Ana Predojević


The interest in quantum dots as sources of quantum light is based upon the potential for high photon generation efficiency that originates in their atom-like energy structure. Quantum dots can be excited resonantly and coherently, where generation of photon pairs calls for a specific excitation method of two-photon resonant excitation of the biexciton. Though this method is very efficient, it was very often showing sub-unity excitation efficiency that could be observed, for instance, in the maximum amplitude of the Rabi oscillations. Investigation of the dephasing processes in this excitation technique is of strategic interest for quantum communication technologies.


quantum dots, entanglement, quantum communication

Full Text:



P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, A quantum dot single-photon turnstile device, Science, Vol. 290 (2000) 2282.

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs, Deterministic photon pairs and coherent optical control of a single quantum dot, Physical Review Letters, Vol. 110 (2013) 135505.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, Entangled photon pairs from semiconductor quantum dots, Physical Review Letters, Vol. 96 (2006) 130501.

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, Indistinguishable entangled photons generated by a light-emitting diode, Physical Review Letters, Vol. 108 (2012) 040503.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: the role of imperfect local operation in quantum communication, Physical Review Letters, Vol. 81 (1998) 5932.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Reviews of Modern Physics, Vol. 74 (2002) 145.

E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, Vol. 409 (2001) 46.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state, Nature, Vol. 429 (2004) 161.

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, Beating the standard quantum limit with four-entangled photons, Science 316, 726 (2007).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, New high-intensity source of polarization-entangled photon pairs, Physical Review Letters, Vol. 74 (1995) 4337.

D.F. Walls and G. J. Milburn, Quantum optics, Springer (1994).

O. Kuzucu and F. N. C. Wong, Pulsed Sagnac source of narrow-band polarization-entangled photons, Physical Review A, Vol. 77 (2008) 032314.

A. Predojević, Miroslav Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, Efficiency vs. multi-photon contribution test for quantum dots, Optics Express 22, 4789 (2013).

Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity, Physical Review Letters, Vol. 99 (2007) 187402.

Y. -M. He, Y. He, Y. -J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C. -Y. Lu, and J. -W. Pan, On-demand semiconductor single-photon source with near-unity indistinguishability, Nature Nanotechnology, Vol. 8 (2013) 213–217.

Peter, E. et al., Fast radiative quantum dots: From single to multiple photon emission, Applied Physics Letters, Vol. 90 (2007) 223118.

T. Huber et al., Coherence and degree of time-bin entanglement from quantum dots, Phys. Rev. B., Vol 93 (2016) 201301(R).



  • There are currently no refbacks.