EXPERIMENTAL TESTING AND NUMERICAL MODELLING OF STENTS IN THE CORONARY ARTERIES

Nenad Filipović, Dalibor Nikolić, Igor Saveljić, Themis Exarchos, Oberdan Parodi

Abstract


In this study, experimental and numerical stent modelling with plaque formation and progression for specific patient in the coronary arteries is described. In the method, section experimental stent testing is firstly described. Then numerical methods with finite element methods are given. Blood flow simulation is described with Navier-Stokes and continuity equation. Blood vessel wall is modelled with nonlinear viscoelastic material properties. The coupling of fluid dynamics and solute dynamics at the endothelium was achieved by the Kedem-Katchalsky equations. The inflammatory process is modelled using three additional reaction-diffusion partial differential equations. In the results section, the examples with rigid and deformable arterial wall with stented and unstented arteries are presented. Effective stress analysis results for stent deployment have been shown. These experimental and numerical methods can give better understanding of stent deployment procedure and arterial wall response in everyday clinical practice.


Keywords


stent testing, experimental, numerical, stent deployment simulation, finite element method.

Full Text:

PDF

References


D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci, M. Nobuyoshi, M. Cleman, R. Heuser, D. Almond, P. S. Teirstein, R. D. Fish, A. Colo, A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N.Engl.J. Med. 331: (1994) 496−501.

M. C. Morice, P. W. Serruys, J. E. Sousa, J. Fajadet, B. Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnàr, A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent For Coronary Revascularization, N.Engl. Med 349: (2002) 1315−1323.

V. S. Newman, J. L. Berry, W. D. Routh, C. M. Ferrario, R. H. Dean, Effects of vascular stent surface area and hemodynamics on intimal thickening. J. vasc. Interv. Radiol. 7: (1996) 387−393.

T. Murata, T. Hiro, T. Fujii, K. Yasumoto, A. Murashige, M. Kohno, J. Yamada, T. Miura, M. Matsuzaki, Impact of the cross-sectional geometry of the post-deployment coronary stent on in-stent neoinimal hyperplasia: an intravascular ultrasound study. Circ. J. 66: (2002) 489−493.

J. Murphy, F. Boyle, Assessment of the effects of increasing levels of physiological rea-lism in the computational fluid dynamics analyses of implanted coronary stents. 3th Annual International IEEE EMBS Conference. 2008.

N. DePaola, M. A. J. Gimbrone, P. F. Davies, C. F. Dewey, Vascular endothelium responds to fluid shear stress gradients. Arterio-scler. Thromb. 12: (1992) 1254−1257.

R. Balossino, F. Gervaso, F. Migliavac-ca, G. Dubini, Effects of different stent designs on local hemodynamics in stented arteries. Journ. of Biomechanics 41: (2008) 1053−1061.

N. Bernard, D. Coisine, E. Donal, R. Perrault, Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. Journ. of Biomechanics. 36: (2003) 991−998.

M. Gay, L. T. Zhang, Numerical studies on fluid-structure interactions of stent deployment and stented arteries. Engineering with Computers. 36: (2009) 61−72.

Y. He, N. Duraiswamy, A. O. Frank, J. E. Moore Jr., Blood Flow in Stented Arteries:A Parametric Comparison in Three-Dimensions. Journal of Biomechanical Engineering. 22: (2005) 637−647.

S. Natarajan, Mokhtarzadeh-Dehghan MR, A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Medical Engineering & Physics. 22: (2000) 555–566.

J. F. LaDisa, I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, P. S. Pagel, Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation. Annals of Biomedical Engineer. 31 (2003) 972−980.

T. Seo, L. G. Schachter, A. I. Barakat, Computational Study of Fluid Mechanical Distur-bance Induced by Endovascular Stents. Annals of Biomedical Engineering. 33(4) (2005) 444–456.

A. Tortoriello, G. Pedrizzetti, Flow-tissue interaction with compliance mismatch in a model stented artery. Journal of Biomechanics. 37 (2004) 1–11.

J. L. Berry, A. Santamarina, J. E. Moore, S. Roychowdhury, W. D. Routh, Experimental and Computational Flow Evaluation of Coronary Stents. Annals of Biomedical Engineering 28: (2000) 386–398.

J. F. LaDisa, L. E. Olson, H. E. Douglas, D. C. Warltier, J. R. Kersten, P. S. Pagel, Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of curved artery using 3D computational fluid dynamics models. Biomed Eng Online, 16:5, (2006) 40.

J. F. LaDisa, L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, P. S. Pagel, Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl Physiol. 98: (2005) 947−957.

D. Rajamohan, R. K. Banerjee, L. H. Back, A. A. Ibrahim, M. A. Jog, Developing Pulsatile Flow in a Deployed Coronary Stent. Journal of Biomechanical Engineering 128: (2006) 347−359.

M. Kojic, N. Filipovic, B. Stojanovic, N. Kojic, Computer Modeling in Bioengineering: Thеoretical Background, Examples and Software. John Wiley and Sons, Chichester, England, 2008.

N. Filipovic, S. Mijailovic, A. Tsuda, M. Kojic, An Implicit Algorithm Within The Arbitrary Lagrangian-Eulerian Formulation for Solving Incompressible Fluid Flow With Large Boundary Motions. Comp. Meth. Appl. Mech. Engrg. 195: (2006) 6347−6361.

C. A. Taylor, T. J. R. Hughes, C. K. Zarins, Finite element modeling of blood flow in arteries, Comp. Meth. Appl. Mech. Engrg. 158: (1998) 155−196.

S. Nanfeng, W. Nigel, H. Alun, T. X. Simon, X. Yun, Fluid-Wall Modelling of Mass Transfer in an Axisymmetric Stenosis: Effects of Shear-Dependent Transport Properties 34: (2006) 1119−1128.

N. Filipovic, M. Rosic, I. Tanaskovic, Z. Milosevic, D. Nikolic, N. Zdravkovic, A. Peulic, D. Fotiadis, ARTreat project: Three-dimensional Numerical Simulation of Plaque Formation and Development in the Arteries, IEEE Trans Inf Technol Biomed. PMID: 21937352, 2011.

N. Filipovic, PAK-Athero, Finite Element Program for plaque formation and deve-lopment. University of Kragujevac, Serbia, 2013.




DOI: http://dx.doi.org/10.7251/cm.v2i7.4228

Refbacks

  • There are currently no refbacks.