ON BANHATTI AND ZAGREB INDICES

I. Gutman, V. R. Kulli, B. Chaluvaraju, and H. S. Boregowda

Abstract. Let $G = (V, E)$ be a connected graph. The Zagreb indices were introduced as early as in 1972. They are defined as $M_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)]$ and $M_2(G) = \sum_{uv \in E(G)} d_G(u)d_G(v)$, where $d_G(u)$ denotes the degree of a vertex u. The K Banhatti indices were introduced by Kulli in 2016. They are defined as $B_1(G) = \sum_{ue} [d_G(u) + d_G(e)]$ and $B_2(G) = \sum_{ue} d_G(u)d_G(e)$, where ue means that the vertex u and edge e are incident and $d_G(e)$ denotes the degree of the edge e in G. These two types of indices are closely related. In this paper, we obtain some relations between them. We also provide lower and upper bounds for $B_1(G)$ and $B_2(G)$ of a connected graph in terms of Zagreb indices.

1. Introduction

The graphs considered here are finite, undirected, without loops and multiple edges. Let $G = (V, E)$ be a connected graph with $|V(G)| = n$ vertices and $|E(G)| = m$ edges. The degree $d_G(v)$ of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by uv. Let $d_G(e)$ denote the degree of an edge $e = uv$ in G, which is defined by $d_G(e) = d_G(u) + d_G(v) - 2$. The vertices and edges of a graph are said to be its elements. For additional definitions and notations, the reader may refer to [11].

A molecular graph is a graph in which the vertices correspond to the atoms and the edges to the bonds of a molecule. A single number that can be computed from the molecular graph, and used to characterize some property of the underlying molecule is said to be a topological index or molecular structure descriptor. Numerous such descriptors have been considered in theoretical chemistry, and have found some applications, especially in QSPR/QSAR research, see [6, 9, 17].

2010 Mathematics Subject Classification. 05C05; 05C07; 05C35.

Key words and phrases. Zagreb index, hyper-Zagreb index, K Banhatti index, K hyper-Banhatti index.
In [12], Kulli introduced the first and second K Banhatti indices, intending to take into account the contributions of pairs of incident elements. The first K Banhatti index $B_1(G)$ and the second K Banhatti index $B_2(G)$ of a graph G are defined as

$$B_1(G) = \sum_{ue} [d_G(u) + d_G(e)]$$

and

$$B_2(G) = \sum_{ue} d_G(u) d_G(e)$$

where ue means that the vertex u and edge e are incident in G.

The first and second K hyper–Banhatti indices of a graph G are defined as

$$HB_1(G) = \sum_{ue} [d_G(u) + d_G(e)]^2$$

and

$$HB_2(G) = \sum_{ue} [d_G(u) d_G(e)]^2.$$

The K hyper–Banhatti indices were introduced by Kulli in [13].

The degree–based graph invariants $M_1(G)$ and $M_2(G)$, called Zagreb indices, were introduced long time ago [10] and have been extensively studied. For their history, applications, and mathematical properties, see [2, 6, 7, 8, 15] and the references cited therein.

The first and second Zagreb indices take into account the contributions of pairs of adjacent vertices. The first and second Zagreb indices of a graph G are defined as

$$M_1(G) = \sum_{v \in V(G)} d_G(v)^2$$

or

$$M_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)]$$

and

$$M_2(G) = \sum_{uv \in E(G)} d_G(u) d_G(v).$$

In [14], Milicic et al., reformulated the first Zagreb index in terms of edge-degrees instead of vertex-degrees and defined the respective topological index as

$$EM_1(G) = \sum_{e \in E(G)} d_G(e)^2.$$

Followed by the first Zagreb index of a graph G, Furtula and one of the present authors [5] introduced the so-called forgotten topological index F, defined as

$$F(G) = \sum_{v \in V(G)} d_G(v)^3 = \sum_{uv \in V(G)} [d_G(u)^2 + d_G(v)^2].$$

In [16], Shirdel et al., introduced the first hyper–Zagreb index of G and defined it as

$$HM_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)]^2.$$

2. Comparison of Banhatti and Zagreb–type indices

Theorem 2.1. For any graph G, the first Banhatti index is related to the first Zagreb index as $B_1(G) = 3M_1(G) - 4m$.

