GENERAL ECE THEORY OF FIELD AND PARTICLE INTERACTION: APPLICATION TO LOW ENERGY NUCLEAR REACTION (LENR)

M. W. Evans*, H. Eckardt and D. W. Lindstrom,
Civil List and AIAS

Abstract: The general ECE theory is developed of field interaction and particle interaction on the classical and quantum relativistic level using the minimal prescription. The theory conserves total energy (momentum and charge) current density, and is based on the development of the tetrad postulate of Cartan geometry into the EEC wave equation and fermion equation. The latter is developed for any kind of interaction between fields or between particles or particles and fields. In ECE theory all of these interactions are phenomena of spacetime represented by geometry. The general theory is applied to reproducible and repeatable experimental data from low energy nuclear reactions.

Keywords: ECE theory, general interaction between fields and particles, low energy nuclear reaction.

1. INTRODUCTION

In papers of this series [1–10] it has been shown that the received opinion on particle interaction becomes wildly erroneous when conservation of energy and momentum are correctly considered [13]. The fundamental theory of particle interaction in the received opinion has collapsed. In order to remedy this disaster for standard physics a new approach was suggested in [14,15] based on the ECE wave equation [1–10]. The latter was derived in the early papers of this series from the tetrad postulate of Cartan geometry [11]. In [15,16] the fermion equation was derived from the ECE wave equation. The fermion equation is equivalent to the chiral representation of the Dirac equation but dispenses with the need for Dirac matrices. It uses the two by two tetrad matrix. The fermion equation does not lead to unphysical negative energy, so has this great advantage over the Dirac equation. In Section 2 the fermion equation is developed into a general ECE theory of field field, particle field, and particle particle interaction using a generalized minimal prescription. This general theory can be applied to a wide range of problems. It conserves total energy (momentum, and total charge) current density. It is a unified field theory and it is generally covariant, and can be used with all four fundamental fields: gravitation, electromagnetism, weak and strong nuclear. It can also be applied to particle particle interaction or matter field (matter field interaction, or particle) matter field interaction, for example scattering, chemical reactions, annihilation and transmutation, fission and fusion. In Section 3 it is applied to specific examples of low energy nuclear reaction (LENR). The experimental data in LENR are generally accepted to be reproducible and repeatable, and LENR devices giving a new source of energy are expected to be available in the near future. So it is important to understand LENR with ECE theory, the first generally accepted and generally covariant unified field theory.

2. GENERAL ECE THEORY

This section should be read as usual in conjunction with the background notes posted along with this paper on www.aias.us. The background notes provide comprehensive scholarly detail of which this paper is a synopsis.

Consider two particles of four momenta p^μ and p_1^μ:

$$p^\mu = \left(\frac{E}{c}, \vec{p} \right), p_1^\mu = \left(\frac{E_1}{c}, \vec{p}_1 \right).$$

(1)

In the semi classical development:

$$p^\mu = i\hbar \partial^\mu.$$

(2)
\[\partial^\mu \equiv \left(\frac{1}{c} \frac{\partial}{\partial t} - \vec{V} \right), \]
(3)

In the minimal prescription the interaction is described by:

\[p^\mu \rightarrow p^\mu + p_i^\mu. \]

(4)

So:

\[E \rightarrow E + E_i, \]

(5)

\[\vec{p} \rightarrow \vec{p} + \vec{p}_i, \]

(5a)

where \(E \) is the total relativistic energy:

\[E = \gamma mc^2, \]

(6)

and where \(\vec{p} \) is the relativistic momentum:

\[\vec{p} = \gamma m \vec{v}. \]

(7)

The Lorentz factor is defined by:

\[\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}, \]

(8)

where \(v \) is the velocity of a particle of mass \(m \) and where \(c \) is the speed of light in vacuo. Eq. (7) implies [12] the Einstein energy equation:

\[E^2 = p^2 c^2 + m^2 c^4, \]

(9)

which can be written as:

\[E^2 - m^2 c^4 = (E - mc^2)(E + mc^2) = c^2 p^2 \]

(10)

The relativistic kinetic energy [12] is defined as:

\[T = E - mc^2 = (\gamma - 1) mc^2 = \frac{c^2 p^2}{E + mc^2}. \]

(11)

So the relativistic kinetic energy is:

\[T = \left(\frac{\gamma^2}{\gamma - 1}\right) mv^2, \]

(12)

and reduces in the non-relativistic limit:

\[\gamma \rightarrow 1, \]

