SIGN DOMINATING SWITCHED INVARIANTS OF A GRAPH

B. Chaluvaraju and V. Chaitra

Abstract

In this paper, we newly constructed the sign dominating outer (inner) switched graph $\mu_{d}^{o}(G)\left(\mu_{d}^{i}(G)\right)$ of a graph $G=(V, E)$ and establish their properties. Also we determine number of edges and its relation between $\mu_{d}^{o}(G)$ and $\mu_{d}^{i}(G)$ in some special classes of graphs are explored.

1. INTRODUCTION

All the graphs considered in this paper are finite, nontrivial, simple and undirected. Let $G=(V, E)$ be a simple graph with vertex set $V(G)=V$ of order $|V|=n$, edge set $E(G)=E$ of size $|E|=m$ and let v be a vertex of V. The open neighborhood of v is $N(v)=\{u \in V / u v \in E(G)\}$ and closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. The graph G^{c} is called complement of a graph G, if G and G^{c} have the same vertex set and two vertices are adjacent in G if and only if they are not adjacent in G^{c}. A subset S of V is called vertex independent set if no two vertices in S are adjacent in G. A clique in a graph is an induced complete subgraph. The maximum order of a clique in the graph G is called the clique number of G, denoted by $\omega(G)$. A collection of independent edges of a graph G is called a matching of G. If there is a matching consists of all vertices of G it is called a perfect matching. For standard terminology and notation in graph theory, we refer [6].

A sign dominating function of a graph G is a function $f: V \rightarrow\{-1,1\}$ such that $f(N[v]) \geqslant 1$ for all $v \in V$. The sign domination number of a graph G is $\gamma_{s}(G)=$ $\min \{w(f): f$ is sign dominating function $\}$. The concept of sign domination was initiated by Dunbar et al. [5]. For complete review on theory of domination and its related parameters, we refer $[\mathbf{7}],[8]$ and $[\mathbf{1 3}]$.

[^0]In a graph G, let $P=\left\{V_{1}, V_{2}, \ldots . ., V_{k}\right\}$ be a partition of V of order $k \geqslant 1$. The k-complement of a graph G denoted as G_{k}^{P} is defined as follows: for all V_{i} and V_{j} in $P, i \neq j$ remove the edges between V_{i} and V_{j} and add the edges which are not in G. The $k(i)$-complement of a graph G denoted as $G_{k(i)}^{P}$ is defined as: for each set V_{r} in the partition P, remove the edges of G inside V_{r} and add the missing edges between them. The concept of generalized complement of a graph was studied by Sampathkumar et al. [9] and [10]. Analogously, the concept of 2-complement and $2(i)$-complement of a graph is also known as switched graph, where switching of G assigns +1 or -1 to each vertex of a graph G. This type of switched graph was introduced by Van-Lint et al. [12].

Further, let V_{1} and V_{-1} be set of vertices assigned 1 and -1 in G respectively. We denote $\rho^{+}(G)=\rho^{+}=\left|V_{1}\right|$ and $\rho^{-}(G)=\rho^{-}=\left|V_{-1}\right|$. For more details on Generalized complements (switched invariants) and its related concept, we refer [1], [3], [4], [5] and [11].

2. Sign dominating outer switched graph

The sign dominating outer switched graph of G denoted as $\mu_{d}^{o}(G)$ is defined as: for V_{1} and V_{-1} of G remove the edges between V_{1} and V_{-1} and add the edges which are not there in G.

Theorem 2.1. Let G be a nontrivial graph. Then
(i) $\mu_{d}^{o}(G)$ is a totally disconnected graph if and only if G is totally disconnected graph.
(ii) V_{1} is independent set if and only if $\mu_{d}^{o}(G)$ is totally disconnected graph.