Proof. Let G be a graph with $n \geq 3$ vertices and m edges. Then

$$B_1(G) = \sum_{uv} [d_G(u) + d_G(v)]$$

$$= \sum_{uv \in E(G)} [d_G(u) + d_G(uv)] + \sum_{uv \in E(G)} [d_G(v) + d_G(uv)]$$

$$= \sum_{uv \in E(G)} [d_G(u) + d_G(u) + d_G(v) - 2]$$

$$+ \sum_{uv \in E(G)} [d_G(v) + d_G(u) + d_G(v) - 2]$$

$$= \sum_{uv \in E(G)} [3d_G(u) + 3d_G(v) - 4] = 3M_1(G) - 4m. \qed$$

Theorem 2.2. For any graph G, the second Banhatti index is related to the first Zagreb and hyper-Zagreb indices as $B_2(G) = HM_1(G) - 2M_1(G)$.

Proof. Let G be a graph with $n \geq 3$ vertices and m edges. Then

$$B_2(G) = \sum_{uv} d_G(u) d_G(v)$$

$$= \sum_{uv \in E(G)} d_G(u) d_G(uv) + \sum_{uv \in E(G)} d_G(v) d_G(uv)$$

$$= \sum_{uv \in E(G)} d_G(u) [d_G(u) + d_G(v) - 2]$$

$$+ \sum_{uv \in E(G)} d_G(v) [d_G(u) + d_G(v) - 2]$$

$$= \sum_{uv \in E(G)} [d_G(u) + d_G(v)]^2 - 2[d_G(u) + d_G(v)]$$

$$= HM_1(G) - 2M_1(G). \qed$$

Theorem 2.3. Let G be a graph with $n \geq 3$ vertices and m edges. Then $EM_1(G) = HM_1(G) - 4M_1(G) + 4m$.

Proof. Let G be a graph with $n \geq 3$ vertices and m edges. Then

$$EM_1(G) = \sum_{e \in E(G)} d_G(e)^2 = \sum_{uv \in E(G)} [d_G(u) + d_G(v) - 2]^2$$

$$= \sum_{uv \in E(G)} \left([d_G(u) + d_G(v)]^2 - 4[d_G(u) + d_G(v)] + 4\right)$$

$$= HM_1(G) - 4M_1(G) + 4m. \qed$$
Theorem 2.4. Let G be a graph with $n \geq 3$ vertices and m edges. Then $B_1(G) = HM_1(G) - EM_1(G) - M_1(G)$.

Proof.
\[
EM_1(G) = HM_1(G) - 4M_1(G) + 4m \\
= HM_1(G) - M_1(G) - [3M_1(G) - 4m] \\
= HM_1(G) - M_1(G) - B_1(G).
\]

Theorem 2.5. Let G be a graph with $n \geq 3$ vertices and m edges. Then $B_2(G) = EM_1(G) + 2M_1(G) - 4m$.

Proof.
\[
EM_1(G) = HM_1(G) - 4M_1(G) + 4m \\
= B_2(G) - 2M_1(G) + 4m.
\]

Corollary 2.1. Let G be a graph with $n \geq 3$ vertices and m edges. Then $B_1(G) + B_2(G) = HM_1(G) + M_1(G) - 4m$.

Theorem 2.6. Let G be a graph with $n \geq 3$ vertices and m edges. Then $HB_1(G) = 2HM_1(G) - 4M_1(G) + 24m$.

Proof.
\[
HB_1(G) = \sum_{uv} [d_G(u) + d_G(v)]^2 \\
= \sum_{uv \in E(G)} [d_G(u) + d_G(uv)]^2 + \sum_{uv \in E(G)} [d_G(v) + d_G(uv)]^2 \\
= \sum_{uv \in E(G)} [d_G(u) + d_G(u) + d_G(v) - 2]^2 \\
+ \sum_{uv \in E(G)} [d_G(v) + d_G(u) + d_G(v) - 2]^2 \\
= \sum_{uv \in E(G)} [2(d_G(u) + d_G(v))^2 - 4(d_G(u) + d_G(v)) + 24].
\]

Theorem 2.6 follows now from the definitions of the hyper–Zagreb and first Zagreb indices, and the fact that $E(G)$ has m elements.

Corollary 2.2. Let G be a graph with $n \geq 3$ vertices and m edges. Then $B_2(G) = \frac{1}{2}HB_1(G) - 12m$.

