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Abstract: Two-dimensional advection-diffusion equation with variable coefficients
is solved by the explicit finite-difference method for the transport of solutes through a
homogeneous, finite, porous, two-dimensional, domain. Retardation by adsorption, periodic
seepage velocity, and a dispersion coefficient proportional to this velocity are permitted.
The transport is from a pulse-type point source (that ceases after a period of activity).
Included are the first-order decay and zero-order production parameters proportional to the
seepage velocity, periodic boundary conditions at the origin and the end of the domain.
Results are compared to analytical solutions reported in the literature for special cases and a
good agreement was found. The solute concentration profile is greatly influenced by the
periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the
coefficients in the advection-diffusion equation are obtainable as particular cases of the one
demonstrated here. This further attests to the effectiveness of the explicit finite difference
method for solving two-dimensional advection-diffusion equation with variable coefficients
in a finite media, which is especially important when arbitrary initial and boundary conditi-

ons are required.

Keywords: two dimensional advection-diffusion equation; mass transfer; finite dif-

ference method.

1. INTRODUCTION

Much of the research interest in the problem
of solute transport through porous media stems from
concerns for the degradation of air, soil, surface
water and groundwater. Many factors affect this
transport including the solvent and solute properties,
fluid velocity field within the porous medium and
micro-geometry such as the shape, size, and location
of the solid part of the medium or the layout of the
voids. Advective-dispersive phenomena often domi-
nate the process. For groundwater, contaminants
permeate through pores in the ground. Adsorption
attenuates the resulting pollution concentration as
the pollutants adhere to the solid surface.

The partial differential advection—diffusion
equation describes the solute transport through a poro-
us medium in problems of biophysics, soil physics,
chemical engineering and petroleum engineering,

* Corresponding author: savovic@kg.ac.rs

among other fields. For example, petroleum engineers
may use this equation to model multiphase and multi-
component flows in the extraction of hydrocarbons
from petroleum reservoirs and to predict the concentra-
tion of toxic, reactive or radioactive pollutants from
mining operations that may pose adverse potential for
the downstream flora and fauna [1]. Such studies play
an important role in assessing risks and devising reme-
dial environmental management.

Lindstrom and Boersma [2] have reviewed
analytical solutions describing the solute transport
through one-dimensional media while accounting for
adsorption, first-order decay and zero-order produc-
tion. To address fluctuations of the groundwater table
and flow patterns caused by the periodicity of the sea
level, Logan and Zlotnik [3] proposed analytical solu-
tions with a decay term for periodic input conditions
through a semi-infinite domain. Townley [4] obtained
analytical solutions for a periodic aquifer flow. Jaiswal
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et al. [5,6], Kumar et al. [7], and Yadav et al. [8] obtai-
ned analytical solutions for one-dimensional advec-
tion—diffusion equation with temporally and spatially
dependent dispersion problems.

Numerical solutions of advection-diffusion
equation have also been reported for more general
engineering problems not covered by analytical
solutions, especially two- and three-dimensional
problems [9—17]. We have demonstrated in our
recent works [18—21] that explicit finite difference
method (EFDM) is effective and accurate in solving
one-dimensional advection-diffusion equation with
variable coefficients, as well as in solving two-
dimensional advection-diffusion equation for solute
transport from a pulse-type source (that ceases after
a brief activity) along temporally and spatially
dependent flow [21]. In this study, we derive a
numerical solution for transport of solutes from a
point source through a homogeneous, finite, porous,
two-dimensional domain. The solution allows for (i)
periodic seepage velocity and (ii) dispersion coeffi-
cient that is proportional to the seepage velocity. The
retardation process that occurs in the porous medium
due to adsorption is also taken into account. The
solute transport is assumed to be against the longitu-
dinal direction of groundwater velocity [22,23].