Proof. (i) Let G be totally disconnected graph. Every vertex of G belongs to V_{1}. In construction of $\mu_{d}^{o}(G)$, no new edge is added or any edge is deleted. Hence $G \cong \mu_{d}^{o}(G)$. Conversely, if $\mu_{d}^{o}(G)$ is totally disconnected graph, then in G no two vertices of $V_{1}\left(\right.$ or $\left.V_{-1}\right)$ are connected. Also in G, vertices of V_{1} and V_{-1} cannot be connected as a vertex v of V_{1} which is adjacent to a vertex of V_{-1} should be adjacent to at least one vertex of V_{1} such that $f(N[v]) \geqslant 1$. Hence G is totally disconnected graph.
(ii) If $\mu_{d}^{o}(G)$ is totally disconnected graph, then it is obvious that V_{1} is independent set as every vertex of $\mu_{d}^{o}(G)$ is assigned 1 . Conversely, suppose V_{1} is independent set. To prove $\mu_{d}^{o}(G)$ is totally disconnected, we shall prove G is totally disconnected. Suppose G is not totally disconnected and a vertex $v \in V_{1}$ be adjacent to a vertex of V_{-1}. But this vertex v should be adjacent to another vertex in V_{1} as $f(N[v]) \geqslant 1$ which is a contradiction to V_{1} being independent. Hence G is totally disconnected.

Theorem 2.2. Let G be a nontrivial graph. Then, there is no perfect matching between vertices of V_{1} and V_{-1}.

Proof. In a graph G, a vertex assigned -1 is adjacent to at least two vertices assigned 1, there cannot be a perfect matching between V_{1} and V_{-1}. Thus the required result follows.

Theorem 2.3. For any nontrivial graph G,

$$
\left(\mu_{d}^{o}(G)\right)^{c} \cong \mu_{d}^{o}\left(G^{c}\right)
$$

Proof. Let u and v be two non adjacent vertices of G. Then they are adjacent in G^{c}. We prove the result in following cases:

Case 1. If u and v belongs to same set V_{1} or V_{-1}, then they are non adjacent in $\mu_{d}^{o}(G)$, implies they are adjacent in $\left(\mu_{d}^{o}(G)\right)^{c}$. Also they are adjacent in $\mu_{d}^{o}\left(G^{c}\right)$.

Case 2. If u and v belongs to different sets, then they are adjacent in $\mu_{d}^{o}(G)$, implies they non adjacent in $\left(\mu_{d}^{o}(G)\right)^{c}$. Also they are non adjacent in $\mu_{d}^{o}\left(G^{c}\right)$.

From above two cases, the required result follows.
THEOREM 2.4. Let $G=K_{p, q}$ be a complete bipartite graph with bipartition P_{1} and P_{2} such that $\left|P_{1}\right|=p$ and $\left|P_{2}\right|=q$ with $p \leqslant q$. If $\left\lfloor\frac{q}{2}\right\rfloor=r$, then

$$
m\left(\mu_{d}^{o}(G)\right)=(q-r)(p+r)
$$

Proof. Let $G=K_{p, q}$. Since $p \leqslant q$, degree of every vertex of P_{1} is greater than or equal to degree of every vertex of P_{2}. Let every vertex of P_{1} be assigned 1. Since a vertex assigned -1 should be adjacent to at least two vertices assigned 1, number of vertices assigned -1 in P_{2} should be $\left\lfloor\frac{q}{2}\right\rfloor=r . \quad p$ vertices of P_{1} and $(q-r)$ vertices of P_{2} which are assigned 1 forms an induced bipartite graph. Now in $\mu_{d}^{o}(G),(q-r)$ vertices assigned 1 and r vertices assigned -1 are adjacent. These $(q-r)$ vertices are adjacent to p vertices in $\mu_{d}^{o}(G)$. Hence $\mu_{d}^{o}(G)$ is complete bipartite graph $K_{r_{1}, r_{2}}$, where $\left|r_{1}\right|=q-r$ and $\left|r_{2}\right|=r+p$.

To prove our next result we make use of the following result due to Bohdan Zelinka [2].

