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Apstrakt 
Određivanje velikih voda različitog ranga pojave je jedan od najvažnijih zadataka koji se 
postavlja pred inženjere hidrotehnike. Projektovanje hidrotehničkih objekata i sistema 
zahtijeva pouzdane ocjene kvantila što nije uvijek jednostavno isporučiti. U ovom radu 
prikazuje se neizvjesnost određivanja velikih voda uobičajena u praktičnoj primjeni a na 
primjeru rijeke Save, na stanici Sremska Mitrovica. Na nizu od 42 godine osmotrenih 
dnevnih proticaja izvršena je statistička analiza gdje je uzorkovanje sprovedeno prema 
dvije metode: metodi godišnjih maksimuma i metodi pikova. Pri ocjenjivanju 
neizvjesnosti, uzorci su analizirani prema nekoliko scenarija, tj. mijenjana je dužina 
uzorka kao i bazna vrijednost oticaja kod metode pikova. Dobijeni rezultati ukazuju na 
veliku neizvjesnost sračunatih kvantila, posebno u domenu malih vjerovatnoća pojave, a 
time i na problem usvajanja kvantila u praksi koji obezbjeđuje sigurnost i optimalnu cijenu 
objekta. 
Ključne rječi: neizvjesnost, statistička analiza, velike vode, funkcija raspodjele, kvantili 

FLOOD FREQUENCY ESTIMATION UNCERTAINTY IN 
DESIGN PRACTICE: CASE STUDY OF SREMSKA MITROVICA, 
SAVA RIVER   

Abstract:  
Flood frequency estimation is one of the most important tasks for hydraulic engineers. 
Design of hydraulic structures and systems require reliable estimates of high waters, which 
is not always easy to deliver. In this paper, uncertainty of flood frequency estimation 
common in practical use is presented in the case study of the Sava River at the Sremska 
Mitrovica hydrological station. Time series of 42 years daily flow records are statistically 
analysed on two samples, comprising annual maxima (AM), and peaks over threshold 
(POT). For uncertainty assessment, samples are analysed for several different scenarios, 
i.e. varying AM sample length as well as threshold flow for POT. Results indicate large 
uncertainty of flood frequency estimates, especially in the domen of low probabilities, as 
well as problem of adopting final value for practical use that will provide safety and 
optimum cost of the structures. 
Keywords: uncertainty, statiatical analysis, flood frequency, distribution function, 
quantiles 
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1. INTRODUCTION 

Flood frequency analysis imparts flood frequency estimates (FFE) that play an important 
role in the design of almost all hydraulic structures and systems such as dykes, bypass 
channels, bridges, floodwalls, spillways, culverts, etc. Safety of these structures, as well 
as human lives in the cases of large flood protection systems depend upon the reliability 
of FFE. On the other hand, estimated design flood must be economically justified, 
wherefore each country has set the standard design flood return periods for different 
structure types (e.g. 100 years for dykes, 5-10 years for storm drainage system, 1000 years 
for a concrete dam spillway, 10000 for earth dam spillway, etc.).  
There are three possible methods for design flood estimation, depending on the available 
data: (a) statistical analysis of the observed flows, (b) statistical analysis of the modelled 
flow, obtained with hydrological rainfall-runoff model and observed precipitation and (c) 
by transformation of design storms (obtained from statistical analysis of observed 
precipitations) into design flows based on a rainfall-runoff model. Here, statistical analysis 
is assumed to be establishing relationship between the flows and return period or 
probability of (non-)exceedance with one of the defined theoretical probability distribution 
functions. In this text from now on, the flow defined in this way is called quantile.  
FFE is usually obtained from two sampling methods [1]: annual maxima (AM) and peaks 
over threshold (POT). Research shows that results of these two methods are quite similar 
above return period of 10 years [2] or POT is found to be advantageous over AM due to 
possibility to include more information about floods, i.e. more floods per year instead of 
only one as in AM method [3], [4]. 
During FFE in design practice, the uncertainty of the estimated quantiles is very rarely 
included in the calculation. Uncertainties in hydrological procedures can be classified into 
three categories [5]: natural or inherent, model and parameter uncertainty. Natural or 
inherited uncertainty arises from the random variability of hydrological variables (i.e. 
uncertainty of measured data) while model uncertainties arise from the model structure 
and approximations made when representing hydrological phenomena. Parameter 
uncertainty is due to unknown nature, and therefore errors compiled in the methods of 
parameter estimation. In design practice, usually just one uncertainty source is addressed 
through confidence intervals estimation. These intervals only deal with data sample 
uncertainty from which quantile is estimated [6].  
Investors, designers and managers usually think that quantile estimated by hydrologist is 
an exact value while those values, depending on the available data and methodology 
applied can be found in a very wide range [7]. For this reason, the aim of this paper is to 
show the possible quantiles range depending on data sample method. This is demonstrated 
on the Sava River case study, the Sremska Mitrovica hydrological station that records 
runoff from almost all of the Sava River basin. Similar study [8] shows a wide range of 
runoff from relatively small catchment, while here, the idea is to see how this range in 
changed when dealing with large rivers data.  

