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Abstract: Two-dimensional advection-diffusion equation with variable coefficients 
is solved by the explicit finite-difference method for the transport of solutes through a 
homogeneous, finite, porous, two-dimensional, domain. Retardation by adsorption, periodic 
seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. 
The transport is from a pulse-type point source (that ceases after a period of activity). 
Included are the first-order decay and zero-order production parameters proportional to the 
seepage velocity, periodic boundary conditions at the origin and the end of the domain. 
Results are compared to analytical solutions reported in the literature for special cases and a 
good agreement was found. The solute concentration profile is greatly influenced by the 
periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the 
coefficients in the advection-diffusion equation are obtainable as particular cases of the one 
demonstrated here. This further attests to the effectiveness of the explicit finite difference 
method for solving two-dimensional advection-diffusion equation with variable coefficients 
in a finite media, which is especially important when arbitrary initial and boundary conditi-
ons are required. 

Keywords: two dimensional advection-diffusion equation; mass transfer; finite dif-
ference method. 

 
 
 

1. INTRODUCTION 
 
Much of the research interest in the problem 

of solute transport through porous media stems from 
concerns for the degradation of air, soil, surface 
water and groundwater. Many factors affect this 
transport including the solvent and solute properties, 
fluid velocity field within the porous medium and 
micro-geometry such as the shape, size, and location 
of the solid part of the medium or the layout of the 
voids. Advective-dispersive phenomena often domi-
nate the process. For groundwater, contaminants 
permeate through pores in the ground. Adsorption 
attenuates the resulting pollution concentration as 
the pollutants adhere to the solid surface.  

The partial differential advection–diffusion 
equation describes the solute transport through a poro-
us medium in problems of biophysics, soil physics, 
chemical engineering and petroleum engineering, 

among other fields. For example, petroleum engineers 
may use this equation to model multiphase and multi-
component flows in the extraction of hydrocarbons 
from petroleum reservoirs and to predict the concentra-
tion of toxic, reactive or radioactive pollutants from 
mining operations that may pose adverse potential for 
the downstream flora and fauna [1]. Such studies play 
an important role in assessing risks and devising reme-
dial environmental management.  

Lindstrom and Boersma [2] have reviewed 
analytical solutions describing the solute transport 
through one-dimensional media while accounting for 
adsorption, first-order decay and zero-order produc-
tion. To address fluctuations of the groundwater table 
and flow patterns caused by the periodicity of the sea 
level, Logan and Zlotnik [3] proposed analytical solu-
tions with a decay term for periodic input conditions 
through a semi-infinite domain. Townley [4] obtained 
analytical solutions for a periodic aquifer flow. Jaiswal 
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et al. [5,6], Kumar et al. [7], and Yadav et al. [8] obtai-
ned analytical solutions for one-dimensional advec-
tion–diffusion equation with temporally and spatially 
dependent dispersion problems.  

Numerical solutions of advection-diffusion 
equation have also been reported for more general 
engineering problems not covered by analytical 
solutions, especially two- and three-dimensional 
problems [9−17]. We have demonstrated in our 
recent works [18−21] that explicit finite difference 
method (EFDM) is effective and accurate in solving 
one-dimensional advection-diffusion equation with 
variable coefficients, as well as in solving two-
dimensional advection-diffusion equation for solute 
transport from a pulse-type source (that ceases after 
a brief activity) along temporally and spatially 
dependent flow [21]. In this study, we derive a 
numerical solution for transport of solutes from a 
point source through a homogeneous, finite, porous, 
two-dimensional domain. The solution allows for (i) 
periodic seepage velocity and (ii) dispersion coeffi-
cient that is proportional to the seepage velocity. The 
retardation process that occurs in the porous medium 
due to adsorption is also taken into account. The 
solute transport is assumed to be against the longitu-
dinal direction of groundwater velocity [22,23].  

Such situations often occur in practice when 
poor-quality water is prevented from spreading by a 
flow of fresh water. Mixed-type boundary condition 
at the origin of the domain and boundary condition 
of periodic nature at the end of the domain are con-
sidered. The solution is illustrated to demonstrate the 
solute transport, both along the longitudinal and 
transverse directions. A significant transverse solute 
transport has been noted even for very low longitu-
dinal velocity and dispersivity relative to the respec-
tive values in the longitudinal direction. Because 
one-dimensional models cannot capture such tran-
sverse transport, a two-dimensional model is 
required. Moreover, for different combinations of 
unsteadiness of the coefficients in the advection-
diffusion equation, solutions can be obtained as par-
ticular cases of the one obtained in the present study. 

