INFINITIVAL COMPLEMENTS IN SERBIAN - A GENERATIVE APPROACH

Abstract: The aim of this paper is to account for the distribution of PRO (unexpressed subject of infinitival structures) in Serbian infinitival structures, namely infinitives and subjunctive-like da-complements, within the framework of generative grammar. Landau's (1999) and (2004) proposals are adopted. Obligatory Control is an instance of the operation Agree of Chomsky (1998). Derivation proceeds via phases. Agree involves feature matching, checking and deletion through the interaction of Tense and Agreement features specified on the local environment, namely I and C, of the embedded subject by selection. Selection is local, mediated by C. Two types of infinitives and subjunctives are observed in Serbian: untensed and tensed.

Key words: PRO, Obligatory Control, Agree, Tense, Agreement, feature checking.

1. Introduction

Control is the relation of referential dependency between an unexpressed subject (the controlled element or PRO) and an expressed or implicit argument (subject or object of the matrix clause). The Government-Binding reasons (Chomsky 1981) for postulating an empty category in:

(1.1) John tried [e to open the box].

are the following: try and open each assign an external θ-role (thematic role). John is lexically inserted as the external argument of try, and an empty category, PRO, as the external argument of open. The Extended Projection Principle (EPP) (the requirement that all clauses (finite and non-finite) have subjects) together with the Theta Criterion (each argument bears one and only one θ-role and each θ-role is assigned to one and only one argument) force the existence of a syntactically active subject, PRO. In:

(1.2) John stopped the research [in order PRO to save money].

PRO is anaphoric, i.e. it is interpreted as John (Principle A of the Binding Theory). In: (1.3) [PRO to stop the research [in order PRO to save money]] is shameful.

PRO is pronominal, i.e. it has arbitrary reference (Principle B of the Binding Theory). Since the feature composition of PRO is [+anaphoric, +pronominal], PRO must be both bound and free in its governing category. The contradictory requirements force the Antigovernment Condition on PRO, the PRO Theorem, which says that PRO does not have a governing
category, it must be ungoverned, which also accounts for its null phonetic nature (since the principle called Case Filter bans the presence of any overt determiner phrase (DP) without case (structural or inherent)). Accusative case is assigned under Government.4 Nominative case assignment asymmetries (subjects of finite clauses being nominative, while overt subjects of infinitivals being accusative, e.g. I want [him to leave]) are associated with I (the inflection node of complement clauses). Only finite I licenses nominative case. The subject DP (in [Spec, IP]) is assigned nominative case by virtue of the Specifier-head agreement between the subject DP and I. PRO is legitimate in ungoverned, non-case marked positions. The non-finite I cannot govern PRO. When PRO is interpreted as referentially dependent on another DP in the same sentence, it is said that PRO is controlled by that DP. The controller c-commands PRO.5

Both subject and object DPs can control PRO. Verbs that allow this type of Control are called Subject Control verbs:

(1.4) John decided [PRO to dedicate himself to music].

and Object Control verbs, respectively:

(1.5) John told [Maria PRO to leave].

The referential properties of PRO define the relevant type of Control. Control can be Obligatory (OC): the controller and the infinitive must be clause-mates (local); and Non-Obligatory (NOC): the infinitive need not have a clause-mate controller (Long Distance Control) or have an argumental controller at all (Arbitrary Control).

Restrictions on the characteristics of OC configurations are the following:

(1.6) *It was expected [PRO to shave himself].

PRO must have an antecedent.

(1.7) *John thinks that it was expected [PRO to shave himself].

The antecedent must be local.

(1.8) *John’s campaign expects [PRO to shave himself].

The antecedent must c-command PRO.

(1.9) John expects [PRO to win] and Bill does too.

Under ellipsis OC PRO permits sloppy reading (… and Bill expects to win).

(1.10) *John told Maria, PRO, to wash themselves/ each other.

OC PRO cannot have split antecedents.

(1.11) The unfortunate expects [PRO to get a medal].

OC PRO has only the de se interpretation (the unfortunate believes of himself or herself, that he or she will receive a medal).

(1.12) Only John remembers [PRO locking the door].