Such situations often occur in practice when
poor-quality water is prevented from spreading by a
flow of fresh water. Mixed-type boundary condition
at the origin of the domain and boundary condition
of periodic nature at the end of the domain are con-
sidered. The solution is illustrated to demonstrate the
solute transport, both along the longitudinal and
transverse directions. A significant transverse solute
transport has been noted even for very low longitu-
dinal velocity and dispersivity relative to the respec-
tive values in the longitudinal direction. Because
one-dimensional models cannot capture such tran-
sverse transport, a two-dimensional model is
required. Moreover, for different combinations of
unsteadiness of the coefficients in the advection-
diffusion equation, solutions can be obtained as par-
ticular cases of the one obtained in the present study.

2. ADVECTION-DIFFUSION EQUATION

Let the polluting solute particles enter a poro-
us medium at a fixed location, continuously and at a
constant rate up to a certain moment when the flow
ceases (pulse-type source). The advection—diffusion
equation in two-dimensional horizontal plane medi-
um may be written as [24]:

oC(x,y,t) _ 0 0C(x, 1)
R "o (D" R ’t)j
+%(Dy(y’t)%(;—;y,t) _V(yat)c(xayat)] - 7/(xay>t)c+ ,Lt(x,y,t) (1)

where C(x,y,?) is the dispersing solute concentration
at a position (x,y) at time #; Dy(x,f) and D,(y,t) are
dispersion coefficients in directions x and y,
respectively; u(x,f) and w(y,f) are velocity coeffici-
ents in directions x and y, respectively; y is the first-
order decay coefficient and y is the zero-order pro-
duction The

l-n accounts for the equilibrium linear
R, = [1 + ”K]] q

coefficient. retardation  factor

}’lp

adsorption process, where 7, is the porosity of the
medium and K| is an empirical constant [25,26].

The expressions for velocity components are
assumed in the following form [22]:

5 V(p,0) = v,[sin(mo) )

where uy and v, are uniform longitudinal and tran-
sverse velocity components, respectively, each of

u(x,t) = u0|sin(mt)

dimension (LT™"). The coefficient m represents the
unsteadiness parameter. It is of dimension inverse of
time. The inclusion of transverse diffusion makes
the dispersion problem two-dimensional. Hence, we
consider dispersion coefficients as:

D(x,0)=D, . D(y,t) =D, |sin(m) 3)

sin(mf)

where D, and D, are the initial longitudinal and

transverse dispersion coefficients, respectively, each
of dimension (L*T™"). Furthermore, first-order decay
and zero-order production are considered directly
proportional to the seepage velocity and, thus, it is:

¥ = yolsin(mt), 1= p,[sin(me) (4)

where y, and g, are constants of dimension 7" " and

MLT", respectively. Hence, (1) can now be
rewritten as:

oC(x,v,t) 0 _ 0C(x, v,t) _

R, Ty = a(on s1n(mt)|Ty - u0|sm(mt)|C(x, V,1)

+ ai(Dyu [sin(mo)| % — v, sin(mt)|C(x, v, t)) — 7, [sin(m0)|C + g [sin(mo) (5)
y y
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For the plane and horizontal porous medium, the
initial solute concentration is set to vary with position
according to (6) whereby x-axis is longitudinal and y-
axis is transverse to the flow. The solute transport is in
finite space L <x<L, and L, <y<L, in the x>0 and

>0 directions. The source of the pollution is conside-
red to be a uniform pulse at point (L,, L,). In other
words, the pollution dispersion exists against the flow.
Let the time of elimination of the point source be #.
The initial and boundary conditions are [24]:

C(x,y,0)=C, explax+ay), L, <x<L;L <y<L; t=0 (6)
C,(1+cos(mt)), 0<t<ty;x=L_,y=L,
Clx,y, =1 " oo @)
0, t>ty; x=L,y=L,
oC(x, y.1) = u(x,1) C(x,y,t),x=L_; oC(x, y.1) = v(.1) Clx,y,t), y—=>L, ;(t=0) 3
ox 2D (x,t) ‘ oy 2D, (y,1) .

where Cj is the reference concentration representing
the input concentration that is released uniformly by
the source and ¢« is a constant whose dimension is
the inverse of length.