ThEOREM 2.5. Let $G=K_{p, q}$ be a complete bipartite graph with bipartition P_{1} and P_{2} such that $\left|P_{1}\right|=p$ and $\left|P_{2}\right|=q$, with $p \leqslant q$. Then
(i) for $p=1, \gamma_{s}(G)=q+1$.
(ii) for $2 \leqslant p \leqslant 3, \gamma_{s}(G)= \begin{cases}p & \text { if } q \text { is even, } \\ p+1 & \text { if } q \text { is odd. }\end{cases}$
(iii) for $p \geqslant 4, \gamma_{s}(G)= \begin{cases}4 & \text { if both } p \text { and } q \text { are even, } \\ 6 & \text { if both } p \text { and } q \text { are odd, } \\ 5 & \text { if one out of } p \text { or } q \text { is even. }\end{cases}$

THEOREM 2.6. Let $G=K_{p, q}$ be a complete graph with $p \leqslant q$. If $\left\lfloor\frac{q}{2}\right\rfloor=r$, $r_{1}=q-r$ and $r_{2}=p+r$, then
(i) for $r_{2}=1, \gamma_{s}\left(\mu_{d}^{o}(G)\right)=r_{1}+1$.
(ii) for $2 \leqslant r_{2} \leqslant 3, \gamma_{s}\left(\mu_{d}^{o}(G)\right)= \begin{cases}r_{2} & \text { if } r_{1} \text { is even, } \\ r_{2}+1 & \text { if } r_{1} \text { is odd. }\end{cases}$
(iii) for $r_{2} \geqslant 4, \gamma_{s}\left(\mu_{d}^{o}(G)\right)= \begin{cases}4 & \text { if both } r_{1} \text { and } 2_{2} \text { are even, } \\ 6 & \text { if both } r_{1} \text { and } r_{2} \text { are odd, } \\ 5 & \text { if one out of } r_{1} \text { or } r_{2} \text { is even. }\end{cases}$

Proof. From Theorem 2.4, if G is complete bipartite graph, then $\mu_{d}^{o}(G)$ is also complete bipartite graph isomorphic to $K_{r_{1}, r_{2}}$, where $r_{1}=q-r$ and $r_{2}=p+r$. From Theorem 2.5, the desired results follows.

Theorem 2.7. Let G be a nontrivial graph. If $G \cong K_{n}$ with $n \geqslant 3$ vertices, then
(i) $\mu_{d}^{o}(G) \nsubseteq K_{n}$.
(ii) $\rho^{-}(G)= \begin{cases}\frac{n-2}{2-1} & \text { if } n \text { is even, } \\ \frac{n}{2} & \text { if } n \text { is odd. }\end{cases}$
(iii) $\mu_{d}^{o}(G)=G_{\rho^{+}}+G_{\rho^{-}}$, where $G_{\rho^{+}}$and $G_{\rho^{-}}$are clique graphs of G with $m\left(\mu_{d}^{o}(G)\right)= \begin{cases}\rho^{+}(G)=\frac{n+2}{2} \text { and } \rho^{-}(G)=\frac{n-2}{2} & \text { if } n \text { is even }, \\ \rho^{+(G)}=\frac{n+1}{2} \text { and } \rho^{-}(G)=\frac{n-1}{2} & \text { if } n \text { is odd } .\end{cases}$
(iv) $m\left(\mu_{d}^{o}(G)\right)= \begin{cases}\frac{n^{2}-2 n+4}{4} & \text { if } n \text { is even, } \\ \frac{n^{2}-2 n+1}{4} & \text { if } n \text { is odd. }\end{cases}$
(v) $\gamma_{s}\left(\mu_{d}^{o}(G)\right)= \begin{cases}2 & \text { if both } \rho^{+}(G) \text { and } \rho^{-}(G) \text { are odd, } \\ 4 & \text { if both } \rho^{+}(G) \text { and } \rho^{-}(G) \text { are even, } \\ 3 & \text { if one is odd and other is even. }\end{cases}$

Proof. (i) If possible let $\mu_{d}^{o}(G) \cong K_{n}$ with $n \geqslant 3$ vertices, then we consider following two cases:

Case 1. Let v be a vertex of $V_{1}(G)$ and w be a vertex of $V_{-1}(G)$. In $\mu_{d}^{o}(G)$ adjacency of vertices within V_{1} and within V_{-1} are retained as it is in G. Remove edge connecting vertices v and w and connect v to vertices other than w in V_{-1}. Hence in $\mu_{d}^{o}(G), v$ is not connected to w which is a contradiction to $\mu_{d}^{o}(G)$ being complete graph.