Under the assumption that OC PRO must have a c-commanding antecedent, only the reading where John has the memory that he himself was the person to lock the door is available (the examples are modelled on Hornstein 1999: 73).

4 A governs B if and only if A is a governor; A m-commands B; (mutual c-command); there is no node Z such that: Z is a potential governor for B Z c-commands B; Z does not c-command A; Where governors are lexical heads and tensed I (the inflection node of complement clauses).

5 Node A c-commands B if and only if: a) A does not dominate B (hierarchical relationship, A is higher up in the tree than B, one can trace a line from A to B going only downwards) and B does not dominate A; b) the first branching node that dominates A also dominates B (either B is A’s sister or A’s sister contains B).
The choice of the controller lies at the crossroads of syntax, semantics and pragmatics.\footnote{For the summary of arguments see Miškeljin 2011: 50-51.}

Thus, the infinitival structures in question are those containing an empty subject (e):

Serbian infinitives of Type I (untensed):

\begin{equation}
(1.13) \text{Jovan poku\v{s}ava [e otvoriti kutiju].}
\end{equation}

'John is trying to open the box.'

and of Type II (tensed) (this classification is explained in the following section):

\begin{equation}
(1.14) \text{Jovan \v{z}eli [e otvoriti kutiju].}
\end{equation}

'John wants to open the box.'

and a special type of construction in Serbian: subjunctive-like da-complements of Type I:

\begin{equation}
(1.15) \text{Jovan poku\v{s}ava [da e otvoriti kutiju].}
\end{equation}

'John is trying to open the box.'

and of Type II respectively:

\begin{equation}
(1.16) \text{Jovan \v{z}eli da [e otvoriti kutiju].}
\end{equation}

'John wants to open the box.'

\begin{equation}
(1.17) \text{Jovan \v{z}eli da [(oni) otvore/ Marija otvore/ kutiju].}
\end{equation}

'John wants them/ Maria to open the box.'

which apart from a lexical DP or \textit{pro} (dropped) subject allow the empty element I argue to be \textit{PRO}. The structures in question are also those of two-place verbs:

\begin{equation}
(1.18) \text{Jovan je naredio Marijii [e otvoriti/da e otvoriti kutiju].}
\end{equation}

'John ordered Maria to open the box.'

2. \textit{Types of infinitival complements in Serbian}

Two major types of \textit{da}-complements can be distinguished in Serbian although there are no formal differences between their complementizers (\textit{da} in both cases) or their verbal paradigm (the present tense): indicative and subjunctive \textit{da}-complements. They display asymmetric behavior with respect to:

1. Licensing of Negative Polarity Items (NPI):\footnote{NPIs are expressions that are restricted to the clausal scope of certain licensors (negative particles, negative quantifiers etc) of syntactically or semantically nonassertive contexts.}

\begin{equation}
(2.1) \text{Ne \v{z}elim [da vidim nikoga].}
\end{equation}

not wish-1sg that-subj see-1sg no one

'I don’t wish to see anyone.'

\begin{equation}
(2.2) \text{Ne \v{z}elim [videti nikoga].}
\end{equation}

not wish-1sg see-inf no one

'I don’t wish to see anyone.'

\begin{equation}
(2.3) \ast \text{Ne tvrdim [da vidim nikoga].}
\end{equation}

not claim-1sg that-ind see-1sg no one

'I don’t claim to see anyone.'

With verbs that select a subjunctive \textit{da}-complement or infinitive the licensing of NPIs is clause bound, as illustrated in examples (2.1) and (2.2).

2. Licensing of Positive Polarity Items (PPI):\footnote{PPIs are licensed only in assertive contexts.}

\begin{equation}
(2.4) \text{Ne \v{z}elim [da vidim nekoga].}
\end{equation}

not wish-1sg that-subj see-1sg someone

'I don’t wish to see someone.'

\begin{equation}
(2.5) \text{Ne \v{z}elim [videti nekoga].}
\end{equation}

not wish-1sg see-inf someone

'I don’t wish to see someone.'

\begin{equation}
(2.6) \text{Ne tvrdim [da sam videla nekoga].}
\end{equation}

not claim-1sg that-ind saw-1sg someone

'I don’t claim that I saw someone.'