C(U,T)=E(U,T)+Csz(f7,T)+(2Co

0
C(n.T)=F,(n,

+ CO[F4(’7>T)_
Where

F4(’7>T_To)];

T)+Cl.an(?],T)+C0[2F3(77,T)—(2—mR/T0)F3(77,T—TO)J

3. ANALYTICAL SOLUTION OF ADVEC-
TION-DIFFUSION EQUATION

Analytical solution of the advection-diffusion
equation (1), subject to initial condition (6) and
boundary conditions (7) and (8), is [24]:

—ﬁjﬂ (0.7)+C,F,(3,T); 0<T<T, )

(10)
T>T,

F(7.7) =20~ 2o exp(~ 5, T) + 2 exp(~ L+ By ){exp(— 7T )M

0 0 0

cosh(L-L,)B

~ 21D, expl- 5°T) iE] Ez} ~ %o g exp(- L, + i) {exp(— 7oT) sinh(y—L)B

0

0

B

cosh(L—L,)B

2(L L, D exp( )Z 1)_ sm{n+1/2)ﬂ (U_L)}Ez}+’;l°ﬂexp(—[)ll+[)’n)

(L_Ll)

n=0

0

E, -2(L—L,)D, exp(- 5

n=0

Sorafeon il

F,(n,T)= exp[m]+(b—5 )T]—exp[aL—,BL+ﬂ77 —52T]

y {exp(bT) cosh(7— L, \/b/ D,

cosh(L L, )\/b/ D, —27rD0:.ZOE1E5}—(05—,H)exp[ozLl —BL, + fBn —§2T]

{GXP(bT) sinh( ~ L)/b/D, 2(L-L,)D i(—l)"’ sin

Jb/D, cosh(L—L,) ,/b/DO_ e

Fy(n,T)=ex

F4( ,T)=exp(—ﬂL+ﬂl7)|:{(L_Ll) zl

2 \&°D,

mR,(L-L ) EE,

{(n +1/2)r =%

p(= AL+ By )E, — 27D, exp|(- AL+ pn)- °T|> E\E,

n=0

tanh((L—L1 )\/ZTJ—meT}E() _me(Z_L‘)EJ

— 27D, exp|(- BL+ ) - azr]i

S wvv2y 2, + 02 (L-1,))

(n+1/2) 2’ D, T}

(L-L,)

E =(=1)"(n+ 1/2)cos{(n + 1/2)”8:2; }’

exp{—
E, =

[n+v27 72D, +0* (L-L )]

(11
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sinh( — L) 52/D

exp{_ (n+1/2) z°D, T]

E
’ V5Do cosh(L - L, 52/D

{ (n+1/22 *D OT}

B cosh(7—L, Wo&* /D, ,

w27 2D, + 52 (L - L Y]

n+1 2D +b(L L)ZJ _cosh(L—L Wé?/D,
U, U;
b=D,(a-B),8 =y, +&*, = ,0° = ,D,=D, +D,,
o( ﬂ) =7 B= 2D, 4D0 o

U, =u,+v,,

4. NUMERICAL METHOD

Analytical solutions of the advection-diffusion
equation have been reported for specific initial and
boundary conditions. This lack of generality limits
their applicability. Moreover, such solutions tend to
be complex. Thus for example, analytical solutions
oC(x, y,t) OC*(x,y,1)
= D St

R mt
4 ot )‘ ox

—u,[sin(mt)|

oC(x, y,t)
o
The central difference scheme is used to
represent the term (azC(x,t)/éxz), (82C(y,t)/8y2),
(aC(x 1)/ éx) and (3C(y,t)/éy) and a forward diffe-
=(G,-E)C,, ;,+(G,+E)C