Proof.
\[
HB_1(G) = 2[HM_1(G) - 2M_1(G)] + 24m = 2B_2(G) + 24m.
\]
Corollary 2.3. Let G be a graph with $n \geq 3$ vertices and m edges. Then

$$B_1(G) = \frac{1}{2} HB_1(G) - EM_1(G) + M_1(G) - 12m.$$

Proof.

$$HB_1(G) = 2[HM_1(G) - M_1(G)] - 2M_1(G) + 24m$$
$$= 2[B_1(G) + EM_1(G)] - 2M_1(G) + 24m$$
$$= 2B_1(G) + 2EM_1(G) - 2M_1(G) + 24m.$$

\[\square\]

Theorem 2.7. Let G be a graph with $n \geq 3$ vertices and m edges. Then

$$HB_1(G) = 5F(G) + 8M_2(G) - 12M_1(G) + 8m.$$

Proof.

$$HB_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)]^2$$
$$= \sum_{uv \in E(G)} [d_G(u) + d_G(uv)]^2 + \sum_{uv \in E(G)} [d_G(v) + d_G(uv)]^2$$
$$= \sum_{uv \in E(G)} [d_G(u) + d_G(u) + d_G(v) - 2]^2$$
$$+ \sum_{uv \in E(G)} [d_G(v) + d_G(u) + d_G(v) - 2]^2$$
$$= \sum_{uv \in E(G)} [5[d_G(u)]^2 + d_G(v)] + 8d_G(u)d_G(v)$$
$$- 12[d_G(u) + d_G(v)] + 8$$
$$= 5F(G) + 8M_2(G) - 12M_1(G) + 8m.$$

\[\square\]

In order to prove our next result, we use the earlier established:

Theorem 2.8. [19] Let G be a graph with $n \geq 3$ vertices and m edges. Then

$$EM_1(G) = F(G) + 2M_2(G) - 4M_1(G) + 4m.$$

Corollary 2.4. Let G be a graph with $n \geq 3$ vertices and m edges. Then $B_1(G) = F(G) + 2M_2(G) - M_1(G) - EM_1(G).$

Proof. From Theorem 2.8, we have

$$EM_1(G) = F(G) + 2M_2(G) - M_1(G) - (3M_1(G) - 4m)$$
$$= F(G) + 2M_2(G) - M_1(G) - B_1(G).$$

\[\square\]
Corollary 2.5. Let G be a graph with $n \geq 3$ vertices and m edges. Then $B_2(G) = F(G) + 2M_2(G) - 2M_1(G)$.

Proof. From Theorem 2.5, we have

$$B_2(G) = EM_1(G) + 2M_1(G) - 4m$$
$$= F(G) + 2M_2(G) - 4M_1(G) + 4m + 2M_1(G) - 4m$$
$$= F(G) + 2M_2(G) - 2M_1(G).$$

3. Bounds on Banhatti and Zagreb-type indices

Theorem 3.1. For any graph G,

$$M_1(G) \leq B_1(G).$$

Equality is attained if and only if G is totally disconnected or $G \cong mK_2$.

Proof. Let G be a simple graph with n vertices and m edges. Then by Theorem 2.1, we have $B_1(G) = 3M_1(G) - 4m$. Clearly $M_1(G) \leq B_1(G)$ follows. Now we prove the second part.

The graph G satisfied the given condition

$$\Leftrightarrow B_1(G) = M_1(G)$$
$$\Leftrightarrow 3M_1(G) - 4m = M_1(G)$$
$$\Leftrightarrow M_1(G) = 2m.$$

Since $\sum d_G(u)^2 = 2m = \sum d_G(u)$, and $\sum(d_G(u)^2 - d_G(u)) = 0$, because $d_G(u)^2 - d_G(u) \geq 0$.

$$\Leftrightarrow d_G(u)^2 = d_G(u)$$
$$\Leftrightarrow d_G(u) = 0 \text{ or } d_G(u) = 1.$$

Thus the result follows.

Here, we use the following existing results of the Zagreb and K Banhatti indices of regular graph.