PPIs must take a wide scope reading (i.e. where ‘someone’ means ‘a specific person’) when appearing with clause-mate negation, as illustrated in examples (2.4) and (2.5). In example (2.6), they can take
either a wide or narrow scope reading (i.e. when ‘someone’ means ‘any person’).

3. Adverbial insertion:
(2.7) Ona danas želi [da kupi klavir].
Ona želi [da danas kupi klavir].
Ona danas želi (danas) kupiti klavir.
‘She wants to buy the piano today.’

(2.8) Ona danas kaže [da kupuje klavir].
‘Today she says she’s buying the piano.’

(2.9) Ona kaže [da danas kupuje klavir].
‘She says she’s buying the piano today.’

The position of the inserted adverb in sentences containing infinitival or subjunctive da-clauses (example (2.7)) does not affect their meaning whereas it does affect it with indicative da-complements (examples (2.8) and (2.9)).

Thus, Serbian lacks subjunctive morphology but exhibits a specific type of complementation with a subjunctive-like interpretation. It is always introduced by the complementizer da, the embedded verb has indicative (present tense, perfective or imperfective) morphology and it is fully inflected for person and number. However, unlike indicative da-complements, the time frame of subjunctive da-complements (henceforth subjunctives) is semantically restricted or determined by the time frame of the matrix verb, and the tense form of the embedded verb always has to be the present tense (referred to as the non-mobile present). They pattern with infinitives not indicative clauses, as illustrated in examples (2.1) and (2.2).

Serbian is a typical (subject) pro-drop language, and unlike in English, where null subjects are restricted to non-finite clauses, any null subject in Serbian has, a priori, a dual analysis, either as PRO or pro. Thus, simple distributional observation cannot solve the dilemma in Serbian.

Two types of subjunctives can be observed in Serbian and they will be referred to as Type (I) and Type (II). Both types take only the non-mobile present, but one type exhibits more tense restrictions with respect to the matrix verb than the other. The characteristics of Type (I) subjunctives are the following:

Firstly, temporal adverbials in these subjunctives have a wide-scope interpretation depending on the semantic properties of the matrix verb, i.e. they denote an event simultaneous with the one denoted by the matrix verb:

(2.10) *(On) pokušava [da e otvori kutiju sutra].
(2.11) *(On) pokušava [e otvoriti kutiju sutra].
‘He’s trying to open the box tomorrow.’

Secondly, they do not allow the insertion of a lexical DP or a pronoun even when it is used for the purpose of emphasis:

(2.12) (On) je pokušao [da *on otvore kutiju].
‘He tried to e open the box.’

Finally, the subject-verb agreement of the subjunctive clause always bears the same Φ-features (person, number and gender features) as the subject-verb agreement of the matrix clause.

(2.13) *(On) je pokušao [da e otvore kutiju].
‘He tried to e open the box.’

The empty element (e) is necessarily anaphoric upon the matrix subject, and I argue it to be PRO, not pro, by considering the following:

a) e allows sloppy reading under ellipsis:

(2.14) Jovan pokušava [da PRO otvori svoju kutiju i Marko takođe].
‘John is trying to open his box and Marko too.’

b) e can be controlled only by a local c-commanding antecedent, thus preclud-
Infinitival complements in Serbian - A generative approach

ing a non-local construal of the embedded anaphor se:

(2.15) [Jovanov, brat], pokušava [da PRO se okupa].
‘John’s brother is trying to wash himself.’

However, PRO may receive a pronominal interpretation in the case it has a local pronominal controller, the binding is local:

(2.16) Jovan ne pomišlja da će on pro pokušati [da PRO se okupa].
‘John can’t imagine that he will try to wash himself.’

Since PRO always bears the same \(\phi\)-features as the matrix subject, these subjunctives and their corresponding infinitives exhibit only Exhaustive Control (EC).

Type II subjunctives exhibit fewer tense restrictions than Type I. They are mostly complements to volition and desiderative verbs, verbs that denote ability or obligation. They describe a possible, hypothetical or unrealized event. Unlike Type I subjunctives, they allow different temporal adverbs in the higher and lower clauses:

(2.17) Jovan želi [da e kupi klavir sutra].
‘John wants to buy the piano tomorrow.’