2
D oC (x;y,t)

Yo

sin(mt)‘ -V, ‘sin(mt)‘

z;k+1 i+1,7, i-1,j,

L=L +L,L =L +L ,n=x+y,T=

-7 ‘sin(mt)‘C + U, ‘sin(mt)‘

 H(H, —F)C
G A H)C G (A1 -2H, -2G)C

ﬁ[l - cos(mt)]-

A

(9) and (10) of the advection-diffusion equation (5)
are clearly lengthy and contain infinite series (11). In
contrast, numerical methods are generally flexible to
accommodate arbitrary initial distribution and
boundary conditions [18-21, 27-29]. In order to
employ the EFDM to solve equation (5), this
equation is first rewritten in the following form:

oC(x, y,1)
Ox

(12)

rence scheme for the derivative term (0C(x,z)/or)

[27]. With these substitutions, equation (12) tran-
sforms into:

i,j+1,k

(13)

where indexes i, j and & refer to the discrete step lengths Ax, Ay and At for the coordinate x, coordinate y

and time ¢, respectively, and where:

~ uo‘sin(mtj )‘At ~ vo‘sin(mtj )‘At

A b Y
2Rfo 2RfAy
~ D, ‘sin(mtj )‘At ~ 70‘sin(mtj )‘At
J 2 Ly T T 5 j
R, Ay R,
The truncation error for the difference

equation (13) is O(At, Ax* Ay?). Using a small-
enough value of Ax, Ay and At the truncation
error can be reduced until the accuracy achieved is

Ci,j,O =C,, exp(ax; + ay‘].), Lx1 <x, < Lx;Lyl
Boundary conditions (7) and (8), rewritten in
the finite difference form, are:

c Cy(l+cos(mty)), 0<t, <ty;xy=L,y,=L, (16)
VR o, t, >ty; xXy=L.,y,=L,

D, [sin(mt,)|At

Hy ‘sin(mt ; )‘At

b

2
R./'Ax

(14)
R,
within the error tolerance [30].
The initial condition (6) for equation (13) can

be expressed in the finite difference form as:

<y,<L; t=0 (15)
Cl, ik Co, ik u,

J . J ZZDXO Co,j’k,x:Lxl;(tZO)) (17)
ik Y0k Vo

e = D Cioxs y:Lyl; (t=20)

Yo
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where N=(L, —L, )/Ax and R=(L, — L, )/Ay are

the grid dimensions in the x and y directions,
respectively. In this manner, solute concentration
can be determined at different times.

5. NUMERICAL AND ANALYTICAL
RESULTS

Numerical solution of Eq. (13) is obtained by
EFDM over a finite domain bounded by 0<x<1 km
in the longitudinal and 0<y<1 km in the transverse
direction. To enable the comparison of results, this
was done for the same set of input data previously
used by Yadav et al. [24]. The input parameters are

_ 2 _ 2
D, =177 km"/day, D, =0.177  km'/day,

uy=0.70 km/day, v,=0.070 km/day, o =0.025 km™ ',
7,=0.01 day” ', 4,=0.01, C=1.0, C,=0.1 and
m=0.1 day ~ '. The elimination time of the source of
the pollutant (the pulse width) is #,=120 days. In the
numerical calculations, the step lengths Ax=Ay=0.1
km and Ar=0.0005 days have been used to achieve
the stability of the finite difference scheme. Numeri-
cal results matched the analytical solution well, with
maximum deviation of 0.049 % for the longest time
analyzed t=180 days.

With the pollution source active (¢<t,) and for
a fixed retardation factor of R,=1.08, Figure 1 shows
the concentration profiles at various moments in
time.

y(km)
0.5

0.0

t=90 day
Rp=1.08

0.0

t =110 day]

J:(km()]lyv

Figure 1. Solute concentration in 2D space at a varied time of t=70, 90 and 110 days (which is within
the 120 days of the source activity), for a fixed retardation factor of R;=1.08

These profiles are not in a chronological order
and the uppermost surface is for the middle value of
time (90 days). The lower and middle surfaces are
for the times of 70 and 110 days, respectively. This
is due to the periodic nature of the input concentra-
tion which is thus transported against the flow. Near
the source point, the distribution of the solute in the
transverse and longitudinal directions are of similar
order of magnitude despite the transverse component
of the velocity and dispersion coefficient being
merely a tenth of the corresponding values for the
longitudinal direction.

