
HYBRID OF HILL CLIMBING AND SAT SOLVING FOR AIR TRAFFIC CONTROLLER SHIFT SCHEDULING JITA 5(2015) 2:81-87

HYBRID OF HILL CLIMBING AND SAT SOLVING FOR
AIR TRAFFIC CONTROLLER SHIFT SCHEDULING

Mirko Stojadinović
Faculty of Mathematics, University of Belgrade (Serbia)

mirkos@matf.bg.ac.rs

Contribution to the state of the art

DOI: 10.7251/JIT1502081S UDC: 656.7.025

Abstract: Modern computers solve many problems by using exact methods, heuristic methods and very often by using
their combination. Air Traffi c Controller Shift Scheduling Problem has been successfully solved by using SAT technology
(reduction to logical formulas) and several models of the problem exist. We present a technique for solving this problem that is
a combination of SAT solving and meta-heuristic method hill climbing, and consists of three phases. First, SAT solver is used
to generate feasible solution. Then, the hill climbing is used to improve this solution, in terms of number of satisfi ed wishes
of controllers. Finally, SAT solving is used to further improve the found solution by fi xing some parts of the solution. Three
phases are repeated until optimal solution is found. Usage of exact method (SAT solving) guarantees that the found solution
is optimal; usage of meta-heuristic (hill climbing) increases the effi ciency in fi nding good solutions. By using these essentially
different ways of solving, we aim to use the best from both worlds. Results indicate that this hybrid technique outperforms
previously most effi cient developed techniques.

Keywords: controller shift schedule, reduction to SAT, hill climbing.

INTRODUCTION

Th e importance of automatic completion of many
tasks by using contemporary computers instead of
performing tasks manually has been stressed many
times (e.g. [9]). Personnel scheduling problems have
been extensively studied in the last few decades (e.g.,
nurse scheduling problem [3], course timetabling
[4]). When solving these problems, a schedule needs
to be generated satisfying specifi ed constraints (e.g.
a worker cannot work more than certain number of
days in a row), taking into account some input pa-
rameters (e.g. total number of working days, number
of workers).

Air Traffi c Controller (ATCo) Shift Scheduling Prob-
lem (ATCoSSP) [11] consists of fi nding assignments
of controllers to shifts and in each shift assignments
to diff erent positions, so that all the specifi ed con-
straints are satisfi ed. Besides satisfying constraints,
schedule should also take into account wishes of the

controllers and the aim is to satisfy as many wishes
as possible.

Constraint satisfaction problems (CSP) and con-
straint optimization problems (COP) [8] include large
number of problems relevant for real world appli-
cations (e.g., scheduling, timetabling, sequencing,
routing, rostering, planning). In this paper, we con-
sider only fi nite linear versions of these problems.
Problems are represented by domains of variables
and constraints specifying the relations between
these variables. CSPs are solved by fi nding assign-
ments of values from the corresponding domains to
variables, such that all constraints are satisfi ed. COPs
are optimization version of CSPs and in case of solv-
ing COPs the goal is to fi nd solution with optimal
(minimal/maximal) value of some expression.

Th ere are many diff erent approaches for solv-
ing CSPs and COPs (e.g., constraint programming,

December 2015 Journal of Information Technology and Applications 81

JITA 5(2015) 2:81-87 MIRKO STOJADINOVIĆ:

mathematical programming, systematic search algo-
rithms, forward checking, answer set programming).
Propositional satisfi ability problem (SAT) [2] examines
if the variables of a given Boolean formula can be
consistently replaced by the values true or false in
such a way that the formula evaluates to true. Th is
problem holds a central position in the fi eld of com-
putational complexity. One approach to solving CSP
instances is by reduction to SAT. It consists of trans-
lating input formula to SAT (called encoding to SAT),
running some of the free and effi cient SAT solvers,
and translating the solution, if it exists, to the solu-
tion of the original problem. Solving COP instances
using reduction to SAT can be done by solving sev-
eral CSP instances using reduction to SAT – one by
one, CSP instances having fi xed, diff erent values of
optimization expression are reduced to SAT.