Theorem 3.2. [15] Let G be an r-regular graph. Then

$$M_1(G) = nr^2 \quad \text{and} \quad M_2(G) = \frac{1}{2}nr^3.$$

Theorem 3.3. [12] Let G be an r-regular graph. Then

$$B_1(G) = nr(3r - 2) \quad \text{and} \quad B_2(G) = 2nr^2(r - 1).$$

Theorem 3.4. For any connected graph G,

$$B_2(G) \geq 4M_2(G) - 2M_1(G).$$

Equality is attained if and only if G is a regular graph.
Proof.

\[B_2(G) = \sum_{ue} d_G(u) d_G(e) \]

\[= \sum_{uv \in E(G)} d_G(u) [d_G(u) + d_G(v) - 2] \]

\[+ \sum_{uv \in E(G)} d_G(v) [(d_G(u) + d_G(v) - 2] \]

\[= \sum_{uv \in E(G)} [d_G(u)^2 + d_G(v)^2 + 2d_G(u)d_G(v)] - 2M_1(G) \]

\[\geq \sum_{uv \in E(G)} 4d_G(u)d_G(v) - 2M_1(G). \]

Since

\[d_G(u)^2 + d_G(v)^2 \geq 2d_G(u)d_G(v) \]

and

\[\sum_{uv \in E(G)} d_G(u)^2 + d_G(v)^2 \geq \sum_{uv \in E(G)} 2d_G(u)d_G(v), \]

the result follows.

The equality case attains directly from Theorems 2.1, 2.2, 3.2, and 3.3. \(\square \)

Now, we use the following existing results to prove our next result.

Theorem 3.5. [19] Let \(G \) be a simple graph with \(n \geq 3 \) vertices and \(m \) edges. Then

\[M_1(G) \geq \frac{4m^2}{n} \quad \text{and} \quad M_2(G) \geq \frac{4m^3}{n^2}. \]

Theorem 3.6. For any connected graph \(G \) with \(n \geq 3 \) vertices and \(m \) edges,

\[B_2(G) \geq \frac{8m^2(2m - n)}{n^2}. \]

Further, equality is attained if and only if \(G \) is a regular graph.

Proof. From Theorems 3.3-3.5, the desired result follows. \(\square \)

Theorem 3.7. For any connected graph \(G \) with \(n \geq 3 \) vertices and \(m \) edges,

\[\frac{4m(3m - n)}{n} \leq B_1(G) \leq 3m^2 - m. \]

The lower bound becomes equality if and only if \(G \) is regular. Equality in the upper bound is attained if and only if \(G \cong K_{1,n-1} \) or \(G \cong K_3 \).

Proof. From Theorems 2.1 and 3.5, bearing in mind that of \(M_1(G) \leq m(m + 1) \), the lower and upper bounds on \(B_1(G) \) follow.

The second part is obvious. \(\square \)

We now obtain lower and upper bounds on \(B_1(G) \) in terms of the minimum degree \(\delta(G) \) and the maximum degree \(\Delta(G) \) of \(G \).
Theorem 3.8. For any graph G with $n \geq 3$ vertices and m edges,
$$2m \left[3\delta(G) - 2 \right] \leq B_1(G) \leq 2m \left[3\Delta(G) - 2 \right].$$
Further, equality in both lower and upper bounds is attained if and only if G is regular.

Proof. Let G be a graph with $n \geq 3$ vertices and m edges. Then
$$B_1(G) = \sum_{e \in E(G)} [d_G(u) + d_G(v)]$$
$$= \sum_{e \in E(G)} [d_G(u) + (d_G(u) + d_G(v) - 2)]$$
$$+ \sum_{e \in E(G)} [d_G(v) + (d_G(u) + d_G(v) - 2)]$$
$$= \sum_{e \in E(G)} 3(d_G(u) + d_G(v)) - 4m.$$
But $2\delta(G) \leq d_G(u) + d_G(v) \leq 2\Delta(G)$. Bearing this in mind,
$$6\delta(G) \leq 3[d_G(u) + d_G(v)] \leq 6\Delta(G)$$
$$6\delta(G) - 4 \leq 3[d_G(u) + d_G(v)] - 4 \leq 6\Delta(G) - 4$$
$$2m \left[3\delta(G) - 2 \right] \leq B_1(G) \leq 2m \left[3\Delta(G) - 2 \right].$$
Further, equality in both lower and upper bounds holds if and only if $d_G(u) + d_G(v) = 2\delta(G) = 2\Delta(G)$, for each $uv \in E(G)$, which implies that G is a regular graph.

The following two existing results of hyper-Zagreb index to prove our next two results in terms of $\delta(G)$ and $\Delta(G)$ of G.