 
 
2. ADVECTION-DIFFUSION EQUATION   
 
Let the polluting solute particles enter a poro-

us medium at a fixed location, continuously and at a 
constant rate up to a certain moment when the flow 
ceases (pulse-type source). The advection–diffusion 
equation in two-dimensional horizontal plane medi-
um may be written as [24]: 
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where C(x,y,t) is the dispersing solute concentration 
at a position (x,y) at time t; Dx(x,t) and Dy(y,t) are 
dispersion coefficients in directions x and y, 
respectively; u(x,t) and v(y,t) are velocity coeffici-
ents in directions x and y, respectively;   is the first-

order decay coefficient and   is the zero-order pro-
duction coefficient. The retardation factor 
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 accounts for the equilibrium linear 

adsorption process, where np is the porosity of the 
medium and K1 is an empirical constant [25,26]. 

The expressions for velocity components are 
assumed in the following form [22]:  

)sin(),(;)sin(),( 00 mtvtyvmtutxu              (2) 

where u0 and v0 are uniform longitudinal and tran-
sverse velocity components, respectively, each of 

dimension (LT-1). The coefficient m represents the 
unsteadiness parameter. It is of dimension inverse of 
time. The inclusion of transverse diffusion makes 
the dispersion problem two-dimensional. Hence, we 
consider dispersion coefficients as: 
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where 
0xD and 

0yD  are the initial longitudinal and 

transverse dispersion coefficients, respectively, each 
of dimension (L2T-1). Furthermore, first-order decay 
and zero-order production are considered directly 
proportional to the seepage velocity and, thus, it is:  

)sin(,)sin( 00 mtmt                             (4) 

where 0  and 0 are constants of dimension T-1  and 

ML-3T-1, respectively. Hence, (1) can now be 
rewritten as: 
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For the plane and horizontal porous medium, the 

initial solute concentration is set to vary with position 
according to (6) whereby x-axis is longitudinal and y-
axis is transverse to the flow. The solute transport is in 
finite space 

xx LxL 
1  

and 
yy LyL 

1
in the x>0 and 

y>0 directions. The source of the pollution is conside-
red to be a uniform pulse at point (Lx, Ly). In other 
words, the pollution dispersion exists against the flow. 
Let the time of elimination of the point source be t0. 
The initial and boundary conditions are [24]: 

0;;),exp(),,(
11

 tLyLLxLyxCtyxC yyxxin                                                                 (6) 












yx

yx

LyLxtt

LyLxttmtC
tyxC

,;,0

,;0)),cos(1(
),,(

0

00
                                                                          (7)  

)0(;),,,(
),(2

),(),,(
;),,,(

),(2

),(),,(
11










tLytyxC
tyD

tyv

y

tyxC
LxtyxC

txD

txu

x

tyxC
y

y
x

x

                   (8)  

where C0 is the reference concentration representing 
the input concentration that is released uniformly by 
the source and   is a constant whose dimension is 
the inverse of length.  
 
 

3. ANALYTICAL SOLUTION OF ADVEC-
TION-DIFFUSION EQUATION 

 
Analytical solution of the advection-diffusion 

equation (1), subject to initial condition (6) and 
boundary conditions (7) and (8), is [24]: 
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4.  NUMERICAL METHOD 

 
Analytical solutions of the advection-diffusion 

equation have been reported for specific initial and 
boundary conditions. This lack of generality limits 
their applicability. Moreover, such solutions tend to 
be complex. Thus for example, analytical solutions 

(9) and (10) of the advection-diffusion equation (5) 
are clearly lengthy and contain infinite series (11). In 
contrast, numerical methods are generally flexible to 
accommodate arbitrary initial distribution and 
boundary conditions [18−21, 27−29]. In order to 
employ the EFDM to solve equation (5), this 
equation is first rewritten in the following form: 
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The central difference scheme is used to 
represent the term  22 /),( xtxC  ,  22 /),( ytyC  , 
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rence scheme for the derivative term  ttxC  /),(  
[27]. With these substitutions, equation (12) tran-
sforms into: 
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where indexes i, j and k refer to the discrete step lengths  x,  y and  t for the coordinate x, coordinate y 
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xR

tmtu
E

f

j

j 




2

)sin(0
, 

yR

tmtv
F

f

j

j 




2

)sin(0
 , 

2

)sin(
0

xR

tmtD
G

f

jx

j 


 , 

2

)sin(
0

yR

tmtD
H

f

jy

j 


 ,

f

j

j R

tmt
I




)sin(0
,  

f

j

j R

tmt
J




)sin(0
                                                     (14) 

The truncation error for the difference 
equation (13) is O( t,  x2, y2). Using a small-
enough value of  x,  y and  t the truncation 
error can be reduced until the accuracy achieved is 

within the error tolerance [30]. 
The initial condition (6) for equation (13) can 

be expressed in the finite difference form as:  
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Boundary conditions (7) and (8), rewritten in 
the finite difference form, are: 
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where N= )(
1xx LL  /x and R= )(

1yy LL  /y  are 

the grid dimensions in the x and y directions, 
respectively. In this manner, solute concentration 
can be determined at different times.   