Hill climbing [10] is a mathematical optimization
technique which belongs to the family of local search
techniques. It is an iterative algorithm that starts with
some solution to a problem and tries to fi nd better
solution by changing some of its parts. If the consid-
ered change would produce a better solution, then the
change is made to the solution. Th e changes are re-
peated until no further improvements can be made.
Th e change to be made on the solution can be selected
in diff erent ways. Stochastic hill climbing selects change
to be made at random. Th e problem with hill climb-
ing method is that it can fi nish in local optimum and
not in the global one. Th ere are many ways of dealing
with this problem (e.g. restarting with diff erent solu-
tion if the local optimum is found).

Related work. A work introduced by Stojadinović
[11] describes ATCoSSP in detail and introduces
three encodings of the problem: in two of them AT-
CoSSP is specifi ed as a CSP and in third as a SAT.
Several methods for solving the problem were devel-
oped and a variety of diff erent solvers were used for
solving. Th e variant achieving the best results is the
one where in each iteration problem specifi cation is
reduced to SAT, SAT instance is solved and then local
optimum is found by fi xing parts of the solution and
replacing shift constraints with position constraints.

Contributions. In this paper we present a new
hybrid technique for solving ATCoSSP . Each itera-

tion tries to fi nd better solution and consists of sev-
eral phases. First, the reduction to SAT is used to fi nd
a solution. Th e solution is then improved by using
stochastic hill climbing that exchanges shift assign-
ments and then by using encoding to SAT, such that
some parts of the solution are fi xed. Our hybrid aims
at fi nding good solutions quickly, so we focus on
fi nding solutions by using shorter timeout compared
to one used in the paper to which we compare. Re-
sults show that the proposed hybrid is more effi cient
in fi nding quick and good solutions.

Overview of the paper. In the next section we
present the problem being solved. Th en, we describe
two existing solving techniques for this problem and
our modifi cation of the second one. Th en, we pres-
ent experimental evaluation, draw conclusions and
present ideas for further work.

PROBLEM DESCRIPTION

ATCoSSP is solved by assigning shifts to con-
trollers in a considered period (usually a month or
a year) with respect to some requirements. Th ere are
many documents that describe these requirements
(e.g., [1], [7], [5]). Some of the requirements are nec-
essary and they are expressed by imposing so called
hard constraints (these are essential for shift schedule
correctness). Soft constraints represent staff wishes (or
preferences).

Hard constraints
Th e period consists of a number of days and each

day consists of time slots. A controller takes exactly
one of three possible types of shifts on each day.
In case of working shifts, a controller works in an
ATCo facility on a given day from the fi rst until the
last time slot of that shift and rests in the remaining
time slots of that day. Working shifts are of a diff er-
ent length and depending on the fi rst time slot they
are separated in morning, day, afternoon and night
shifts. Th e time slots of working shifts are known
in advance and therefore fi xed prior to making the
schedule. Between days in which controller takes
working shifts, he has one or more rest days and
we say the controller takes a rest shift on these days
(they are equivalent to weekends for the majority
of professions as teachers, lawyers, etc.). A num-

82 Journal of Information Technology and Applications www.jita-au.com

HYBRID OF HILL CLIMBING AND SAT SOLVING FOR AIR TRAFFIC CONTROLLER SHIFT SCHEDULING JITA 5(2015) 2:81-87

ber of paid vacation days is on the disposal to each
controller and we say the controller takes a vacation
shift on these days. Offi cials approve or disapprove
vacations in advance. To get a full wage, control-
ler must work certain number of working hours in
the considered period, but should not exceed some
maximum threshold value. In case of working shift,
the number of working hours for controller on one
day is equal to the duration of that shift. For each
vacation shift, a number of predetermined work-
ing hours is counted for the controller. No working
hours are counted for rest shifts.

It is not allowed that controller takes more than a
specifi ed number of consecutive working/rest shifts
(usually 2 or 3). At each working hour, one control-
ler needs to be in charge - this must be one of the
controllers that have the license for this duty. Each
controller must take at least a minimum number of
rest shifts per month. Regulations usually specify a
minimum number of rest time slots between work-
ing shifts.