(13)

to the classical non-relativistic kinetic energy of the particle:

\[T = \frac{1}{2} mv^2. \]

(14)

From Eqs. (4) and (9):

\[(E + E_i)^2 = c^2 (p + p_i)^2 + m^2 c^4, \]

(15)

This is the classical relativistic description of particle interaction with the minimal prescription. From eq. (15):

\[(E + E_i)^2 - m^2 c^4 = c^2 (p + p_i)^2, \]

(16)

so:

\[T = E + E_i - mc^2 = \frac{c^2 (p + p_i)^2}{E + E_i + mc^2}, \]

(17)

is the relativistic kinetic energy of a particle of mass \(m \) interacting with a particle of mass \(m \).

It can be expressed as:

\[T = m \left(\frac{p + \gamma v_i}{1 + \gamma + \gamma_i}\right)^2, \]

(18)

where:

\[\gamma_i = \left(1 - \frac{v_i^2}{c^2}\right)^{-1/2}, \]

(19)

where \(v_i \) is the velocity of particle \(m_i \).

This classical relativistic theory is a limit of the ECE fermion equation, which is derived from Cartan geometry. The concepts of particle mass \(m \) and \(m_i \) are limits of the more general R factor of the ECE wave equation as described [14,15] and preceding papers. In general, ECE theory allows mass to vary. The analysis [13] shows that the concept of fixed particle mass in the received opinion is completely untenable.

It is well known that the Dirac equation can be used to describe phenomena such as the g factor of the electron, the Landé factor, the anomalous Zeeman effect, electron spin resonance (ESR), nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), the Thomas factor, spin orbit coupling and the Darwin effect. However the approximations used to claim these results are very carefully selected. This selection of approximation is illustrated next on the classical relativistic level. The fermion equation produces all these phenomena given the same selection of approximation. With contemporary computers such approximations are not needed and a much more thorough analysis can be initiated.

The approximations start by writing eq. (15) as:

\[E + E_i = c^2 \left(\frac{p + p_i}{E + E_i}\right)^2 + \frac{m^2 c^4}{E + E_i + mc^2}. \]

(20)

Add \(mc^2 \) to both sides:

\[E + E_i + mc^2 = c^2 \left(\frac{p + p_i}{E + E_i}\right)^2 + \frac{m^2 c^4}{E + E_i + mc^2}, \]

(21)

Assume that:

\[E_i \ll E. \]

(22)

In the denominators on the right hand side of
eq. (21) assume that
\[E + E_1 = E \]
(23)
to obtain:
\[E + E_1 + mc^2 + c^2 \left(\frac{p + p_1}{E} \right)^2 + \frac{m^2 c^4}{E} + mc^2 \]
(24)
Next assume that in the classical non relativistic limit:
\[E = \gamma mc^2 \rightarrow mc^2. \]
(25)
Use this approximation in eq. (24) in the following selected manner:
\[2mc^2 + E_1 = \frac{c^2}{E} (p + p_1)^2 \]
\[+ \frac{m^2 c^4}{E} + mc^2 = \frac{c^2}{E} (p + p_1)^2 + 2mc^2 \]
(26)
When quantized these are the approximations used by Dirac and his contemporaries. They are not very satisfactory because they are selected approximations, i.e. are not used consistently through the equations. A factor of two has appeared and this is the basis of the claim that the Dirac equation gives the g factor and Thomas factor. In reality, the factor two has been very carefully selected from the theory to give the “right” result.