Theorem 3.9. [4] For any simple graph G with $n \geq 3$ vertices and m edges,
$$HM_1(G) \leq \frac{[\delta(G) + \Delta(G)]^2}{4m\delta(G)\Delta(G)} M_1(G)^2.$$

Theorem 3.10. [4] For any graph G with $n \geq 3$ vertices and m edges,
$$\delta(G)M_1(G) + 2M_2(G) \leq HM_1(G) \leq \Delta(G)M_1(G) + 2M_2(G),$$
with equality if and only if G is a regular graph.

Theorem 3.11. For any connected graph G with $n \geq 3$ vertices and m edges,
$$B_2(G) \leq \frac{[\delta(G) + \Delta(G)]^2}{4m\delta(G)\Delta(G)} M_1(G)^2 - 2M_1(G).$$

Proof. From Theorem 3.9, we have
$$HM_1(G) - 2M_1(G) \leq \frac{[\delta(G) + \Delta(G)]^2}{4m\delta(G)\Delta(G)} M_1(G)^2 - 2M_1(G).$$
whereas from Theorem 2.2,

\[B_2(G) \leq \frac{[\delta(G) + \Delta(G)]^2}{4m\delta(G)\Delta(G)} M_1(G)^2 - 2M_1(G). \]

\[\square \]

Theorem 3.12. For any connected graph \(G \) with \(n \geq 3 \) vertices,

\[[\delta(G) - 2]M_1(G) + 2M_2(G) \leq B_2(G) \leq [\Delta(G) - 2]M_1(G) + 2M_2(G). \]

Further, equality in both lower and upper bounds hold if and only if \(G \) is regular.

Proof. From Theorem 3.10, we have

\[\delta(G)M_1(G) + 2M_2(G) - 2M_1(G) \leq HM_1(G) - 2M_1(G) \leq \Delta(G)M_1(G) + 2M_2(G) - 2M_1(G). \]

Then from Theorem 2.2, we get the desired result.

Further, equality in both lower and upper bounds will hold if and only if \(d_G(u) + d_G(v) = 2\delta(G) = 2\Delta(G) \), for each \(uv \in E(G) \), which implies that \(G \) is a regular graph. \(\square \)

Now, we use the following existing results to prove our next result of \(B_1(T) \).

Theorem 3.13. [7] For any tree \(T \) with \(n \geq 3 \) vertices and \(m \) edges,

\[4n - 6 \leq M_1(T) \leq n(n-1). \]

Theorem 3.14. For any tree \(T \) with \(n \geq 3 \) vertices and \(m \) edges,

\[8n - 14 \leq B_1(T) \leq (n-1)(3n-4). \]

Further, equality in the lower bound is attained if and only if \(T \cong P_n \) and in the upper bound if and only if \(T \cong K_{1,n-1} \).

Proof. From Theorems 2.1 and 3.13, we have

\[4n - 6 \leq \frac{1}{3}[B_1(T) + 4m] \leq n(n-1) \]

\[12n - 18 - 4m \leq B_1(T) \leq 3n(n-1) - 4m. \]

Since for any tree \(T, m = n - 1 \), the result follows.

Further, the equality in the lower bound is attained if and only if \(T \cong P_n \) because \(B_1(P_n) = 8n - 14 \). Equality in the upper bound is attained if and only if \(T \cong K_{1,n-1} \) because \(B_1(K_{1,n-1}) = (n-1)(3n-4) \). \(\square \)

In order to prove our next result (upper bound) of \(B_1(G) \) via \(M_1(G) \), we apply of the Biernacki–Pidek–Ryll–Nardzewski inequality [1].
Theorem 3.15. [1] Let \(a \) and \(b \) be \(n \)-tuples such that \(x \leq a_i \leq X \) and \(y \leq b_i \leq Y \) for \(i = 1, 2, \ldots, n \). Then
\[
\left[\frac{1}{n} \sum_{i=1}^{n} a_i b_i - \frac{1}{n} \sum_{i=1}^{n} a_i \cdot \sum_{i=1}^{n} b_i \right] \leq \frac{1}{4} (X - x)(Y - y),
\]
with \(\lfloor \cdot \rfloor \) being the greatest integer function. Equality occurs when \(n \) is even.

