(ii) Let u and v be two non adjacent vertices in $\mu_d^o(G)$.

 $\iff u \text{ and } v \text{ are adjacent in } (\mu_d^o(G))^c.$

 \iff If both u and v belongs to V_1 or V_{-1} , then they are non adjacent in G, implies they are adjacent in $\mu_d^i(G)$.

 \iff If u and v belongs to different sets, then they are adjacent in G implies they are adjacent in $\mu_d^i(G)$. Thus (ii) follows.

(iii) From (ii), as graph $\mu_d^i(G)$ is complement of $\mu_d^o(G)$, sum of their edges should be equal to nC_2 .

THEOREM 3.3. Let $G \cong K_{p,q}$ be a complete bipartite graph with bipartition P_1 and P_2 such that $|P_1| = p$ and $|P_2| = q$ with $p \leq q$. If $r = \left\lfloor \frac{q}{2} \right\rfloor$, then

$$m(\mu_d^i(G)) = \frac{1}{2} \left[p(p-1) + q(q-1) + 2r(p-q+r) \right].$$

PROOF. From Theorems 3.2 and 2.4,

$$\begin{split} m(\mu_d^i(G)) &= \frac{(p+q)(p+q-1)}{2} - m(\mu_d^o(G)).\\ m(\mu_d^i(G)) &= \frac{(p+q)(p+q-1)}{2} - (p+r)(q-r).\\ m(\mu_d^i(G)) &= \frac{p(p-1) + q(q-1) + 2r(p-q+r)}{2}. \end{split}$$

г		٦

THEOREM 3.4. For any graph $G \cong K_n$ with $n \ge 3$ vertices,

$$m(\mu_d^i(G)) = \begin{cases} \frac{n^2 - 4}{4} & \text{if } n \text{ is even,} \\ \frac{n^2 - 1}{4} & \text{if } n \text{ is odd.} \end{cases}$$

PROOF. From Theorem 3.2, $m(\mu_d^i(G)) = \frac{n(n-1)}{2} - m(\mu_d^o(G)).$ From Theorem 2.7, for n being even

$$m(\mu_d^i(G)) = \frac{n(n-1)}{2} - \frac{n^2 - 2n + 4}{4} = \frac{n^2 - 4}{4},$$

and for n being odd

$$m(\mu_d^i(G)) = \frac{n(n-1)}{2} - \frac{n^2 - 2n + 1}{4} = \frac{n^2 - 1}{4}.$$

THEOREM 3.5. For a cycle C_n with $n \ge 3$ vertices,

$$m(\mu_d^i(G)) = \frac{1}{2} \left[n^2 - 3n + 2r^2 - 2r(n-4) \right],$$

where $r = \left\lfloor \frac{n}{3} \right\rfloor$.

Proof. From Theorem 3.2 and 2.8,

$$\begin{split} m(\mu_d^i(G)) &= \frac{n(n-1)}{2} - m(\mu_d^o(G)).\\ m(\mu_d^i(G)) &= \frac{n(n-1)}{2} - [r^2 + r(n-4) + n].\\ m(\mu_d^i(G)) &= \frac{1}{2} \left[n^2 - 3n + 2r^2 - 2r(n-4) \right]. \end{split}$$

THEOREM 3.6. For a path P_n with $n \ge 2$ vertices,

$$m(\mu_d^i(G)) = \frac{1}{2} \left[n^2 + 2r^2 - 3n - 2nr + 2(4r+1) \right],$$

where $r = \left\lceil \frac{n-4}{3} \right\rceil$.

PROOF. From Theorem 3.2 and 2.9,

$$m(\mu_d^i(G)) = \frac{n(n-1)}{2} - m(\mu_d^o).$$

$$m(\mu_d^i(G)) = \frac{n(n-1)}{2} - [r^2 + n(r+1) - 4r - 1].$$

$$m(\mu_d^i(G)) = \frac{1}{2} [n^2 + 2r^2 - 3n - 2nr + 2(4r+1)].$$

THEOREM 3.7. Let G be a nontrivial graph. Then $m(\mu_d^o(G)) = m(\mu_d^i(G))$ if and only if $(2n-1)^2 - 1$ is a multiple of 16.

PROOF. If $m(\mu_d^o(G)) = m(\mu_d^i(G)) = k$, then from Theorem 3.2,

$$2k = \frac{n(n-1)}{2}$$
$$n^{2} - n - 4k = 0$$
$$n = \frac{1 \pm \sqrt{1 + 16k}}{2}$$

On simplifying, n is a positive integer for $(2n-1)^2 - 1$ a multiple of 16. Conversely, if $(2n-1)^2 - 1$ is a multiple of 16k, then $n = \frac{1 + \sqrt{16k+1}}{2}$. For $n = 4, 5, \ldots$, we can generate the graph with $m(\mu_d^o(G)) = m(\mu_d^i(G))$.

Open problem: Characterize the graphs for which

$$m(G) = m(\mu_d^i(G)).$$

Acknowledgement: The authors wish to thank Professor E. Sampathkumar for his valuable suggestions.

References

- B. D. Acharya. On characterizing graphs switching equivalent to acyclic graphs. Indian J. pure appl. Math., 12(10)(1981), 1187-1191.
- [2] B. Zelinka. Signed and Minus domination in bipartite graphs. Czechoslovak Math. J., 56(2)(2006), 587-590.
- B. Chaluvaraju. 2-global and 2(i)-global dominating sets in graphs. Ultra scientist of Phy. Sc. - Section A: Mathematics, 20(2)(2008), 481-488.
- [4] B. Chaluvaraju, C. Nandeesh Kumar and V. Chaitra, Special kind of colorable complements in Graphs, International J. Math. Combin., 3 (2013), 35-43.
- [5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater. Signed domination in graphs. In: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Algorithms, Proceedings of the Seventh International Conference in Graph Theory, Combinatorics, Algorithms, and Applications, Kalamazoo, MI, 1992, (pp. 311-321). WileyInterscience, New York 1995.
- [6] F. Harary. Graph theory. Addison-Wesley Publishing Company, MA, 1969.
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamental of Domination in Graphs. Marcel Dekker, Inc., New York 1998.
- [8] V. R. Kulli, Theory of domination in graphs, Vishwa Internat. Publ., Gulbarga 2010.
- [9] E. Sampathkumar and L. Pushpalatha. Complement of a graph: A generalization. Graphs and Combinatorics, 14(4)(1998), 377-392.
- [10] E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam and Pradeep Bhat. Generalized Complements of a graph. *Indian J. Pure Appl. Math.*, 29(6)(1998) 625-639.
- [11] N. D. Soner, B. Janakiram and B. Chaluvaraju. Domination in 2-complement (2(i)complement) of a graph. Adv. Stud. Contemp. Math., Kyungshang, 7(2)(2003), 145-154.
- [12] J. H. Van-Lint and J. J. Seidel. Equilateral point sets in elliptic geometry. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences, 69(3)(1966), 335-348.
- [13] L. Volmann and B. Zelinka. Signed domatic number of a graph. Discrete Appl. Math. 150(1-3)(2005), 261-267.

Received by editors 27.07.2016; Available online 19.09.2016.

Department of Mathematics, Bangalore University, JNANA Bharathi Campus, Bangalore - 560 056, India

E-mail address: bchaluvaraju@gmail.com

Department of Mathematics, B. M. S. College of Engineering, Basavangudi, Bangalore - $560\ 019,\ {\rm India}$

E-mail address: chaitrashok@gmail.com