Next, eq. (26) is rearranged as:
\[E = \frac{c^2 (p + p_1)^2}{2mc^2 + E_1} + \frac{2mc^2 E}{2mc^2 + E_1}. \]
(27)
In the second term on the right hand side of this equation it is assumed that:
\[E_1 \ll 2mc^2, E \sim mc^2, \]
(28)
to obtain:
\[E = \frac{c^2 (p + p_1)^2}{2mc^2 + E_1} + mc^2. \]
(29)
Therefore the relativistic kinetic energy of the interacting particles is
\[T = E - mc^2 = \frac{1}{2m} (p + p_1)^2 \left(1 + \frac{E_1}{2mc^2} \right)^{-1}. \]
(30)
Finally assume that:
\[\left(1 + \frac{E_1}{2mc^2} \right)^{-1} \sim 1 - \frac{E_1}{2mc^2}, \]
(31)
to obtain:
\[T = \frac{1}{2m} (p + p_1)^2 \left(1 - \frac{E_1}{2mc^2} \right). \]
(32)
Comparing eqs. (32) and (17) it is seen that eq. (17) has been approximated by use of eq. (26), so eq. (17) becomes:
\[T = E + E_1 - mc^2 \sim \frac{c^2 (p + p_1)^2}{2mc^2 + E_1}. \]
(33)
This equation is further approximated by:
\[T = E + E_1 - mc^2 \sim E - mc^2, \]
(34)
to give Eq. (32).
In order to quantize this theory the fermion equation [1–10] is used:
\[\left((E + E_1) + c \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \right) \psi^l = mc^2 \phi^l, \]
(35)
\[\left((E + E_1) - c \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \right) \psi^r = mc^2 \phi^r, \]
(36)
where the right and left spinors are defined by:
\[\phi^l = \begin{pmatrix} \psi_1^L \\ \psi_2^L \end{pmatrix}, \phi^r = \begin{pmatrix} \psi_1^R \\ \psi_2^R \end{pmatrix}. \]
(37)
It follows that:
\[\left((E + E_1) - c^2 \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \right) \phi^l = m^2 c^2 \phi^l \]
(38)
and similarly for \(\phi^r \). The carefully selected approximations described already on the classical level are implemented as follows, giving a range of phenomena in this general theory of interaction.
Write eq. (38) as:
\[(E + E_1) \phi^l = \left(\bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \left(\frac{c^2}{E + E_1} \right) \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) + \frac{m^2 c^4}{E + E_1} \right) \phi^l. \]
(39)
Add \(mc^2 \) to each side:
\[(E + E_1 + mc^2) \phi^l = \left(\bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \left(\frac{c^2}{E + E_1} \right) \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) + \frac{m^2 c^4}{E + E_1} + mc^2 \right) \phi^l. \]
(40)
Approximate in the same way as described already on the classical level to find that
\[\hat{H} \phi^l = T \phi^l, \]
(41)
where:
\[T = E - mc^2, \]
(42)
and
\[\hat{H} = \frac{1}{2m} \bar{\sigma} \cdot (\bar{p} + \bar{p}_1) \left(1 - \frac{E_1}{2mc^2} \right) \bar{\sigma} \cdot (\bar{p} + \bar{p}_1), \]
(43)
is the hamiltonian operator. In the momentum representation of quantum mechanics:
\[\bar{p} = -i \hbar \vec{\nabla} \]
(44)
where \(\hbar \) is the reduced Planck constant. The hamiltonian operator is therefore:
\[\hat{H} = \hat{H}_1 + \hat{H}_2, \]
(45)
where:

\[
\hat{H}_1 = \frac{1}{2m} \hat{\sigma} \cdot (\hat{p} + \hat{\mu}) \hat{\sigma} \cdot (\hat{p} + \hat{\mu}),
\]

and

\[
\hat{H}_2 = -\hat{\sigma} \cdot (\hat{p} + \hat{\mu}) \frac{E}{4mc^2} (\hat{p} + \hat{\mu}).
\]

Consider for the sake of illustration the interaction of the U(1) electromagnetic potential \(A^\mu \) with an electron. Then the \(\hat{H}_1 \) operator is claimed in the received opinion to give the g factor of the electron, the anomalous Zeeman effect, ESR, NMR and MRI. As we have argued, this claim is based on very carefully selected approximation designed to introduce the critical factor two. The second hamiltonian \(\hat{H}_2 \) gives the Thomas factor, spin orbit coupling and the Darwin term.

All these phenomena will have their equivalents in the general ECE theory being developed here. In addition there is no need to adhere to the approximation procedures of an earlier era because of available computational methods. So a multitude of new phenomena emerge from the theory, even on this semi classical level.

In eq. (43):

\[
\hat{\sigma} \cdot (\hat{p} + \hat{\mu}) \hat{\sigma} \cdot (\hat{p} + \hat{\mu}) = p^2 + \hat{p}_1^2 + \hat{\sigma} \cdot \hat{p}_1 \cdot \hat{\sigma} \cdot \hat{p}_1 + i\hat{\sigma} \cdot \hat{p}_1 \times \hat{\sigma} \cdot \hat{p}_1,
\]

so the first type of hamiltonian becomes:

\[
\hat{H}_1 = -\frac{\hbar^2}{2m} \nabla^2 + \hat{p}_1^2 + \frac{i\hbar}{2m} (\hat{p}_1 \cdot \nabla + \nabla \cdot \hat{p}_1)
\]

\[
+ \frac{\hbar}{2m} \hat{\sigma} \cdot \hat{p}_1 \times \nabla + \nabla \times \hat{p}_1,
\]