Theorem 3.16. For any connected graph \(G \) with \(n \geq 3 \) vertices and \(m \) edges,
\[
B_1(G) \leq \frac{3n}{4} [\Delta(G) - \delta(G)]^2 + \frac{4m}{n} (3m - n).
\]

Proof. Let \(a_i = b_i = d_G(u_i) \) for \(i = 1, 2, \ldots, n \) with \(x = \delta(G) = y \) and \(X = \Delta(G) = Y \). Then
\[
\left[\frac{1}{n} \sum_{i=1}^{n} d_G(u_i)^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} d_G(u_i) \right)^2 \right] \leq \frac{1}{4} [\Delta(G) - \delta(G)]^2
\]
\[
\left[\frac{1}{n} M_1(G) - \frac{1}{n^2} (2m)^2 \right] \leq \frac{1}{4} [\Delta(G) - \delta(G)]^2
\]
\[
\frac{1}{n} M_1(G) - \frac{4m^2}{n^2} \leq \frac{1}{4} [\Delta(G) - \delta(G)]^2.
\]
Since
\[
M_1(G) \geq \frac{4m^2}{n} \Rightarrow \frac{1}{n} M_1(G) \geq \frac{4m^2}{n^2},
\]
we have
\[
M_1(G) - \frac{4m^2}{n} \leq \frac{n}{4} [\Delta(G) - \delta(G)]^2
\]
\[
\frac{1}{3} \left(B_1(G) + 4m \right) - \frac{4m^2}{n} \leq \frac{n}{4} [\Delta(G) - \delta(G)]^2
\]
\[
B_1(G) + 4m - \frac{12m^2}{n} \leq \frac{3n}{4} [\Delta(G) - \delta(G)]^2.
\]
Hence the upper bound follows. \(\square \)

In order to prove our next result (lower bound) of \(B_1(G) \) in terms of the minimum degree \(\delta(G) \), the maximum degree \(\Delta(G) \) and the forgotten topological index \(F(G) \), we use of the well known Cassel’s inequality [18].

Theorem 3.17. [18] Let \((a_1, a_2, \ldots, a_n) \) and \((b_1, b_2, \ldots, b_n) \) be positive real numbers, satisfying the condition \(0 < \ell \leq \frac{x}{4L} \leq L < \infty \) for each \(k \in \{1, 2, \ldots, n\} \), where \(\ell \) and \(L \) are some constants. Let \((w_1, w_2, \ldots, w_n) \) be positive weights. Then
\[
\left(\sum_{i=1}^{n} w_i a_i^2 \right) \left(\sum_{i=1}^{n} w_i b_i^2 \right) \leq \frac{(L + \ell)^2}{4L \ell} \left(\sum_{i=1}^{n} w_k a_i \right)^2.
\]
Theorem 3.18. For any connected graph \(G \) with \(n \geq 3 \) vertices and \(m \) edges,
\[
B_1(G) \geq \frac{2m\delta(G)\Delta(G)}{2\delta(G)\Delta(G)} F(G) - 4m.
\]

Proof. Let \(a_i = d_G(u_i)^{3/2} \) and \(b_i = d_G(u_i)^{1/2} \) with \(\ell = \delta(G) \), \(L = \Delta(G) \) and \(w_1 = 1 \) for all \(1 \leq i \leq n \). By Theorem 3.17 (Cassel’s inequality),
\[
\sum_{i=1}^{n} d_G(u_i)^3 \sum_{i=1}^{n} d_G(u_i) \leq \frac{(\delta(G) + \Delta(G))^2}{8\delta(G)\Delta(G)} d_G(u_i)^2 \]
\[
F(G) 2m \leq \frac{(\delta(G) + \Delta(G))^2}{2\delta(G)\Delta(G)} M_1(G) \]
\[
F(G) \leq \left(\frac{(\delta(G) + \Delta(G))^2}{8m\delta(G)\Delta(G)} \right) \frac{1}{3} [B_1(G) + 4m].
\]
Thus the result follows.

Now, we obtain lower and upper bounds on \(EM_1(G), B_1(G) \), and \(B_2(G) \) in terms of \(\delta(G), \Delta(G) \), and \(M_1(G) \), using Abel’s inequality as follows.

