Connected Injective Domination of Graphs

Akram Alqesmah, Anwar Alwardi, R. Rangarajan

Апстракт


Let G = (V;E) be a connected graph. A subset S of V is called
injective dominating set (Inj-dominating set) if for every vertex v 2 V

Пуни текст:

PDF

Референце


Anwar Alwardi, R. Rangarajan and Akram Alqesmah, On the Injective domination of graphs, In communication.

Anwar Alwardi, N. D. Soner and Karam Ebadi. On the Common neighbourhood domination number. Journal of Computer and Mathematical Sciences, 2(3)(2011), 547-556.

A. Alwardi, B. Arsic, I. Gutman, N. D. Soner. The common neighborhood graph and its energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1-8.

J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. The Macmillan Press Ltd., London, Basingstoke, 1976.

F. Harary. Graph theory. Addison-Wesley, Reading Mass 1969.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater. undamentals of domination in graphs. Marcel Dekker, Inc., New York, 1998.

S. T. Hedetneimi and R. C. Laskar. Connected domination in graphs, In B. Bollobas, (Ed.). Graph Theory and Cominatorics (pp. 209-218). Acadamic Press, London 1984.

S. M. Hedetneimi, S. T. Hedetneimi, R. C. Laskar, L. Markus and P. J. Slater. Disjoint dominating sets in graphs. Proc. Int. Conf. on Disc.Math., IMI-IISc, Bangalore (2006). Ramanujan Mathematics Society Lecture Notes Series, 7(2008), 87-100.

E. Sampathkumar and H. B. Walikar. The connected domination number of a graph. Jour. Math. Ply. Sci., 13(6)(1979), 607-613.

H. B. Walikar, B. D. Acharya and E. Sampathkumar. Recent developments in the theory of domination in graphs, Mehta Research Institute, Allahabad, MRI Lecture Notes in Math.,

(1979).


Рефбекови

  • Тренутно не постоје рефбекови.