Case 2. Suppose $V=V_{1}$ or V_{-1}. As $V \neq V_{-1}$ implies $V=V_{1}$. Hence $G \cong \mu_{d}^{o}(G)$. But G is not a complete graph with $V=V_{1}$ for $n \geqslant 3$. Hence $\mu_{d}^{o}(G) \not \not K_{n}$ for $n \geqslant 3$.
(ii) Let v be a vertex of a graph G. Then consider the following two cases:

Case 3. If n is even, then v is adjacent to odd number of vertices. Out of which $\frac{n-2}{2}$ vertices are assigned 1 and $\frac{n-2}{2}$ vertices are assigned -1 . The remaining $(n-1)^{t h}$ vertex cannot be assigned -1 as it makes the weight of every vertex either 0 or -2 depending on v being assigned 1 or -1 . So the $(n-1)^{t h}$ vertex is assigned 1 and v is also assigned 1 . Hence $\rho^{-}(G)=\frac{n-2}{2}$.

Case 4. If n is odd, then v is adjacent to even number of vertices. Out of which $\frac{n-1}{2}$ vertices are assigned 1 , remaining $\frac{n-1}{2}$ vertices are assigned -1 and v is assigned 1 so as $f(N[v]) \geqslant 1$ for all $v \in V$. Hence $\rho^{-}(G)=\frac{n-1}{2}$.
(iii) Any vertex v in a graph G is adjacent to $n-1$ vertices, in $\mu_{d}^{o}(G)$ we remove edges between vertices of V_{1} and V_{-1} and no new edge is added. Hence $\mu_{d}^{o}(G)=G_{\rho^{+}}+G_{\rho^{-}}$, where $G_{\rho^{+}}$is graph induced by vertices of V_{1} and $G_{\rho^{-}}$is graph induced by vertices of V_{-1} in G. Also in $\mu_{d}^{o}(G)$, each $G_{\rho^{+}}$and $G_{\rho^{-}}$is complete. From (ii), if n is even, then $\rho^{+}(G)=\frac{n+2}{2}$ and $\rho^{-}(G)=\frac{n-2}{2}$. And if n is odd, then $\rho^{+}(G)=\frac{n+1}{2}$ and $\rho^{-}(G)=\frac{n-1}{2}$.
(iv) when n is even:

$$
\begin{aligned}
& \rho^{+}(G)=\frac{n+2}{2} \quad \text { and } \quad \rho^{-}(G)=\frac{n-2}{2} \\
& m\left(\mu_{d}^{o}(G)\right)=\frac{1}{2}\left[\frac{n+2}{2}\left(\frac{n+2}{2}-1\right)+\frac{n-2}{2}\left(\frac{n-2}{2}-1\right)\right] \\
& m\left(\mu_{d}^{o}(G)\right)=\frac{1}{4}\left(n^{2}-2 n+4\right)
\end{aligned}
$$

when n is odd:

$$
\begin{aligned}
& \rho^{+}(G)=\frac{n+1}{2} \quad \text { and } \quad \rho^{-}(G)=\frac{n-1}{2} \\
& m\left(\mu_{d}^{o}(G)\right)=\frac{1}{2}\left[\frac{n+1}{2}\left(\frac{n+1}{2}-1\right)+\frac{n-1}{2}\left(\frac{n-1}{2}-1\right)\right] \\
& m\left(\mu_{d}^{o}(G)\right)=\frac{1}{4}\left(n^{2}-2 n+1\right)
\end{aligned}
$$

(v) Since

$$
\gamma_{s}\left(K_{n}\right)= \begin{cases}1 & \text { if } n \text { is odd } \\ 2 & \text { if } n \text { is even }\end{cases}
$$

Case 5. If both $\rho^{+}(G)$ and $\rho^{-}(G)$ are odd, then

$$
\gamma_{s}\left(\mu_{d}^{o}(G)\right)=\gamma_{s}\left(G_{\rho^{+}}\right)+\gamma_{s}\left(G_{\rho^{-}}\right)=2
$$

Case 6. If both $\rho^{+}(G)$ and $\rho^{-}(G)$ are even, then

$$
\gamma_{s}\left(\mu_{d}^{o}(G)\right)=\gamma_{s}\left(G_{\rho^{+}}\right)+\gamma_{s}\left(G_{\rho^{-}}\right)=4
$$