(2.18) Jovan je želeo [da e kupi klavir sutra].
‘John wanted to buy the piano tomorrow.’

These subjunctives are tensed, i.e. they have a distinct time frame with respect to the time frame of the matrix verb. However, this time frame is restricted by the one of the matrix verb which imposes a specific temporal interpretation on it, i.e. evaluates it at the time of the utterance.

Unlike Type I subjunctives, Type II subjunctives allow lexical and pronominal subjects:

(2.19) (On) želi [da Jovan ode].
‘He wants John to leave.’

(2.20) (On) želi [da (mi) odemo].
‘He wants us to leave.’

Unless used emphatically, the overt subjunctive pronominal subject is not interpreted as being co-referential with the matrix subject, in other words, subject obviation\(^9\) arises. Consider the following example:

(2.21) (On) želi da [on *i/j ode].
‘He wants him to leave.’

However, if the subjunctive subject is null, the only possible interpretation is the one in which its empty subject is co-referential with the matrix one.

(2.22) (On) želi [da e i ode].
‘He wants to leave.’

and it is possible to substitute the subjunctive with its infinitival alternative:

(2.23) (On) želi [PRO ići].
‘He wants to leave.’

I assume this subject is PRO rather than pro because of the following:

Firstly, e can pick up reference only from a local, c-commanding antecedent:

(2.24) [Jovanov, brat], želi da e se okupa.
‘John’s brother wants to wash himself.’

Secondly, e allows sloppy reading under ellipsis:

(2.25) Jovan želi [da e kupi klavir i Marko takođe].

9 The requirement that a pronominal subject of a subjunctive clause be disjoint in reference from the matrix subject.
‘John wants to buy the piano and Mark too.’

Furthermore, only in the case where the subjunctive subject is null and interpreted as co-referential with the matrix subject is it possible to substitute the subjunctive with the corresponding infinitival alternative, as illustrated by the following examples:

(2.26) Jovan želi [da kupi klavir].
Jovan želi [kupiti klavir].
‘John wants to buy the piano.’

(2.27) Jovan želi [da (oni) kupe klavir].
*Jovan želi [kupiti klavir].
‘John wants them to buy the piano.’

The following examples also favor the PRO analysis:
Licensing of NPI is blocked if there is a case-marked element in the subject position of the subjunctive:

(2.28) Ne želim [da vidim nikoga].
‘I don’t want to see anyone.’

(2.29) *Ne želim [da Jovan vidi nikoga].
‘I don’t want John to see anyone.’

Although tensed, Type II subjunctives do not exhibit Partial Control (PC) (singular controller and a plural subordinate verb, when the speaker has some salient group in mind). Consider the following examples:

(2.30) (On) hoće [da eš iđu].
‘He wants them to leave.’

(2.31) (On) želi da se zokupe u 5.
‘He wants to gather at 5.’

where the subjunctive subject-verb agreement allows for the matrix subject to be semantically included. However, the empty subject is not PRO but pro, as shown by:

(2.32) *(On) ne želi [da iđu nige].
‘He doesn’t want them to go anywhere.’

where NPI is blocked by the presence of a case-marked element, infinitival substitution is not possible. The formal analysis goes as follows:

3. Analysis

3.1 Subject Control

Following Chomsky (1995, 1998), I adopt that controlled infinitivals are headed by C (complementizer head) selecting I with tense-modal structure and a full complement of φ-features, and structural case is assigned to the subject of I. I also assume that the complementizer da is base-generated in C. Lexical items are drawn from the lexicon with all of their morphological features (for nouns they include case and φ-features). The morphological features of T (tense) and Agr (a collection of φ-features), specified on I, have two functions. They check properties of the verb that raises to them (by adjunction) and properties of the DP that raises to their Spec (by substitution). Agr contains V-features that check V adjoined to it and DP-features that check DP in its Spec. T checks the tense of the verb and the case of the subject in the Spec. In this manner, they ensure that DP and V are properly paired. Following Chomsky (1998), I further adopt that the derivation proceeds via phases. According to Chomsky (1998: 20), a phase is a CP or a vP. Chomsky tries to motivate CP and vP as phases by characterizing them as “syntactic objects relatively independent in terms of interface properties, the closest syntactic counterpart to a proposition: either a verb phrase in which all θ-roles are assigned or a full clause including tense and force.”
dependent or specified with [+T] feature.\footnote{Although specified [+T], subjective T in general is defective compared to the one of indicative clauses. Anaphoric or [-T] does not mean the lack of tense, but a referential dependency of the embedded T features upon the matrix T features, the criterion is not morphological but semantic.} Agr is specified [+Agr], wherever there is overt agreement morphology. [-Agr] denotes abstract ϕ-features. Since both types of subjunctives exhibit overt subject-verb agreement, their I heads are specified [+Agr]. The featural specification of I across infinitival complements in Serbian is the following:

<table>
<thead>
<tr>
<th></th>
<th>Untensed infinitives</th>
<th>Tensed infinitives</th>
<th>Type I subjunctives</th>
<th>Type II subjunctives</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>[-T, -Agr]</td>
<td>[+T, -Agr]</td>
<td>[-T, +Agr]</td>
<td>[+T, +Agr]</td>
</tr>
</tbody>
</table>

Following Landau (2004), only [+T, +Agr] can license a lexical DP, or pro, i.e. this specification is associated with [+R] (denoting independent reference). All other combinations are associated with [-R] (denoting anaphoric reference), i.e. they are unable to license elements that are inherently specified for ϕ-features, and they check null case (of PRO). PRO is not inherently specified for ϕ-features, but it contains slots for each ϕ-feature, including case. The slots are valued by the mechanism of the operation Agree of Chomsky’s (1998) framework. Agree involves feature matching, checking and deletion through the joint effect of Tense and Agreement, but there is no phonological displacement. The probe (a feature of a lexical item) of Agree is the unvalued (uninterpretable to the interface of meaning (Logical Form)) ϕ-feature of the matrix functional head that licenses (agrees with) the controller (I for Subject Control, light v for Object Control). The goal (the feature the probe matches) of Agree is PRO. PRO is visible to Agree (although not at the edge of the phase ([Spec, CP])) because of its anaphoric features are valued (interpretable), thus, by assumption, they are never erased. The null case of PRO is checked by [-T, +/-Agr], so it cannot move any further because
Move (for A(rgument)-movement) requires the goal to bear an uninterpretable case feature.13 Agree can apply between a functional head and a DP,14 or two functional heads, and checked features can enter multiple Agree relations in the same phase. Finally, the derivation of infinitival complements in Serbian goes as follows. C selects an IP (a clause) and the agreement features are checked in a Spec-head relation within IP:

\[
V \ldots [_{CP} C da/Ø_{V} [_{IP} I_{[T, Agr]} [_{VP} \text{subject DP}/PRO \quad [_{v, V} \text{object DP}]]]]
\]

The verb is selected from the lexicon carrying tense and agreement features. The V-feature of T checks the tense on the verb, whereas its D-feature checks the case of the subject DP that rises to its Spec position ([Spec, IP]). The subject DP carries along its φ-features that are checked against the Agr features of V in the Spec-head relation established within IP. Overt V to I ensures that a lexical DP or pro moves from [Spec, VP] to [Spec, IP] for checking of both nominative case and the strong EPP feature.16 Since nothing else triggers movement, the lexical DP or pro will stay in [Spec, IP]. Movement from V to I is overt, because I\textsubscript{[+T, +Agr]} has a nominative case feature (and a strong Agr) that has to be checked by verb movement, it attracts the tense feature of V by pied-piping the entire verb (assuming that only uninterpretable and strong features attract and get subsequently deleted). Only [+T, +Agr] is specified [+R], i.e. licenses a lexical DP or pro. Whenever I is specified [-R], PRO will merge. PRO freely picks φ-features before entering the derivation. Those features are anaphoric, but valued. The mechanism by which PRO gets its reference is Agree. Agree\textsubscript{[T-Agr, PRO]} matches the φ-features of Agr and PRO. Then PRO rises to [Spec, IP] to check its null case. Agree\textsubscript{[T, DP]} matches the T (case) feature of I and the controller DP. Then Agree\textsubscript{[T-Agr, PRO]} matches all the φ-features of I and PRO. I mediates co-indexing between the controller and PRO by establishing Agree relation with both, which is illustrated as follows:

\[
\begin{align*}
\text{IP} \\
\text{I'} \\
I_{[T, Agr]} \quad \text{VP} \\
\text{DP} \quad V' \\
\text{Agree\textsubscript{1} [T-Agr, PRO]} \quad \text{V} \quad \text{CP} \\
C \quad \text{IP} \\
\text{PRO} \quad \text{I'} \\
\text{Agree\textsubscript{2} [T, DP]} \quad \text{I} \quad \text{VP} \\
\text{Agree\textsubscript{3} [T-Agr, PRO]} \quad V
\end{align*}
\]

Agree operates to eliminate the uninterpretable variants of [T] and [Agr]. Checking erases the uninterpretable copy of the feature checked and leaves intact the interpretable copy. It is important to assume that checked features persist to the end of phase (where they become inaccessible) and can enter multiple Agree relations, which is illustrated as follows:

\textbf{Infinitives: Obligatory Control}

\[
\begin{align*}
\text{CP} & \quad \text{DP} \quad . \quad I \quad . \quad [_{CP} C_{[-T/+T]} \quad [_{IP} \quad \text{PRO}_{[-R]} \quad [_{T} I_{[T/+T, -Agr, -R]} \quad [_{VP} t_{PRO} \quad .]}}]
\end{align*}
\]

\[
\begin{align*}
\text{Agree}[+Agr, +R] & \quad \text{Agree}[+Agr] & \quad \text{Agree}[+T/+T] \\
\text{Agree}[+Agr, -R] & \\
\end{align*}
\]

(3.1.1) (Oni) pokušava [PRO\textsubscript{i} otvoriti kutiju].

‘He’s trying to open the box.’
Since C contains no [R] value, only PRO can check [-R] on I.

Type I subjunctives: Obligatory control

\[\text{Agree}_{-[+\text{Agr},-\text{R}]} \quad \text{Agree}_{-[+\text{Agr}]} \quad \text{Agree}_{-[+\text{Agr},-\text{R}]_I} \]

(3.1.2) (On) pokušava [da PRO i/*j otvori kutiju].

‘He’s trying to open the box.’

PRO checks the [-R, +Agr] against I, which then checks [-T, +Agr, -R] against C, and PRO establishes an Agree relation through C with the DP subject, as required by its [-R] feature.

Non-obviative Type II subjunctives: no Control

\[\text{Agree}_{+[\text{Agr},-\text{R}]} \quad \text{Agree}_{+[\text{Agr}]} \quad \text{Agree}_{+[\text{Agr},-\text{R}]} \]

(3.1.3) (On) želi [da (oni) otvore kutiju].

‘He wants them to open the box’.

A lexical DP or pro checks [+Agr, +R] against I. I to C checking is required to eliminate the uninterpretable T on C. If Agr of the subjunctive clause has the same φ-features as the Agr of the matrix clause, thus present on C, which mediates the selection, the checking of T, Agr and R features on I and C causes the domain to extend, thus barring pro as Principle B violation (a pronoun must be free in its governing category), but opening the gate for PRO to be licensed. PRO bears [-R], an anaphoric property which requires an antecedent. The matrix I, which has already established a relation with the matrix DP, agrees with C which is also co-indexed with PRO via I.

3.2 Object Control

The object of verbs such as: zamoliti (ask), narediti (order), prisiliti (force), uбедити (persuade), upozoriti (warn) etc. is always interpreted as co-referential with the null subject of their subjunctive complements, the subjunctive complement can be substituted with the corresponding infinitival alternative, and I argue they exhibit Object Control.

(3.2.1) Marija je naredila Jovanu [PRO pospremiti/da PRO pospremi sobu].

‘Maria ordered John to tidy up the room.’