2. METHODOLOGY 

2.1. Case study information and data  

The Sava River is right and by the discharge largest tributary of Danube, the second 
longest river in Europe (after Volga River). The river basin area is over 97000 km2 with 
the watercourse length of cca 990km. The river is formed in Slovenia from the Sava 
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Dolinka and Sava Bohinjka from where it flows through Croatia and Bosnia and 
Herzegovina, discharging into the Danube in Belgrade, Serbia. A small share of the river 
basin is located in Montenegro (7.09%) and in Albania (0.18%). 
The Sremska Mitrovica station is located 139.3 km from the Sava river mouth into the 
Danube. Station controls 87.996 km2 of the basin. The station is founded in 1878 but flow 
observation commenced not before 1926. Observed flow data available for this paper are 
for the period 1969-2010. 

2.2. Sampling data for statistical analysis 

In this paper time series of 42 years daily flow observations are used, which are statistically 
processed with two sampling methods: annual maxima (AM) and peak over the threshold 
(POT).  
For AM method, samples were formed taking one maximum flow per each year. Because 
of the relatively short available observation period (1969-2010), here are used three 
samples with different observation period and different sample length: 1969-2010, 1969-
2000 (this way excluding new data after 2000) and 1979-2010.  
For each sample, the following theoretical probability distributions are analyzed: log-
normal (logarithmic Gaussian distribution), Pearson type III, log-Pearson type III, Gumbel 
and Generalized Extreme Value (GEV). Review of the fitness of theoretical and empirical 
distributions is conducted with following tests [9], [10]: Kolmogorov–Smirnov, 
Anderson-Darling and Cramer-von-Mises. Based on the results of the named tests, log-
Pearson type III is accepted as the most adjustable theoretical distribution to the observed 
data. The statistics of the samples, as well as the parameters of the theoretical distributions, 
are estimated by the method of moments. 

Table 1. Overview of samples analyzed with annual maximum flows method 

 
Another method used to determine the maximum flow quantiles is POT method, in which 
samples were formed by taking maximum flows above a certain limit - the threshold 𝑋𝑋𝑏𝑏. 
Eight different thresholds are defined from which eight samples within fixed observation 
period (1969-2010) are extracted. The data samples of maximum flows, shown in the 
Table 2 are adjusted to the two-parameter Weibull distribution function. 
Peak selection for POT method is done by considering independence criteria. General 
criterion is to use only one peak in one event, while peaks filtration when two (or more) 
consecutive peaks occur is processed following Water resources Council (USWRC 1982) 
criteria [16]: 

θ < 5 days + log(A) 
    Or xMIN < 0.75min [xs1, xs2] 
                                                                                                                                          (1) 
where 
A is basin area in miles, 
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xs1 and xs2 are two consecutive peak values. 
The second peak should be rejected if one of the conditions in above equation is met. 

Table 2. Overview of samples analyzed with a peak over threshold method 

 
By using these methods for flood frequency estimation, eleven theoretical distribution 
functions have been obtained. For each of them, confidence intervals are calculated and 
then their envelopes (aggregate minimum and maximum limit values for each return 
period) are defined. These envelopes represent uncertainty intervals for quantiles of 
specific return period, which is the main aim of this paper. Analysed return periods (T) 
are: 2, 5, 10, 20, 50, 100, 200, 500, 1000 and 10.000 years. 
Basic theories of applied methodology is given in the next section.  