Case 7. If one of $\rho^{+}(G)$ or $\rho^{-}(G)$ is odd and the other is even, then

$$
\gamma_{s}\left(\mu_{d}^{o}(G)\right)=\gamma_{s}\left(G_{\rho^{+}}\right)+\gamma_{s}\left(G_{\rho^{-}}\right)=3
$$

From all the above cases, the required results follows.
Theorem 2.8. For a cycle C_{n} with $n \geqslant 3$ vertices,

$$
m\left(\mu_{d}^{o}(G)\right)=-r^{2}+r(n-4)+n
$$

where $\left\lfloor\frac{n}{3}\right\rfloor=r$.
Proof. Let $G \cong C_{n}$ with $n \geqslant 3$ vertices. In a cycle C_{n}, number of vertices assigned -1 are $\left\lfloor\frac{n}{3}\right\rfloor=r$ and number of vertices assigned 1 are $n-r$.

Construction of $\mu_{d}^{o}(G)$ is as follows: In G, since degree of vertex is 2, no two vertices assigned -1 are adjacent as $f(N[v]) \geqslant 1$ for every vertex $v \in V$.

Step 1. A vertex assigned -1 is adjacent to exactly two vertices assigned 1. In $\mu_{d}^{o}(G)$, remove two edges for one vertex assigned -1 . Since there are r such vertices, number of edges removed are $2 r$ and number of edges remaining in $\mu_{d}^{o}(G)$ are $n-2 r$.

Step 2. In $\mu_{d}^{o}(G)$ a vertex assigned -1 is adjacent to $n-r-2$ vertices so we connect these by $n-r-2$ edges. Repeat this process for all r vertices assigned -1 . Therefore number of edges connecting vertices assigned -1 and vertices assigned 1 in $\mu_{d}^{o}(G)$ are $r(n-r-2)$ edges.

From above two steps, $m\left(\mu_{d}^{o}(G)\right)=n-2 r+r(n-r-2)=-r^{2}+r(n-4)+n$ follows.

Theorem 2.9. For a path P_{n} with $n \geqslant 2$ vertices,

$$
m\left(\mu_{d}^{o}(G)\right)=-r^{2}+n(r+1)-4 r-1
$$

where $\left\lceil\frac{n-4}{3}\right\rceil=r$.
Proof. Let $G \cong P_{n}$ with $n \geqslant 2$ vertices, then end vertices and support vertices of a graph G cannot be assigned -1 as $f(N[v]) \geqslant 1$. Hence such vertices belongs to V_{1}. After this assignment number of vertices left for assignment are $n-4$. In a path, since degree of any vertex other than end vertex is 2 , a vertex assigned -1 should have exactly two neighbours assigned 1 . So for a minimum of 3 vertices, only one vertex as -1 provided $f(N[v]) \geqslant 1$ for every $v \in V(G)$. Hence $\rho^{-}(G)=$ $\left\lceil\frac{n-4}{3}\right\rceil=r($ say $)$ and $\rho^{+}(G)=n-r$.

Construction of $\mu_{d}^{o}(G)$ is as follows:
Step 1. Remove the edges between vertices of V_{1} and V_{-1} :
A vertex assigned -1 is adjacent to exactly two vertices assigned 1 , so remove two edges connecting them. This process is repeated for r vertices of V_{-1}. Then total number of edges deleted are $2 r$ and edges left in $\mu_{d}^{o}(G)$ are $n-1-2 r$.

Step 2. Add edges between vertices of V_{-1} and V_{1} which are non adjacent in G :

A vertex of V_{-1} is adjacent to exactly two vertices of V_{1} and no vertex assigned -1 . Hence in $\mu_{d}^{o}(G)$ a vertex of V_{-1} is adjacent to $n-r-2$ vertices of V_{1}. This process is repeated for r vertices of V_{-1}. Hence total edges added are $r(n-r-2)$.

From above two steps, $m\left(\mu_{d}^{o}(G)\right)=-r^{2}+n(r+1)-4 r-1$ follows.
Theorem 2.10. Let G be a nontrivial graph with $m\left(\mu_{d}^{o}(G)\right)=m(G)$. Then one of the following condition holds:
(i) $G \cong \mu_{d}^{o}(G)$.
(ii) $\rho^{-}(G)=0$.
(iii) For every $v \in V_{-1}$, number of vertices adjacent to v is same as number of vertices of V_{1} non adjacent to v.