 
 
5. NUMERICAL AND ANALYTICAL 

RESULTS 
 
Numerical solution of Eq. (13) is obtained by 

EFDM over a finite domain bounded by 0 x1 km 
in the longitudinal and 0 y1 km in the transverse 
direction. To enable the comparison of results, this 
was done for the same set of input data previously 
used by Yadav et al. [24]. The input parameters are 

0xD =1.77 km2/day, 
0yD =0.177 km2/day,  

u0=0.70 km/day, v0=0.070 km/day,  =0.025 km 1, 

0 =0.01 day 1, 0 =0.01, C0=1.0, Cin=0.1 and 

m=0.1 day 1. The elimination time of the source of 
the pollutant (the pulse width) is t0=120 days. In the 
numerical calculations, the step lengths x=y=0.1 
km and t=0.0005 days have been used to achieve 
the stability of the finite difference scheme. Numeri-
cal results matched the analytical solution well, with 
maximum deviation of 0.049 % for the longest time 
analyzed t=180 days.  

 With the pollution source active (t≤t0) and for 
a fixed retardation factor of Rf =1.08, Figure 1 shows 
the concentration profiles at various moments in 
time.  

 

 
Figure 1.  Solute concentration in 2D space at a varied time of t=70, 90 and 110 days (which is within  

the 120 days of the source activity), for a fixed retardation factor of Rf =1.08 
 
 

These profiles are not in a chronological order 
and the uppermost surface is for the middle value of 
time (90 days). The lower and middle surfaces are 
for the times of 70 and 110 days, respectively. This 
is due to the periodic nature of the input concentra-
tion which is thus transported against the flow. Near 
the source point, the distribution of the solute in the 
transverse and longitudinal directions are of similar 
order of magnitude despite the transverse component 
of the velocity and dispersion coefficient being 
merely a tenth of the corresponding values for the 
longitudinal direction. 

One can observe that at far end boundaries 
x=0 and y=0, surfaces in Fig. 1 are flat near bounda-
ries. Concentration gradient with respect to time, at 

particular position, decreases. Hence, the domain 
0≤x and y≤1 gets polluted beyond human use in a 
finite period of time. 

For a parametric retardation factor of Rf =1.08, 
1.38 and 1.68, Figure 2 shows the concentration pro-
files at time t=90 days.  

Larger retardation factors indicate higher 
adsorption of the solute by the solid matrix of the 
porous medium. One can thus observe in Figure 2 
that the concentration decreases at a higher rate for 
higher values of this factor Rf . It can be observed a 
decrease in the contaminant concentration profile 
with retardation factor up to a certain position, and 
after that position, it increases. 

 



Alexandar Djordjevich, et al., Finite difference solution of two-dimensional solute transport with periodic flow... 
Contemporary Materials, VIII−2 (2017)                                                                                                      Page 133 of 136 

 

 
Figure 2. Solute concentration in 2D space at time t=90 days (the source is active for 120 days)  

for a varied value of the retardation factor of Rf =1.08, 1.38 and 1.68 
 
 

Figures 3 and 4 show concentration profiles 
for time t>t0 (the pollution source turned inactive). 
As the source of the pollutant is extinguished (at 
t0=120 days), the concentration at the source point 
(x=1 km and y=1 km) becomes zero. However, the 

domain 0≤x and y≤1 gets polluted until 120 days, so 
a peak concentration value occurs at source position 
in the domain. Figure 3 illustrates concentration pro-
file at time t=140, 160 and 180 days and a fixed 
retardation factor of Rf =1.08.  

 

 
Figure 3. Solute concentration in 2D space at a varied time of t=140, 160 and 180 days  
(the source was active for the first 120 days), for a fixed retardation factor of Rf =1.08 

 
 
One can observe in Figure 3 that this peak 

value lowers and drifts away from the point source 
with time. The rate of change in the peak concentra-
tion and concentration at some position in general 
are of increasing nature in time. In other words, the 
rehabilitation process will progress faster, aided by 
the transverse transport. It is also observed that the 
trend of contaminant concentration with time and 
distance travelled is almost the same as for t≤t0. The 
concentration values are changing periodically with 

time and position. The upper surface represents solu-
te concentration at t=160 days, while middle and 
lower surfaces indicate lower and higher time at the 
same position.  