One can observe that at far end boundaries
x=0 and y=0, surfaces in Fig. 1 are flat near bounda-
ries. Concentration gradient with respect to time, at

particular position, decreases. Hence, the domain
0<x and y<1 gets polluted beyond human use in a
finite period of time.

For a parametric retardation factor of R,=1.08,
1.38 and 1.68, Figure 2 shows the concentration pro-
files at time /=90 days.

Larger retardation factors indicate higher
adsorption of the solute by the solid matrix of the
porous medium. One can thus observe in Figure 2
that the concentration decreases at a higher rate for
higher values of this factor R,. It can be observed a
decrease in the contaminant concentration profile
with retardation factor up to a certain position, and
after that position, it increases.
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Rf =1.08

0.0

Rf- =1.38

x(km)

Figure 2. Solute concentration in 2D space at time t=90 days (the source is active for 120 days)
for a varied value of the retardation factor of Ry=1.08, 1.38 and 1.68

Figures 3 and 4 show concentration profiles
for time £>1, (the pollution source turned inactive).
As the source of the pollutant is extinguished (at
t=120 days), the concentration at the source point
(x=1 km and y=1 km) becomes zero. However, the

0.0

x(km)

domain 0<x and y<I gets polluted until 120 days, so
a peak concentration value occurs at source position
in the domain. Figure 3 illustrates concentration pro-
file at time =140, 160 and 180 days and a fixed
retardation factor of R,=1.08.

Figure 3. Solute concentration in 2D space at a varied time of t=140, 160 and 180 days
(the source was active for the first 120 days), for a fixed retardation factor of R;=1.08

One can observe in Figure 3 that this peak
value lowers and drifts away from the point source
with time. The rate of change in the peak concentra-
tion and concentration at some position in general
are of increasing nature in time. In other words, the
rehabilitation process will progress faster, aided by
the transverse transport. It is also observed that the
trend of contaminant concentration with time and
distance travelled is almost the same as for ¢<t,. The
concentration values are changing periodically with

time and position. The upper surface represents solu-
te concentration at =160 days, while middle and
lower surfaces indicate lower and higher time at the
same position.

Figure 4 shows the concentration profiles at
time =160 days, which is after the pollution source
turned inactive (£>f,). Results are shown for three
values of the retardation factor: R,=1.08, 1.38 and
1.68. The solute concentration decreases with the
increasing retardation factor.
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Figure 4. Solute concentration in 2D space at time t=160 days (the source was active for the first 120 days),
for a varied value of the retardation factor of R,=1.08, 1.38 and 1.68

The derived numerical solution with periodic
velocity and boundary conditions are useful for
understanding the transient response of ground water
systems to water level changes.

Finally, the EFDM used in this work for sol-
ving two-dimensional advection-diffusion equation
with variable coefficients over a finite domain can
be used with arbitrary initial and boundary conditi-
ons as well as with different variations of dispersion
and velocity. This is its advantage against a large
number of commercial codes which can be used
only for solving the advection-diffusion equation
with generic boundary conditions but not for time-
and/or space-dependent dispersion and velocity
coefficients.

6. CONCLUSION

Solutions by the explicit finite difference met-
hod (EFDM) are given for the dispersion of pollu-
tion through a horizontal homogeneous porous
medium and in presence of an unsteadiness of the
dispersion and velocity that is of periodic nature.
Accounted is the retardation that occurs in the poro-
us medium due to adsorption. Numerical results are
compared to analytical solutions reported in the lite-
rature and good agreement is apparent, with
maximum deviation of 0.049 % for the longest time
analyzed t=180 days. It was found that the solute
concentration profile is influenced significantly by
the periodic velocity fluctuations. The proposed
numerical solution is a useful tool in trying to under-
stand the physical mechanism of the groundwater
flow in porous media. As a modeling tool, the pro-

posed numerical solution of advection—dispersion
equation was also shown to be accurate.