Proof. For a graph G,
(i) If $G \cong \mu_{d}^{o}(G)$, then $m(G)=m\left(\mu_{d}^{o}(G)\right)$.
(ii) If $\rho^{-}(G)=0$, then every vertex of G is assigned 1. Hence in $\mu_{d}^{o}(G)$ no new edges are added or deleted.
(iii) If any two vertices of V_{-1} (or V_{1}) are adjacent in G, then they are adjacent in $\mu_{d}^{o}(G)$. Now if a vertex v of V_{-1} is adjacent to k vertices of V_{1} in G, then in $\mu_{d}^{o}(G), k$ edges are removed and if v is non adjacent to k vertices of V_{1}, then k edges are added in $\mu_{d}^{o}(G)$. This holds for every vertex of V_{-1}. Hence total number of edges added and deleted are same in $\mu_{d}^{o}(G)$. Therefore $m\left(\mu_{d}^{o}(G)\right)=m(G)$.

Theorem 2.11. For any nontrivial graph G,

$$
\gamma_{s}\left(\mu_{d}^{o}(G)\right) \leqslant n .
$$

Further equality is obtained if every vertex of G is an end vertex or a support vertex.
Proof. If G is a graph with n vertices, then $\mu_{d}^{o}(G)$ is also a graph with n vertices for which $\gamma_{s}\left(\mu_{d}^{o}(G)\right) \leqslant n$ is obvious. If every vertex of G is either an end vertex or support vertex, then these vertices belong to V_{1}. The equality follows.

3. Sign dominating inner switched graph

The Sign dominating inner switched graph of G denoted as $\mu_{d}^{i}(G)$ is defined as: remove the edges of G inside V_{1}, V_{-1} and add the missing edges joining vertices inside V_{1} and V_{-1}.

Theorem 3.1. Let G be a nontrivial graph. Then
(i) $\mu_{d}^{i}(G) \cong K_{n}$ if $G \cong K_{n}^{c}$.
(ii) $\mu_{d}^{i}(G) \not \neq K_{n}^{c}$.

Proof. (i) Let G be totally disconnected graph, then every vertex of G belongs to V_{1}. In $\mu_{d}^{i}(G)$, every vertex of G is connected to remaining $n-1$ vertices of G. Hence $\mu_{d}^{i}(G)$ is complete graph.
(ii) On the contrary, if $\mu_{d}^{i}(G) \cong K_{n}^{c}$, then following cases arise

Case 1. In G, there are no edges between vertices of V_{1} and between vertices of V_{-1}.

Case 2. In $G,\left\langle V_{1}\right\rangle$ is complete.
Case 3. In $G,\left\langle V_{-1}\right\rangle$ is complete.
Since a vertex of V_{-1} should be adjacent to atleast two vertices of V_{1}. Hence, Case 1 and Case 3 are not possible. If $\left\langle V_{1}\right\rangle$ is complete, then $\gamma_{s}(G)$ is not minimum, which is a contradiction of our assumption. Thus the results follows.

Theorem 3.2. For any nontrivial graph G,
(i) $\left.\mu_{d}^{i}(G)\right)^{c} \cong \mu_{d}^{i}\left(G^{c}\right)$.
(ii) $\left(\mu_{d}^{o}(G)\right)^{c} \cong \mu_{d}^{i}(G)$.
(iii) $m\left(\mu_{d}^{o}(G)\right)+m\left(\mu_{d}^{i}(G)\right)=\binom{n}{2}$.

Proof. (i) Let u and v be two non adjacent vertices of a graph G. Then they are adjacent in G^{c}. We prove the result in following cases:

Case 1. If vertices u and v belongs to same set V_{1} or V_{-1}, then they are adjacent in $\mu_{d}^{i}(G)$, implying that they are non adjacent in $\left(\mu_{d}^{i}(G)\right)^{c}$. Also they are non adjacent in $\mu_{d}^{i}\left(G^{c}\right)$.

Case 2. If u and v belongs to different sets, then they are non adjacent in $\mu_{d}^{i}(G)$, implying they are adjacent in $\left(\mu_{d}^{i}(G)\right)^{c}$. Also they are adjacent in $\mu_{d}^{i}\left(G^{c}\right)$.