Theorem 3.19. [3] Let \(\{a_1, a_2, \ldots, a_n\} \) and \(\{b_1, b_2, \ldots, b_n\} \) with
\[
b_1 \geq b_2 \geq \cdots \geq b_n \geq 0
\]
be two sequences of real numbers and \(S_k = a_1 + a_2 + \cdots + a_k \) for \(k = 1, 2, \ldots, n \). If
\[
\omega = \min_{1 \leq k \leq n} S_k \quad \text{and} \quad \Omega = \max_{1 \leq k \leq n} S_k,
\]
then
\[
\omega b_1 \leq a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \leq \Omega b_1.
\]

In order to prove our next result we make use of the following definition:
The line graph \(L(G) \) of the graph \(G \) is the graph whose vertices correspond to the edges of \(G \) and two vertices in \(L(G) \) are adjacent if and only if the corresponding edges in \(G \) are adjacent (that is, are incident with a common vertex).

Theorem 3.20. For any connected graph \(G \) with \(n \geq 3 \) vertices and \(m \) edges,
\[
4(\delta(G) - 1)^2 \leq EM_1(G) \leq 2[M_1(G) - 2m](\Delta(G) - 1)
\]
\[
HM_1(G) - M_1(G)(2\Delta(G) - 1) + 4m(\Delta(G) - 1) \leq B_1(G) \leq HM_1(G) - M_1(G) - 4(\delta(G) - 1)^2
\]
\[
4(\delta(G) - 1)^2 + 2M_1(G) - 4m \leq B_2(G) \leq [2M_1(G) - 4m] \Delta(G).
\]

Proof. Inequality (3.1): Let \(a_i = d_G(e_i) \) with \(e_i = u_iv_i \) for \(i \neq j \) and \(b_1 \geq b_2 \geq \cdots \geq b_n \geq 0 \). Clearly, \(b_1 = \max d_G(e_i) \) and \(2\delta(G) - 2 \leq b_1 \leq 2\Delta(G) - 2 \), where \(S_k = a_1 + a_2 + \cdots + a_k \) for \(k = 1, 2, \ldots, n \).
Therefore $\omega = \min_{1 \leq k \leq n} S_k = \min_{1 \leq i \leq n} d_G(e_i) \Rightarrow \omega \geq 2(\delta(G) - 1)$ and

$$\Omega = \max_{1 \leq k \leq n} S_k = \max_{1 \leq i \leq n} d_G(e_i) = S_n$$

$$= \sum_{i=1}^{n} d_G(e_i) = 2|E(L(G))| = 2 \left[\frac{1}{2} \sum_{i=1}^{n} d_G(u_i)^2 - m \right]$$

$$= 2 \left[\frac{1}{2} M_1(G) - m \right] = M_1(G) - 2m.$$

By Theorem 3.19 (Abel’s inequality), we get

$$\omega b_1 \leq a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \leq \Omega b_1$$

$$(2\delta(G) - 2)b_1 \leq a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \leq (2\Delta(G) - 2)b_1$$

$$4(\delta(G) - 1)^2 \leq \sum_{i=1}^{n} d_G(e_i)^2 \leq [M_1(G) - 2m](2\Delta(G) - 2)$$

$$4(\delta(G) - 1)^2 \leq E M_1(G) \leq 2[M_1(G) - 2m](\Delta(G) - 1).$$

Inequality (3.2): From (3.1) and Theorem 2.4, we get

$$HM_1(G) - M_1(G)(2\Delta(G) - 1) + 4m(\Delta(G) - 1) \leq B_1(G) \leq$$

$$HM_1(G) - M_1(G) - 4(\delta(G) - 1)^2.$$

Inequality (3.3): From (3.1) and Theorem 2.5, we get

$$4(\delta(G) - 1)^2 + 2M_1(G) - 4m \leq B_2(G) \leq$$

$$(2M_1(G) - 4m)\Delta(G).$$

Finally, we obtain the lower and upper bounds on $B_1(G)$ and $B_2(G)$ in terms of the number of pendent vertices and minimal non-pendent vertices of G.