and operates as follows:

\[
\hat{H}_1 \phi^l = T \phi^l,
\]

to give energy eigenvalues. Note carefully that:

\[
(\hat{p}_1 \cdot \nabla) \phi^l = \hat{p}_1 \cdot \nabla \phi^l,
\]

using the Leibnitz theorem. Similarly:

\[
\nabla \cdot \hat{p}_1 \phi^l = \nabla \cdot (\hat{p}_1 \phi^l) = (\nabla \cdot \hat{p}_1) \phi^l + \hat{p}_1 \cdot \nabla \phi^l
\]

and

\[
\hat{p}_1 \cdot (\nabla \phi^l) = \hat{p}_1 \cdot (\nabla \phi^l)
\]

Using:

\[
\hat{p}_1 \times (\nabla \phi^l) + (\nabla \phi^l) \times \hat{p}_1 = 0
\]

the hamiltonian operator becomes:

\[
\hat{H}_1 = -\frac{\hbar^2}{2m} \nabla^2 + \frac{\hat{p}_1^2}{2m} + \frac{i\hbar}{2m} (\nabla \cdot \hat{p}_1 + \hat{p}_1 \cdot \nabla) + \frac{\hbar}{2m} \hat{\sigma} \cdot \nabla \times \hat{p}_1
\]

This result may be applied to a large number of phenomena within the approximation procedure used. For example, the minimal prescription for the interaction of an electron with a classical U(1) electromagnetic field is:

\[
p^\mu \rightarrow p^\mu + eA^\mu.
\]

On the ECE level the minimal prescription is:

\[
p^\mu \rightarrow p^\mu + eA^\mu
\]

and the ECE level leads to a large number of new insights [1–10], bringing into consideration the spin connection. It has been shown in [18] that the U(1) description collapses completely when antisymmetry is correctly applied, so is used here for illustration only. Eq. (58) means that for each state of polarization a, the minimal prescription applies. On the U(1) level the hamiltonian operator (56) becomes:

\[
\hat{H}_1 = -\frac{\hbar}{2m} \nabla^2 + \frac{e^2A^2}{2m}
\]

\[
+ i\frac{\hbar \phi}{2m} (\nabla \cdot \hat{A} + 2\hat{A} \cdot \nabla)
\]

\[
+ \frac{\hbar}{2m} \hat{\sigma} \cdot \nabla \times \hat{A}
\]

and this operator generates interaction energy eigenvalues. It can be used to describe Aharonov Bohm effects and to describe the interaction of the background potential of ECE theory with an electron.

In order to describe the absorption of a photon on the U(1) level the following equation is used:

\[
eA^\mu = \hbar k^\mu.
\]

Here:

\[
A^\mu = \left(\frac{\phi}{c}, \hat{A} \right), k^\mu = \left(\frac{\omega}{c}, \hat{k} \right),
\]

where \(\phi \) is the scalar potential, \(\hat{A} \) is the vector potential, \(\omega \) the angular frequency and \(\hat{k} \) the wave vector. In [19] was shown that the conventional theory of absorption collapses due to neglect of conservation of momentum, but in this theory total momentum is conserved.

In the generally covariant form of this theory, the concept of mass is replaced by the curvature \(R \) using the Hamilton Jacobi equation:

\[
(p^\mu - \hbar k^\mu)(p_\mu - \hbar k_\mu) = m^2c^2,
\]

as in [15] where Eq. (62) was written as:

\[
p^\mu p_\mu = \hbar^2 R_1 + m^2c^2.
\]

Consider the four momentum \(p^\mu_i \) of particle 1 interacting with matter wave 2 defined by the
wave four vector k^μ. Particle 1 is also a matter
wave by the Planck / de Broglie postulate:

$$p_1^\mu = \hbar k_1^\mu.$$ \hspace{1cm} (64)

In [15] it was shown that the interaction is
described by:

$$\square + R_2 + \left(\frac{m_o c}{\hbar} \right)^2 \psi_1 = 0$$ \hspace{1cm} (65)
where the R_2 parameter is:

$$R_2 = \left(\frac{m_o c}{\hbar} \right)^2,$$ \hspace{1cm} (66)
and is defined by the concept of interacting mass:

$$m_2 = \frac{\hbar}{c} \left[2 \left(\frac{\omega_1}{c^2} - k_2 \right) \right].$$ \hspace{1cm} (67)

This concept was introduced to account for
the findings of [13], which show that the concept of
fixed particle mass is untenable completely. In Eq.
(65) therefore m_{10} denotes the measured mass. eq.
(66) can be written as:

$$\square + \left(\frac{m_o c}{\hbar} \right)^2 \psi_1 = 0 \cdot$$ \hspace{1cm} (68)
where

$$M_2 = \left(m^2 + m_{10}^2 \right)^{1/2},$$ \hspace{1cm} (69)
and is an example of the ECE wave equation:

$$\square q^\mu_2 = 0,$$ \hspace{1cm} (70)
which is factorized in [16,17] to the fermion equa-
tion. This method is further developed in the accom-
panying note 226(2).