Figure 4 shows the concentration profiles at 
time t=160 days, which is after the pollution source 
turned inactive (t>t0). Results are shown for three 
values of the retardation factor: Rf =1.08, 1.38 and 
1.68. The solute concentration decreases with the 
increasing retardation factor.  
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Figure 4. Solute concentration in 2D space at time t=160 days (the source was active for the first 120 days),  

for a varied value of the retardation factor of Rf =1.08, 1.38 and 1.68 
 
 

The derived numerical solution with periodic 
velocity and boundary conditions are useful for 
understanding the transient response of ground water 
systems to water level changes. 

Finally, the EFDM used in this work for sol-
ving two-dimensional advection-diffusion equation 
with variable coefficients over a finite domain can 
be used with arbitrary initial and boundary conditi-
ons as well as with different variations of dispersion 
and velocity. This is its advantage against a large 
number of commercial codes which can be used 
only for solving the advection-diffusion equation 
with generic boundary conditions but not for time- 
and/or space-dependent dispersion and velocity 
coefficients.  

 
 
6. CONCLUSION 

 
Solutions by the explicit finite difference met-

hod (EFDM) are given for the dispersion of pollu-
tion through a horizontal homogeneous porous 
medium and in presence of an unsteadiness of the 
dispersion and velocity that is of periodic nature. 
Accounted is the retardation that occurs in the poro-
us medium due to adsorption. Numerical results are 
compared to analytical solutions reported in the lite-
rature and good agreement is apparent, with 
maximum deviation of 0.049 % for the longest time 
analyzed t=180 days.  It was found that the solute 
concentration profile is influenced significantly by 
the periodic velocity fluctuations. The proposed 
numerical solution is a useful tool in trying to under-
stand the physical mechanism of the groundwater 
flow in porous media. As a modeling tool, the pro-

posed numerical solution of advection–dispersion 
equation was also shown to be accurate.  

Finally, the EFDM used in this work is effec-
tive and accurate for solving the two-dimensional 
advection-diffusion equation with variable coeffici-
ents over a finite domain. Such numerical method 
for solving two-dimensional advection-diffusion 
equation with variable coefficients over a finite 
domain can be used with arbitrary initial and 
boundary conditions as well as with different varia-
tions of dispersion and velocity. This is of special 
importance when an analytical solution is not avai-
lable, or it is lengthy and contains infinite series.  
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 
 

РЕШЕЊЕ КОНАЧНИХ ДИФЕРЕНЦИЈА ДВОДИМЕНЗИОНАЛНОГ ТРАНСПОРТА  
РАСТВОРЕНЕ СУПСТАНЦЕ СА ПЕРИОДИЧНИМ ТОКОМ  

У ХОМОГЕНОМ ПОРОЗНОМ МЕДИЈУ    
 

Сажетак: Дводимензионална адвекцијско-дифузиона једначина са варијабил-
ним коефицијентима решена је експлицитним методом коначних диференција за 
транспорт растворених супстанци кроз хомогени, коначни, порозни, дводимензио-
нални домен. Дозвољени су ретардација адсорпцијом, периодична брзина филтрације 
и коефицијент дисперзије пропорционалан овој брзини. Транспорт се врши из пулс-
ног стационарног извора (који нестаје након периода активности). Укључени су рас-
пад првог реда и параметри производње нултог реда пропорционални брзини фил-
трације, периодичним граничним условима на почетку и на крају домена. Резултати 
се пореде са аналитичким решењима наведеним у литератури за специјалне случајеве 
и постигнуто је добро слагање. На профил концентрације растворене супстанце уве-
лико утичу периодичне флуктуације брзине. Решења за мноштво комбинација непо-
стојаности коефицијената у адвекцијско-дифузионим једначинама могу се добити као 
појединачни случајеви оног који је овдје приказан. Ово даље доказује делотворност 
експлицитног метода коначне диференције за решење дводимензионалне адвекциј-
ско-дифузионе једначине са варијабилним коефицијентима у коначном медију, што је 
посебно важно када су потребни произвољни иницијални и гранични услови. 

Кључне речи: дводимензионална адвекцијско-дифузиона једначина, пренос 
масе, метод коначне диференције. 
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