Theorem 3.21. For any (n, m)-graph G with η pendent vertices and minimal non-pendent vertex degree $\delta_1(G)$,

$$6\delta_1(G)(m - \eta) + 3\eta(1 + \delta_1(G)) - 4m \leq B_1(G) \leq$$

$$6\Delta(G)(m - \eta) + 3\eta(1 + \Delta(G)) - 4m$$

(3.4)

$$4\delta_1(G)(\delta_1(G) - 1)(m - \eta) + (\delta_1(G)^2 - 1)\eta \leq B_2(G) \leq$$

$$4\Delta(G)(\Delta(G) - 1)(m - \eta) + (\Delta(G)^2 - 1)\eta.$$
Proof. Inequality (3.4):

\[
B_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(e)]
\]

\[
= \sum_{uv \in E(G)} [d_G(u) + (d_G(u) + d_G(v) - 2)] + \sum_{uv \in E(G)} [d_G(v) + (d_G(u) + d_G(v) - 2)]
\]

\[
= \sum_{uv \in E(G)} 3[d_G(u) + d_G(v)] - 4
\]

\[
= \sum_{uv \in E(G); d_G(u), d_G(v) \neq 1} 3[d_G(u) + d_G(v)] + \sum_{uv \in E(G); d_G(u) = 1} 3[1 + d_G(v)] - \sum_{uv \in E(G)} 4
\]

\[
\leq 6 \Delta(G)(m - \eta) + 3 \eta (1 + \Delta(G)) - 4m.
\]

Thus the upper bound follows.

Similarly,

\[
B_1(G) \geq \sum_{uv \in E(G); d_G(u), d_G(v) \neq 1} 6 \delta_1(G) + \sum_{uv \in E(G); d_G(u) = 1} 3 \eta (1 + \delta_1(G)) - \sum_{uv \in E(G)} 4
\]

\[
= 6 \delta_1(G)(m - \eta) + 3 \eta (1 + \delta_1(G)) - 4m.
\]

Hence the lower bound follows.

Inequality (3.5):

\[
B_2(G) = \sum_{uv \in E(G)} d_G(u) d_G(e)
\]

\[
= \sum_{uv \in E(G)} d_G(u) [d_G(u) + d_G(v) - 2]
\]

\[
= \sum_{uv \in E(G); d_G(u), d_G(v) \neq 1} d_G(u) [d_G(u) + d_G(v) - 2] + \sum_{uv \in E(G); d_G(u) = 1} d_G(v) [d_G(u) + d_G(v) - 2]
\]

\[
+ \sum_{uv \in E(G); d_G(u) = 1} 1[d_G(v) - 1] + \sum_{uv \in E(G); d_G(u) = 1} d_G(v) [d_G(v) - 1]
\]

\[
\leq \sum_{uv \in E(G); d_G(u), d_G(v) \neq 1} [\Delta(G)(2\Delta(G) - 2) + \Delta(G)(2\Delta(G) - 2)] + \sum_{uv \in E(G); d_G(u) = 1} [\Delta(G) - 1] + \sum_{uv \in E(G); d_G(u) = 1} [\Delta(G) - 1].
\]
Thus the upper bound follows.

Similarly,

\[B_2(G) \geq \sum_{uv \in E(G): d_G(u), d_G(v) \neq 1} 2\delta_1(G) \left[2\delta_1(G) - 2 \right] \]

\[+ \sum_{uv \in E(G): d_G(u) = 1} \left[\delta_1(G) - 1 \right] + \sum_{uv \in E(G): d_G(u) = 1} \delta_1(G) \left[\delta_1(G) - 1 \right] \]

\[= 6\delta_1(G)(m - \eta) + 3\eta(1 + \delta_1(G)) - 4m. \]

Hence the lower bound follows.

Remark 3.1. In the inequalities (3.4) and (3.5), equality is attained if and only if \(d_G(u) = d_G(v) = \Delta(G) = \delta_1(G) \) for each \(uv \in E(G) \) with \(d_G(u), d_G(v) \neq 1 \) and \(d_G(v) = \Delta(G) = \delta_1(G) \) for each \(uv \in E(G) \) with \(d_G(u) = 1 \).

References

Received by editors 01.02.2017; Available online 06.02.2017.

I. Gutman: Faculty of Science, University of Kragujevac, Kragujevac, Serbia
E-mail address: gutman@kg.ac.rs

V. R. Kulli: Department of Mathematics, Gulbarga University, Gulbarga – 585 106, India
E-mail address: vrkulli@gmail.com

B. Chaluvaraju: Department of Mathematics Bangalore University, Jnana Bharathi Campus, Bangalore – 560 056, India
E-mail address: bchaluvvaraju@gmail.com

H. S. Boregowda: Department of Studies and Research in Mathematics, Tumkur University, University Constituent College Campus, Tumkur – 571 103, India
E-mail address: bgamarasa@gmail.com