Therefore in this general ECE theory it is possible
to think of a quantum of spacetime energy be-
ing absorbed during a reaction. This idea generalizes
the Planck concept of a quantum of electromagnetic
energy, the photon. A low energy nuclear reaction
(LERN) can be exemplified as follows:

$^{64}\text{Ni} + p = ^{63}\text{Cu} + \text{Zn}$. \hspace{1cm} (71)

Here ^{64}Ni has 36 neutrons and 28 protons, and
^{63}Cu has 34 neutrons and 29 protons. So ^{64}Ni is
transmuted into ^{63}Cu with the release of two neu-
trons. The theory must explain why this reaction
occurs at low energies. The classical description
results in a scattering process:

$$^{64}\text{Ni}(i) + p(i) = ^{64}\text{Ni}(f) + p(f).$$ \hspace{1cm} (72)
and no transmutation. The proton p would be re-
peled by the ^{64}Ni nucleus, and no neutrons would be
released. However, in LERN, nickel is observed to
be transmuted to copper with the release of usable
energy. Total energy must be conserved, so there
must be a source of energy that is not accounted for
in received physics. In the theory of [14] on
www.aias.us:

$$p^\mu \rightarrow p^\mu - \hbar k^\mu,$$ \hspace{1cm} (73)
and the reaction (71) is described by the Hamilton
Jacobi equation:

$$\left(p^\mu - \hbar k^\mu \right) \left(p^\mu - \hbar k^\mu \right) = m_o^2 c^2,$$ \hspace{1cm} (74)
where m_o is the measured mass of the free nickel
atom. Using the method of [14], eq. (74) may be
written as:

$$\left[\square + R_1 + \left(\frac{m_o c}{\hbar} \right)^2 \right] \psi = 0 \cdot$$ \hspace{1cm} (75)
where:

$$R_1 = \left(\frac{m_o c}{\hbar} \right)^2,$$ \hspace{1cm} (76)
and where m is the interacting mass:

$$m = \frac{\hbar}{c} \left(\frac{\omega^2}{c^2} - k^2 \right)^{1/2}.$$ \hspace{1cm} (77)

This is a property of spacetime, and \omega and \vec{k}
are the angular frequency and wave number of the
proton matter wave, a property of spacetime. The
total mass of the nickel atom during interaction
therefore increases to:

$$M = \left(m^2 + m_o^2 \right)^{1/2},$$ \hspace{1cm} (77)
and this critical mass has concomitant energy:

$$E_o = Mc^2,$$ \hspace{1cm} (78)
so that a nuclear reaction occurs. The process may
be thought of as an absorption of a quantum of
spacetime by the nickel nucleus, so that dissociation
occurs with the release of neutrons. In Section 3 fur-
ther examples of LERN are discussed.

3. LOW ENERGY NUCLEAR REACTIONS

By analysing of linear equation for relativistic
quantum mechanics and application to the transmis-
sion coefficient of quantum tunnelling graphical
analysis and discussion will be done.

We start the graphical analysis with the transmis-
sion coefficient T (eq.(41)) for the rectangu-
lar barrier. The coefficient depends on wave vectors
k and K barrier half-width a. In the 3D plot of Fig. 1
the k dependence is plotted for three values of k
with constant a. One sees that T is maximal for k
and κ going to zero. In Fig. 2 both a and k have been varied. It can be concluded that T is at maximum when ka as well as κ are minimal; this corresponds to quantum waves with lowest energy.

Since k and κ depend on the energy E and height of the potential well V_0 (eqs. (44,45)), it is more conclusive to study the dependence on these parameters. For Fig. 3 the parameters were chosen so that T is near to zero T in the range $E < V_0$ which corresponds to the classical limit. Above V_0 the transmission oscillates as can be expected from wave mechanics. For a different parameter set (Fig. 4), T is quite high in the “forbidden” region, showing the quantum mechanical tunneling behavior. This can also be seen from Fig. 5 in a 3D representation.