3. STATISTICAL MODELS FOR FLOOD FREQUENCY 
ESTIMATION 

3.1. Annual maxima (AM) method 

Annual maxima (AM) is a statistical model where sample data formed with one maximum 
flow per year is fitted to a probability function. Therefore, the sample consists of 

1 2, ,..., NQ Q Q  data where N  is a number of years of observations and iQ  is a maximum 

flow recorded for i -th calendar year. The basic assumption is that all data in the sample 
are stochastic value, mutually independent, uncorrelated and homogenous; therefore 
adequate sample of the population which must be previously tested [1], [11].  
There are many probability functions that can be used for fitting AM. In practice, several 
distributions are fitted and upon test of fitness (i.e. Kolmogorov-Smirnov, Cramer von 
Mises, etc. [12]) is decided which distribution fits the best to the observed data.  
The three parameter log-Pearson type III distribution from the gamma group best describes 
the flow distribution 𝑄𝑄𝑖𝑖  for annual maxima series of Sremska Mitrovica station. 
The function of this distribution is defined by the expression: 
 

𝐹𝐹(𝑦𝑦) = �
1

𝛽𝛽Г(𝛼𝛼)

𝑦𝑦

ϒ
�
𝑦𝑦 − ϒ
𝛽𝛽

�
𝛼𝛼−1

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑦𝑦 − ϒ
𝛽𝛽

�𝑑𝑑𝑦𝑦 

                                                                                                                                          (2) 
where: 
𝛼𝛼 (𝛼𝛼 >0), 𝛽𝛽 (𝛽𝛽≠0), ϒ are distribution parameters, 
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𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒, 
𝑒𝑒 = 𝑄𝑄, 
Г(𝛼𝛼) is gamma function: 

Г(𝛼𝛼) = � 𝑢𝑢𝛼𝛼−1𝑒𝑒−𝑢𝑢𝑑𝑑𝑢𝑢
∞

0
. 

                                                                                                                                          (3) 
Since the inverse distribution (the quantile 𝑦𝑦 calculation) cannot be defined explicitly by 
the expression, numerical approximations (in combination with built-in excel functions) 
are used. The inverse distribution could be determined via tabulated factor of frequency 
𝐾𝐾𝑇𝑇 (which depends on the probability and coefficient of skewness of the series) as well 
[13]. In that case, the following expression is used: 
 

log(𝑒𝑒) = 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐾𝐾𝑇𝑇𝑆𝑆𝑦𝑦 
                                                                                                                                          (4) 
where: 
𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎 is mean value, 
𝑆𝑆𝑦𝑦 is standard deviation of the log series. 

3.2. Peaks over threshold (POT) method 

POT represents good alternative to the AM method since it includes more flood 
information, i.e. more than one peak in the year [3]. Potential problem here may arise due 
to uncertainty of threshold determination. Threshold bX  defines the sample data that 
consists of peaks bZ x X= − , where 𝑒𝑒 is observed flow. There are several 
recommendations for threshold determination, such as to use minimum annual maxima as 
a threshold or to find the value on the graphic representation of the relationship bX  and 

/b avgX Z . In the later, avgZ is an average of the peaks over threshold and the flow where 
the distinctive linearity is lost, represents bX  [14].  
The theoretical distribution of the number of peaks per year is calculated according to one 
of the distribution functions for discrete variables. Selection criteria for theoretical 
distribution is the value of the dispersion index, obtained from: 
 

𝐼𝐼 =
𝑁𝑁 ∙ 𝑆𝑆𝑥𝑥2

𝑀𝑀
=

𝑆𝑆𝑥𝑥2

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
 

                                                                                                                                          (5) 
where: 
N is the total number of the observation years, 
M is the total number of peaks above the threshold 𝑋𝑋𝑏𝑏, 
𝑆𝑆𝑥𝑥2 is the variance of the number of peaks, 
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑀𝑀

𝑁𝑁 is the mean of the number of peaks. 
As the dispersion index for all series of peaks above the threshold 𝑋𝑋𝑏𝑏 formed from 
observed data for Sremska Mitrovica station is greater than one, negative binomial 
distribution with two parameters is used. The function of this distribution is defined by the 
expression: 
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𝑒𝑒𝑖𝑖 = 𝑃𝑃{𝑋𝑋 = 𝑖𝑖} = �𝑏𝑏 − 1 + 𝑖𝑖
𝑏𝑏 − 1 � 𝑒𝑒𝑏𝑏(1 − 𝑒𝑒)𝑖𝑖 

                                                                                                                                          (6) 
where: 
𝑏𝑏 is distribution parameter: 

𝑏𝑏 =
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
𝐼𝐼 − 1

 

                                                                                                                                          (7) 
𝑒𝑒 is distribution parameter: 

𝑒𝑒 =
𝑏𝑏

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏
 

                                                                                                                                          (8) 
The distribution of the height 𝐻𝐻(𝑍𝑍)of the peaks 𝑍𝑍 is defined with a two-parameter Weibull 
distribution. The function of this distribution is defined by the expression: 
 