When solving ATCoSSP, one also needs to assign
controllers to positions within their working shifts.
Several types of positions exist in ATCo facilities
(e.g., tower, terminal, en route) and depending on
a facility size the number of these positions is pres-
ent. In any time slot of a working shift a controller
can either be on position or can have a break. In one
time slot a controller can be assigned to maximum
one position. A controller can be on two diff erent
positions in two consecutive time slots. Some fi xed
number of consecutive time slots on position is per-
mitted (e.g. 3 hours). For each day in each time slot
of working hours of a facility intensity of air traffi c is
estimated and based on this estimation, it is decided
how many controllers are needed for each position.
A controller needs certain skills and passed exams in
order to obtain a license to work on some position.
Th e licenses of controllers and the number of needed
controllers for each time slot are known in advance.

Soft constraints
Controllers may prefer diff erent working shifts

(e.g., they may prefer morning shifts), they may
prefer to take consecutive working shifts as rarely as
possible, etc. Th e reasons for including the staff to

make schedules and some of most usual preferences
are described by Arnvig et al. [1].

PROBLEM ENCODING

Th ree encodings of the problem were already de-
scribed in detail [11], so we do not describe them
in this paper. We use only the fi rst encoding (it per-
formed approximately the same as the second, but
better than the third). Th e problem is represented
by a COP instance consisting of linear arithmetic
constraints and global constraints (these constraints
describe relations between a non-fi xed number of
variables) and COP solvers can be used for solving.
One way of solving COP instances is by reduction to
SAT. Soft constraints are important for the technique
introduced in this paper, so we describe them in the
following paragraph.

Wishes of the controllers have diff erent importance
and each wish is associated with a weight, specifying
its importance. Weights for each controller are scaled
in order to make sums of weights for each control-
ler equal to some value. Th e scaling is used to make
fairer schedule (e.g. controllers having small number
of wishes will have associated greater weights than the
ones having greater number of wishes). Number mc is
the number of wishes of controller c, where each wish
is associated with the Boolean variables xc,i and each
of the corresponding weights is scaled to value wc,i .
Controller’s penalty is defi ned as 

cm

i ic,ic,penalty xw=c
1

.
Th e goal is to fi nd the minimum non-negative value
of variable cost, such that for each controller c, the con-
straint cpenalty cost is satisfi ed (the maximum of all con-
trollers’ penalties is to be minimized).

Solving techniques
We used three optimization techniques; the fi rst

two already introduced in literature [11] and the new
one. For all of them, instances for diff erent values of
variable cost (with bounds costl and costr) are gener-
ated and for each value these instances are solved by
new runs of the associated solver. For each new value
of cost, new solving is performed on the instance that
diff ers from the previous instance only in this value.
In all techniques we use (asymmetric) binary search
algorithm, in some cases combined with additional
methods.

December 2015 Journal of Information Technology and Applications 83

JITA 5(2015) 2:81-87 MIRKO STOJADINOVIĆ:

Asymmetric binary search. Th e pseudo code of
this algorithm is presented in Figure 1. Th e algorithm
gets as arguments the specifi cation of the problem
(e.g. number of workers, number of days, etc.) and
the maximum value of variable cost. Th e bounds of
the optimum are set and the binary search is started.
Instance (in case of this paper the SAT instance) is
generated such that the maximum controller’s pen-
alty is bounded by the value cost. After solving the
instance, there are two cases. In the fi rst case, a so-
lution is found and the maximum controller’s pen-
alty is some value best_opt (best_opt = penalty

cn
=c c1max

is calculated for the found values of xc,i). Solution
refi ning is tried (thus possibly further improving the
value of best_opt), and then the value of the right
bound is updated: costr = best_opt − 1. In case there
is no solution (instance is unsatisfi able), the value of
left bound is updated: costl = cost + 1. In next itera-
tion of loop, instance with the new value of cost is
considered: cost = costl + 4/5 · (costr − costl). Number
4/5 indicates that the satisfi able instances are favored
as they are usually easier (1/2 would be used in case
of symmetric binary search). Th is number is used as
good results were obtained by using it in the original
paper [11]. Th e search is ended and an optimum is
found when costl becomes greater than costr.