This is formally accounted for as follows. Since these verbs take two internal arguments, a Larsonian shell has to be postulated, where \(v \) is a light verb to which V overtly raises, as illustrated below:

\[
\begin{align*}
\text{v}_{\text{max}} & \quad \text{Subj } v' \\
V + v & \quad \text{VP} \\
\text{Obj } v' & \quad \text{PP/CP} \\
t_v & \quad \text{PP/CP} \\
\end{align*}
\]

17 If a pronoun is inserted, the reading is rather emphatic than obviative: Marija je naredila Jovanu [da oni pospremi sobu].

‘Maria ordered John to hetidy up the room.’
\[\text{\textbf{Ivana Miškeljin}} \]

\(\nu^{\text{max}} \) is not a projection of the raised verb \(V^{\text{a}} \), but rather a verb phrase distinct from VP. Thus, \(V \) raises to an already filled position occupied by the light verb \(v \) that has been selected from the lexicon and heads its own projection \(v^{\text{max}} \). \(V \) adjoins to \(v \), forming \([\nu, V \nu]\) complex. This operation is permitted if the target \(v \) is a light verb requiring a verbal affix. This is also required by the Theta Theory.\(^{19}\) The internal arguments occupy the positions of specifier and complement of \(V \). The external argument cannot be lower than \([\text{Spec}, v]\). The \(v^{\text{-}}\text{VP} \) configuration is taken to express the causative or agentive role of the external argument. A transitive verb assigns an external \(\theta \)-role by definition.\(^{20}\) This light \(v \) licenses the controller in Object Control. As for its feature specification, \(I \) will adopt that \(\text{Agr}_{v} \) (verb-object agreement) is merged with it.\(^{21}\) It is a collection of strong features \{strong [D], strong [V]\} specified on \(v \), which compels overt raising of object DP of to \([\text{Spec}, \text{VP}] \) and \(V \) to \(v \) (to check the formal features (affixes) of the verb). The raised object will be in the checking domain of \(V \), thus able to check its case and (object agreement) \(\phi \)-features. Subject inserted by \(\text{Merge} \)\(^{22}\) in \([\text{Spec}, v]\) is not in the checking domain of \(v \) because it does not head a non-trivial chain.\(^{23}\) The feature specification of light \(v \) is \{+Agr\}. Thus, \(v \) is not specified for \([R]\). Serbian Object Control verbs select Type II subjunctives. When the subjunctive subject is null, it is always interpreted as co-referential with the matrix object, and \(\text{Agr}_{o} \) of the subjunctive clause bears the same \(\phi \)-features as the \(\text{Agr}_{o} \) of the matrix clause, thus their C is also specified for \(\text{Agr} \), thus \{+T, +Agr\}.

Type II Subjunctives: Obligatory Control:

\[
\begin{align*}
\text{Agree} & \quad \text{Agree} \quad \text{Agree} \\
\text{\{[Agr]\}} & \quad \text{\{[+Agr]\}} \\
\text{\{+T, +Agr\}} & \quad \text{\{+T, +Agr\}}
\end{align*}
\]

The features of \(C \) and \(I \) check off, the domain extends and since \(\text{Agr}_{v} \) of the subjunctive clause is pronominal nothing shelters it from getting illicitly bound by the matrix \(\text{Agr}_{o} \), obviation arises, \(\text{PRO} \) is licensed, and the corresponding infinitival alternative is available.

Infinitives: Obligatory Control

\[
\begin{align*}
\text{Agree} \quad \text{Agree} \quad \text{Agree} \quad \text{Agree} \\
\text{\{[Agr]\}} & \quad \text{\{[+Agr]\}} \\
\text{\{+T, +Agr\}} & \quad \text{\{+T, +Agr\}}
\end{align*}
\]

4. **Conclusion**

There are two types of subjunctive-like da-complements in Serbian referred to as Type I

and Type II subjunctives and their corresponding infinitives (Type I and II respectively) with respect to the tense restrictions imposed by the matrix verb. The Serbian language exhibits only Exhaustive Control, both subject and object.

References

INFINITIVNE DOPUNE U SRPSKOM JEZIKU – GENERATIVNI PRISTUP

ivanamiskeljin@yahoo.com