𝐻𝐻(𝑍𝑍) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑍𝑍
𝛼𝛼
�
𝛽𝛽

� 

                                                                                                                                          (9) 
where: 
𝛽𝛽 is distribution parameter that should be numerically calculated from the expression: 
 

𝑓𝑓(𝛽𝛽) =
Г(1 + 2/𝛽𝛽)
Г2(1 + 1/𝛽𝛽)

= 1 + 𝐶𝐶𝑎𝑎𝑣𝑣2  

                                                                                                                                        (10) 
𝛼𝛼 is distribution parameter: 

𝛼𝛼 =
𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎

Г(1 + 1/𝛽𝛽)
 

                                                                                                                                        (11) 
The distribution of the probability of the annual maxima 𝐹𝐹(𝑒𝑒) is obtained by a 
combination of the previous distributions of the number and height of the peaks, in a way 
that it gives an inverse distribution function for quantile calculation according to Weibull's 
distribution: 

𝑍𝑍 = 𝑋𝑋𝑏𝑏 + 𝛼𝛼[−𝑙𝑙𝑛𝑛(1 − 𝐻𝐻)]1/𝛽𝛽 
                                                                                                                                        (12) 
where: 
1 −𝐻𝐻 is obtained from the negative binomial distribution: 
 

1 − 𝐻𝐻 =
𝐹𝐹−1/𝑏𝑏 − 1
1/𝑒𝑒 − 1

 

                                                                                                                                        (13) 

3.3. Standard quantile errors and confidence intervals 

The confidence intervals of the distribution function are determined for quantiles X(T), 
where T denotes the return period, by defining the upper (u) and lower (l) interval 
boundaries according to the following: 
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𝑋𝑋𝑢𝑢,𝑙𝑙(𝑇𝑇) = 𝑋𝑋(𝑇𝑇) ± |𝑧𝑧𝛼𝛼|𝑆𝑆𝑥𝑥(𝑇𝑇) 

                                                                                                                                        (14) 
where: 
𝑧𝑧𝛼𝛼 is a standardized variable of normal distribution for the significance threshold 𝛼𝛼: 
 

𝑧𝑧𝛼𝛼 = −𝑧𝑧(1 − 𝛼𝛼) 
                                                                                                                                        (15) 
The significance threshold 𝛼𝛼 corresponds to the confidence interval β: 
 

𝛽𝛽 = 1 − 2𝛼𝛼 
                                                                                                                                        (16) 
𝑆𝑆𝑥𝑥(𝑇𝑇) is the standard quantile error. 
The standard quantile error 𝑆𝑆𝑥𝑥(𝑇𝑇) represents the square root of the quantile variance and is 
determined differently depending on the selected theoretical distribution.  
For log-Pearson type III distribution, the standard quantile error is defined by the 
expression: 

𝑆𝑆𝑦𝑦(𝑇𝑇) =
𝑆𝑆𝑦𝑦
√𝑁𝑁

�1 +
1
2
𝐾𝐾2(𝑇𝑇) 

                                                                                                                                        (17) 
where: 
𝐾𝐾(𝑇𝑇) is frequency factor: 

𝐾𝐾(𝑇𝑇) =
𝑌𝑌(𝑇𝑇) − 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎

𝑆𝑆𝑦𝑦
 

                                                                                                                                        (18) 
while 𝑌𝑌(𝑇𝑇) represents logarithmic quantile: 
 

𝑌𝑌(𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑋𝑋(𝑇𝑇) 
                                                                                                                                        (19) 
The determination of the standard quantile errors and confidence intervals for Weibull 
distribution is somewhat complicated and due to limited space is not given here. However, 
interested readers may find complete derived expressions in [15]. 

4. RESULTS AND DISCUSSION 

Resulting quantiles for AM method are not in big discrepancy along the different return 
periods. The lowest quantiles are obtained for the period 1979-2010. The reason for this 
probably lies in the fact that largest floods on the Sava River recorded at this station 
occurred in 1970 and 1974, which are excluded from this period.  Largest quantiles are 
obtained for the period 1969-2000, but not with significant differences from the whole 
period (1969-2010), which is shown in the Table 3. 