From above two cases (i) follows.
(ii) Let u and v be two non adjacent vertices in $\mu_{d}^{o}(G)$.
$\Longleftrightarrow u$ and v are adjacent in $\left(\mu_{d}^{o}(G)\right)^{c}$.
\Longleftrightarrow If both u and v belongs to V_{1} or V_{-1}, then they are non adjacent in G, implies they are adjacent in $\mu_{d}^{i}(G)$.
\Longleftrightarrow If u and v belongs to different sets, then they are adjacent in G implies they are adjacent in $\mu_{d}^{i}(G)$. Thus (ii) follows.
(iii) From (ii), as graph $\mu_{d}^{i}(G)$ is complement of $\mu_{d}^{o}(G)$, sum of their edges should be equal to $n C_{2}$.

THEOREM 3.3. Let $G \cong K_{p, q}$ be a complete bipartite graph with bipartition P_{1} and P_{2} such that $\left|P_{1}\right|=p$ and $\left|P_{2}\right|=q$ with $p \leqslant q$. If $r=\left\lfloor\frac{q}{2}\right\rfloor$, then

$$
m\left(\mu_{d}^{i}(G)\right)=\frac{1}{2}[p(p-1)+q(q-1)+2 r(p-q+r)] .
$$

Proof. From Theorems 3.2 and 2.4,

$$
\begin{aligned}
m\left(\mu_{d}^{i}(G)\right) & =\frac{(p+q)(p+q-1)}{2}-m\left(\mu_{d}^{o}(G)\right) \\
m\left(\mu_{d}^{i}(G)\right) & =\frac{(p+q)(p+q-1)}{2}-(p+r)(q-r) \\
m\left(\mu_{d}^{i}(G)\right) & =\frac{p(p-1)+q(q-1)+2 r(p-q+r)}{2}
\end{aligned}
$$

Theorem 3.4. For any graph $G \cong K_{n}$ with $n \geqslant 3$ vertices,

$$
m\left(\mu_{d}^{i}(G)\right)= \begin{cases}\frac{n^{2}-4}{4} & \text { if } n \text { is even } \\ \frac{n^{2}-1}{4} & \text { if } n \text { is odd }\end{cases}
$$

Proof. From Theorem 3.2, $m\left(\mu_{d}^{i}(G)\right)=\frac{n(n-1)}{2}-m\left(\mu_{d}^{o}(G)\right)$.
From Theorem 2.7, for n being even

$$
m\left(\mu_{d}^{i}(G)\right)=\frac{n(n-1)}{2}-\frac{n^{2}-2 n+4}{4}=\frac{n^{2}-4}{4}
$$

and for n being odd

$$
m\left(\mu_{d}^{i}(G)\right)=\frac{n(n-1)}{2}-\frac{n^{2}-2 n+1}{4}=\frac{n^{2}-1}{4}
$$

Theorem 3.5. For a cycle C_{n} with $n \geqslant 3$ vertices,

$$
m\left(\mu_{d}^{i}(G)\right)=\frac{1}{2}\left[n^{2}-3 n+2 r^{2}-2 r(n-4)\right]
$$

where $r=\left\lfloor\frac{n}{3}\right\rfloor$.
Proof. From Theorem 3.2 and 2.8,

$$
\begin{aligned}
m\left(\mu_{d}^{i}(G)\right) & =\frac{n(n-1)}{2}-m\left(\mu_{d}^{o}(G)\right) \\
m\left(\mu_{d}^{i}(G)\right) & =\frac{n(n-1)}{2}-\left[r^{2}+r(n-4)+n\right] \\
m\left(\mu_{d}^{i}(G)\right) & =\frac{1}{2}\left[n^{2}-3 n+2 r^{2}-2 r(n-4)\right]
\end{aligned}
$$