In the remaining figures the relativistic effects are studied. According to eqs. (44,45) the total energy E depends on γ, therefore it is of interest to study the dependence $T(\gamma)$ or $T(v/c)$. The latter is graphed in Figs. 6 and 7 for $a = 0.1$ and $a = 1$, for three values of V_0 each, all constants set to unity. This shows the principal behaviour of the transmission coefficient. It depends highly on the potential barrier. In all cases T drops to zero for $v \rightarrow c$. For high V_0 values it is constant in a broader range, denoting that relativistic effects decrease with increasing V_0.

Fig. 8 describes tunnelling of an electron through another electron. We had to use atomic units in the calculation, otherwise the arithmetic explodes because of the high values of mc^2. V_0 is interpreted as the Coulomb barrier and kept fix now at a value of

$$V_0 = \frac{1}{r_{\text{electron}}} = 18797.0$$

in atomic units. The curves are shown for three mass values, where the electron mass is $m = 1$. The tunnelling probability decreases drastically with slightly enhanced masses. Mass is a very sensitive parameter. This can also be seen from Fig. 9 where we have graphed the mass dependence directly with v/c as a curve parameter. For $v \rightarrow c$ the transmission coefficient degenerates to a delta function at $m = 0$.

Finally we considered proton-proton tunnelling (Fig. 10). This is impossible because the transmission is practically zero for $m > 4$ and the proton mass is 1836 electron masses. The Coulomb barrier is similar as for an electron as the particle radius for both particles is in the same order of magnitude. Tests showed that the barrier value is not decisive, it is the particle mass.

Figure 1. Transmission coefficient $T(k)$ for three k values and $a = 1$.

Figure 2. Transmission coefficient $T(k,a)$ for five values of κ.

Figure 3. Transmission coefficient $T(E)$ for $m = \hbar = 1$, $a = 1$.
Figure 4. Transmission coefficient $T(E)$ for $m = \hbar = 1$, $a = 0.1$.

Figure 5. Transmission coefficient $T(E, a)$ for $m = \hbar = 1$, $V_0 = 10$.

Figure 6. Relativistic transmission coefficient $T(v/c)$ for $c = m = \hbar = 1$, $a = 1$.

Figure 7. Relativistic transmission coefficient $T(v/c)$ for $c = m = \hbar = 1$, $a = 0.1$.

Figure 8. Relativistic transmission coefficient $T(v/c)$ for electron-electron tunnelling, electron mass is $m = 1$.

Figure 9. Mass dependence of the relativistic transmission coefficient $T(m)$ for electron-electron tunnelling, electron mass is $m = 1$.
4. CONCLUSION

This paper presents general ECE Theory that can be applied on different fields as conserves of total energy (momentum and total charge) current density is. It is unified field theory and it is generally covariant, and can be used with all four fundamental fields: gravitation, electromagnetism, weak and strong nuclear. The ECE Theory in this paper is applied on a quantum of spacetime energy being absorbed during a reaction on use of nickel nucleus.

5. ACKNOWLEDGMENTS

The British Government is thanked for a Civil List Pension and the staff of AIAS and others for many interesting discussions. Dave Burleigh is thanked for posting, and Alex Hill, Robert Cheshire and Simon Clifford for translation and broadcasting. The AIAS is established within the Newlands Family Trust (2012).

6. REFERENCES

ОПШТА ECE ТЕОРИЈА ИНТЕРАКЦИЈА ПОЉА И ЧЕСТИЦА: ПРИМЈЕНА НА НИСКОЕНЕРГЕТСКЕ НУКЛЕАРНЕ РЕАКЦИЈЕ (LENR)

Сажетак: Општа ECE теорија изведена је из интеракције поља и интеракције честица на класичном и квантном релативистичком нивоу уз коришћење минимальне прескрипције. Теорија чува укупну густину енергије/замаха и наелектрисања/струје, те је заснована на развоју четворовалентног поступа Картанове геометрије у EEC таласну једначину и Фермијеву једначину. Ова друга је развијена за било коју врсту интеракције између поља или између честица или честица и поља. У ECE теорији све ове интеракције су појаве простора и времена, представљене геометријски. Општа теорија је примијењена на експерименталне податке који се могу репродуковати и поновити, из нискоенергетских нуклеарних реакција.

Кључне ријечи: ECE теорија, општа интеракција између поља и честица, нискоенергетске нуклеарне реакције.