Finally, the EFDM used in this work is effec-
tive and accurate for solving the two-dimensional
advection-diffusion equation with variable coeffici-
ents over a finite domain. Such numerical method
for solving two-dimensional advection-diffusion
equation with variable coefficients over a finite
domain can be used with arbitrary initial and
boundary conditions as well as with different varia-
tions of dispersion and velocity. This is of special
importance when an analytical solution is not avai-
lable, or it is lengthy and contains infinite series.
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TOR

PEIHIEBLE KOHAYHUX ANPEPEHITNIA IBOANMEH3NOHAJIHOI' TPAHCIIOPTA
PACTBOPEHE CVYIICTAHIIE CA IIEPUOJMYHUM TOKOM
Y XOMOI'EHOM ITOPO3HOM MEJINJY

Caerak: /[BoquMeH3MOHATIHA aJIBEKIMjCKO-IM(Y3HOHA jeJHAYNHA ca BapHjaOuII-
HUM Koe(UIMjeHTUMAa pellleHa je eKCIUIMIUTHUM METOJOM KOHayHHMX AnudepeHnuja 3a
TPaHCIIOPT PAaCTBOPEHHMX CYICTaHIM KPO3 XOMOIEHH, KOHAYHH, MOPO3HH, JBOJMMEH3HO-
HaJTHA JoMeH. [103BOoJbeHH Cy peTapAaliija aJCopIIijoM, NepuoandHa Op3uHa ¢unrparje
M KoeUIMjeHT ANCIep3uje IMPONopHHOHaiaH OBOj Op3MHHU. TpaHCHOPT ce BPIIU U3 ITyJiC-
HOT' CTAIlMOHAPHOT M3BOpa (KOjH HECTaje HAKOH IEepHo/ia aKTHBHOCTH). YKJBYUCHH Cy pac-
maj IpBOT pefa W IMapaMeTpH MPOHM3BOIEE HYITOr pea MPOIOPLHMOHATHN Op3uHH (HII-
Tpauyje, MepHOINYHAM TPAHMYHUM YCIIOBUMA Ha MOYETKY M Ha Kpajy ZoMeHa. Pesynraru
ce TopeJie ca aHAJUTHYKUAM PelIeHhUMa HaBeICHUM Y JINTEPATypH 32 CIeLjalHe CllydajeBe
U TIOCTUTHYTO je 1o0po ciarame. Ha mpodun koHIeHTpamyje pacTBOpeHe CYICTaHIEe yBe-
JMKO yTHYy nepuoguyHe Guiykryanuje Op3uHe. Pemema 3a MHOIITBO KOMOMHANWja HEHo-
CTOjaHOCTH KoeHIMjeHaTa y aJBeKII1jCKO-In(pY3MOHUM jeIHAYNHAMa MOTY c€ JOOUTH Kao
MOjeTUHAYHH CITy4ajeBU OHOT KOjU je oBiaje mpukazan. OBO Jajbe TOKa3yje JACTOTBOPHOCT
eKCIUTMLUTHOT METO/la KOHa4yHe udepeHnrje 3a peliemhe TBOJUMEH3HOHAIHE aIBEKIIH]-
cKo-1n(y3HOHE jeJTHaYNHE ca BapyjaOMIHIM Koe(pUIIMjeHTUMA Y KOHAYHOM MEAH]y, IITO je
noceOHO BayKHO Kajia Cy TTOTpeOHH PON3BOJGHI WHULIM]aJTHA ¥ TPAaHUYHH YCIIOBH.

Kbyune peun: nBosmMeH3HMOHAlIHAa aJBEKIMjCKO-AN(Y3NOHA jelHA4YMHA, IPEHOC
Mace, MeToJ] KOHauHe Tu(epeHIIje.