Theorem 3.6. For a path P_{n} with $n \geqslant 2$ vertices,

$$
m\left(\mu_{d}^{i}(G)\right)=\frac{1}{2}\left[n^{2}+2 r^{2}-3 n-2 n r+2(4 r+1)\right]
$$

where $r=\left\lceil\frac{n-4}{3}\right\rceil$.
Proof. From Theorem 3.2 and 2.9,

$$
\begin{aligned}
& m\left(\mu_{d}^{i}(G)\right)=\frac{n(n-1)}{2}-m\left(\mu_{d}^{o}\right) \\
& m\left(\mu_{d}^{i}(G)\right)=\frac{n(n-1)}{2}-\left[r^{2}+n(r+1)-4 r-1\right] \\
& m\left(\mu_{d}^{i}(G)\right)=\frac{1}{2}\left[n^{2}+2 r^{2}-3 n-2 n r+2(4 r+1)\right]
\end{aligned}
$$

Theorem 3.7. Let G be a nontrivial graph. Then $m\left(\mu_{d}^{o}(G)\right)=m\left(\mu_{d}^{i}(G)\right)$ if and only if $(2 n-1)^{2}-1$ is a multiple of 16 .
Proof. If $m\left(\mu_{d}^{o}(G)\right)=m\left(\mu_{d}^{i}(G)\right)=k$, then from Theorem 3.2,

$$
\begin{aligned}
& 2 k=\frac{n(n-1)}{2} \\
& n^{2}-n-4 k=0 \\
& n=\frac{1 \pm \sqrt{1+16 k}}{2}
\end{aligned}
$$

On simplifying, n is a positive integer for $(2 n-1)^{2}-1$ a multiple of 16 .
Conversely, if $(2 n-1)^{2}-1$ is a multiple of $16 k$, then $n=\frac{1+\sqrt{16 k+1}}{2}$.
For $n=4,5, \ldots$, we can generate the graph with $m\left(\mu_{d}^{o}(G)\right)=m\left(\mu_{d}^{i}(G)\right)$.
Open problem: Characterize the graphs for which

$$
m(G)=m\left(\mu_{d}^{i}(G)\right)
$$

Acknowledgement: The authors wish to thank Professor E. Sampathkumar for his valuable suggestions.

References

[1] B. D. Acharya. On characterizing graphs switching equivalent to acyclic graphs. Indian J. pure appl. Math., 12(10)(1981), 1187-1191.
[2] B. Zelinka. Signed and Minus domination in bipartite graphs. Czechoslovak Math. J., 56(2)(2006), 587-590.
[3] B. Chaluvaraju. 2-global and 2(i)-global dominating sets in graphs. Ultra scientist of Phy. Sc. - Section A: Mathematics, 20(2)(2008), 481-488.
[4] B. Chaluvaraju, C. Nandeesh Kumar and V. Chaitra, Special kind of colorable complements in Graphs, International J. Math. Combin., 3 (2013), 35-43.
[5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater. Signed domination in graphs. In: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Algorithms, Proceedings of the Seventh International Conference in Graph Theory, Combinatorics, Algorithms, and Applications, Kalamazoo, MI, 1992, (pp. 311-321). WileyInterscience, New York 1995.
[6] F. Harary. Graph theory. Addison-Wesley Publishing Company, MA, 1969.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamental of Domination in Graphs. Marcel Dekker, Inc., New York 1998.
[8] V. R. Kulli, Theory of domination in graphs, Vishwa Internat. Publ., Gulbarga 2010.
[9] E. Sampathkumar and L. Pushpalatha. Complement of a graph: A generalization. Graphs and Combinatorics, 14(4)(1998), 377-392.
[10] E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam and Pradeep Bhat. Generalized Complements of a graph. Indian J. Pure Appl. Math., 29(6)(1998) 625-639.
[11] N. D. Soner, B. Janakiram and B. Chaluvaraju. Domination in 2-complement (2(i)complement) of a graph. Adv. Stud. Contemp. Math., Kyungshang, 7(2)(2003), 145-154.
[12] J. H. Van-Lint and J. J. Seidel. Equilateral point sets in elliptic geometry. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences, 69(3)(1966), 335-348.
[13] L. Volmann and B. Zelinka. Signed domatic number of a graph. Discrete Appl. Math. 150(13)(2005), 261-267.

Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bangalore - 560 056, India

E-mail address: bchaluvaraju@gmail.com
Department of Mathematics, B. M. S. College of Engineering, Basavangudi, BanGALORE - 560 019, IndiA

E-mail address: chaitrashok@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C69, 05C70.
 Key words and phrases. Domination, sign domination, k-complement, $k(i)$-complement.

