PREDICTION OF ELECTRON DRIFT VELOCITY IN HELICALLY COILED CARBON NANOTUBES

Zoran P. Popović, Tatjana Vuković, Božidar Nikolić, Milan Damnjanović, Ivanka Milošević

Abstract


We studied electron transport in single wall carbon nanotubes placed in stationary homogeneous electric fields, oriented along tubes. Electron distributions for various electric fields are determined by solving stationary multi bands Boltzmann transport equation in presence of electron phonon scattering mechanisms. Contributions of all possible scattering channels, allowed by selection rules and energy conservation, are taken into account for finding scattering rate and collision integrals. As it is previously predicted, large electron drift velocities in straight single wall carbon nanotubes are obtained.  Frequent electron scattering as well as low group velocity have strong impact on reduction of drift velocity in helically coiled carbon nanotubes. 


Keywords


helically coiled carbon nanotubes, electron-phonon interaction, drift velocity.

Full Text:

PDF

References


Ji-Yong Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Electron-Phonon in Metallic Single Wall Carbon Nanotubes, Nano Lett., Vol. 4 (2004) 517−520.

I. Milošević, Z. P. Popović, and M. Damnjanović, Structure and stability of coiled carbon nanotubes, Phys. Status Solidi B, Vol. 249−12 (2012) 2442−2445.

Z. P. Popović, M. Damnjanović, I. Milo-šević, Carbon nanocoils: structure and stability, Contemporary Materials, Vol. III−1 (2012) 51−54.

I. Laszlo, A. Rassat,The geometric structure of deformed nanotubes and the topological coordinates, J. Chem. Inf. Comput. Sci., Vol. 43 (2003) 51924.

V. Perebeinos, J. Tersoff, and P. Avouris, Electron-phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett., Vol. 94 (2005) 086802.

D. Querlioz, J. Saint-Martin, P. Dollfus, Implementation of the Wigner-Boltzmann transport equation within Particle Monte Carlo simulation, J. Comput. Electron, Vol. 9 (2010) 224–231.

J. Jiang, R. Saito, Ge. G. Samsonidze, S.G. Chou, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Electron-phonon matrix elements in singlewall carbon nanotubes, Phys. Rev. B, Vol. 72 (2005) 235408.

M. Damnjanović, I. Milošević, Full Symmetry Implementation in Condensed Matter and Molecular Physics Modified Group Projector Technique, Physics Reports, 581(2015) 143.

M. Damnjanović, I. Milošević, T. Vuković and T. Marinković, Wigner- Eckart theorem in the inductive spaces and applications to optical transitions in nanotubes, J. Phys. A: Math. Gen., Vol. 37 (2004) 4059−4068.

M. Damnjanović, I. Milošević, Line Groups in Physics, Springer-Verlag, Berlin (2010).

D. Porezag, Th. Frauenheim, Th. Kohler, G. Seifert and R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory,Phys. Rev. B, Vol. 51 (1994) 12947−12957.

D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart,B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. C, Vol. 14 (2002) 783−802.

Z. P. Popović, M. Damnjanović, I. Milošević, Phonon transport in helically coiled carbon nanotubes, Carbon, Vol. 77 (2014) 281–288.

G. Pennington, N. Goldsman, Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B, Vol. 68 (2003) 045426.

Z. P. Popović, T. Vuković, B. Nikolić, M. Damnjanović, I. Milošević, Transport in helically coiled carbon nanotubes: semiclassical aproach, Contemporary Materials, Vol. VI−1 (2015) 15−19.

T. Durkop, B. M. Kim, and M. S. Fuhrer, Properties and applications of high-mobility semiconducting nanotubes, J. Phys.: Condens. Matter, Vol. 16 (2004) R553−R580.




DOI: http://dx.doi.org/10.7251/cm.v2i7.4230

Refbacks

  • There are currently no refbacks.