          Table 3. Overview of quantiles obtained from annual maximum flows method 
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 These leads to conclusion that flood information content within the observation period 
used for statistical analysis is crucial for quantile estimation. Analysing data where large 
historical floods are excluded may lead to underestimated quantiles, and excluding periods 
with less and smaller floods may lead to quantile overestimation. Generally, sufficient 
length of the sample is maybe the most important in the proper statistical analysis. In this 
paper, there was not enough data to manipulate with, i.e. to form series of various length, 
but similar analysis concluded that, for example, parameters of the Pearson III distribution 
function are getting stabilized as length of the sample gets longer [8]. The problem of short 
sample data for FFE is not novelty in hydrology. Estimation of quantile of 100 years return 
period with the data sample of e,g, 40 years is never a good idea. However, in design 
practice this problem is usual and needs to be addressed with proper inclusion of 
uncertainty into the FFE. 
In the POT method, largest quantiles are obtained with the threshold of 3500m3/s. Fitness 
of the theoretical and empirical distributions for both methods and for the same 
observation period is given in the Figure 1.  
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Figure 1. Distribution function plot for AM and POT methods for period 1969-2010 
Summary results of all samples by both methods are depicted in the Figure 2. Quantiles 
obtained by POT are symbolised with dots while the ones obtained with AM are 
symbolised as squares.  Confidence interval envelopes (i.e. boundary confidence intervals 
for both sampling methods) form upper and lower limits and are shown in the Figure 2 as 
continuous lines. The value of the significance threshold 𝛼𝛼 used to determine confidence 
intervals is 0.05. 

 
Figure 2. Distribution functions with boundary confidence intervals 

For both methods, it is evident that range of quantiles increases as the return periods 
increases. For instance, defined quantile for a return period of 100 years, for POT method 
could take any value between 6470 and 6724 𝑚𝑚3/s, while for AM method between 6178 
and 6700 𝑚𝑚3/s, depending on the available sample. These envelopes give wide range of 
possible quantile values, and by increasing return periods, uncertainties in flood frequency 
estimation increases as well. 
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Figure 3. Box and whiskers plot for quantiles determined by AM and POT method (left) 

and with included confidence intervals (right) 
Box and whiskers diagrams show the central value (median) of the series formed from 
obtained quantiles for both methods and its upper (75%) and lower (25%) quartiles, as 
well as the lowest and highest values of the quantiles. In this graph, bottom and top of 
the box are the upper and lower quartiles, so the box spans the interquartile range. A 
horizontal line inside the box marks the median. The ends of the vertical lines are the 
minimum and maximum values of all the obtained quantiles. 
Introducing only one uncertainty due to the mistake of distribution functions, which in this 
case are confidence intervals, the range is significantly increased (Figure 3 right). It could 
be concluded that this range would be even greater, if uncertainty is calculated for output 
data from the probability analysis of the maximum flows due to other errors (i.e. 
measurements, distribution function and parameter estimation, etc.).  

5. CONCLUSIONS AND RECOMMENDATIONS 

Uncertainties in flow estimation occur due to many sources of error: poor data quality, 
determination of parameters and selection of the statistical model-distribution function, 
the data sampling method, assumptions about stochastic nature of hydrological variable, 
problems with water level measurement, equipment malfunction or incorrect cease-to-
flow datum, etc. [6]. The best way of improving the data quality of flood flow behavior is 
to measure rainfall and streamflow – preceding, during and after a flood event. The longer 
is the period of record, the better the confidence in the flow estimate would be.  
The uncertainty of the sample from which information about the maximum flow of a 
certain probability of occurrence is finally obtained, is mainly considered through 
determination of the confidence intervals. In this paper, this is extended to uncertainty that 
depends on sample data used for estimation, statistical model used and method (AM and 
POT). Still, problem in design practice exists. For example, design flood of 100 years 
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return period is estimated with mean value of 6577 m3/s. Possible quantiles that can be 
used in design is ±20% with reference to mean value, including confidence intervals and 
estimation methodology, which is large span due to large flow values. Comparing results 
to similar study [8], it could be concluded that great catchments are less sensitive when it 
comes to the range of quantiles. This range also vary, but in comparison with relatively 
small catchments, these changes are smaller.  
The analysis could be improved: by collecting more observed data to extend analysis, by 
varying the length of the sample for the peak method, analysing some other sources of 
error, such as various statistical models and other methods for  model parameters 
estimation (i.e. L-moments).  However, it is expected that the future extended analysis will 
show even more uncertainty intervals, especially under the conditions of changing climate.  
Still, in practice there is no proper mechanism for solving the problem, i.e. decreasing the 
uncertainty or methods for dealing with it. This is the topic that should be seriously 
addressed in order to prevent future designs to be under- or over dimensioned with respect 
to design floods.  
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