bin_search (problem_spec, costmax)
 costl = 0;
 costr = costmax;
 while (costl <= costr)
 cost = costl + 4/5 * (costr - costl);
 instance = generate (problem_spec, cost);
 if (run_solver (instance, &best_opt, &solution) == SAT)
 refi ne_solution (instance, &best_opt, &solution);
 costr = best_opt - 1;
 best_solution = solution;
 else
 costl = best_opt + 1;
return best_solution;

Figure 1. Binary search for solving ATCoSSP

Th e techniques we present here diff er in imple-
mentation of the function refi ne_solution and the rest
of the search is the same in case of all three techniques.

Basic binary search
 Th is technique does not do anything in the

phase of refi ning solution. After fi nding one solu-

tion, it just continues with generating new instance
and solving it.

Position avoiding
For each position, a number of controllers is need-

ed in each time slot. In any found solution to the
problem, controllers are assigned to shifts and within
these shifts they are assigned to positions. A suffi cient
number of controllers to each position in each time
slot is assigned. Th is technique aims to get smaller
instances that are easier to solve by replacing position
requirements with working shift requirements.

Th ere are two phases in solution refi nement: the
fi rst is used to make the solution schedule less empty
and the second is used to fi nd the better solution.
We will describe these two phases by following the
example given in Table 1.

Table 1. Small example of schedule for short period of 4 days (no
position schedule presented). Shifts are 1 (04-12), 2 (08-16), 3 (12-

20), 4 (rest), 5 (vacation)

Name Day 1 Day 2 Day 3 Day 4

Alice 2 (08-16) 4 (rest) 2 (08-16) 3 (12-20)

Bob 4 (rest) 3 (12-20) 3 (12-20) 4 (rest)

Charlie 4 (rest) 4 (rest) 1 (04-12) 2 (08-16)

Dave 4 (rest) 3 (12-20) 5 (vac.) 5 (vac.)

Ethan 1 (04-12) 4 (rest) 4 (rest) 1 (04-12)

 Emptying the solution. In each iteration of
this phase, two days d1 and d2 are found so that they
fulfi ll three requirements. Th e fi rst is that the same
number of controllers is needed for each position in
each time slot of these days (we assume this is the case
with days d1 = 1 and d2 = 3 in the example). Th e sec-
ond requirement is that for each working shift, the
number of assigned controllers to that shift on day d1
is less or equal than the one on day d2. Th e third re-
quirement is that for at least one working shift, the
number of assigned controllers to that shift on day d1
is strictly less than the one on day d2. Diff erent pairs of
days are tried and when days are found satisfying three
requirements, then position and shift assignments for
d1 are copied to assignments for d2. If n controllers are
assigned working shifts on day d1 and m controllers
are assigned working shifts on day d2 (n < m), then
n from m controllers on day d2 are assigned working

84 Journal of Information Technology and Applications www.jita-au.com

HYBRID OF HILL CLIMBING AND SAT SOLVING FOR AIR TRAFFIC CONTROLLER SHIFT SCHEDULING JITA 5(2015) 2:81-87

shifts and position assignments from day d1 and the
remaining m − n controllers have rest day on d2. In the
example, let d1 = 1 and d2 = 3 be the days that satisfy
three requirements. More controllers are assigned to
work on day 3 than it is needed. One option of change
may be: Bob is assigned shift 1 on day 3, Charlie is as-
signed rest shift on day 3 and other shift assignments
on day 3 are left unchanged. Th is may open space for
Charlie to work on some other day and maybe some
of his previously unfulfi lled wishes will be possible to
satisfy. Note that some constraints may not be satis-
fi ed at these moments (e.g. maximum number of rest
days in a row). We repeat this until no two days can be
found fulfi lling three requirements.

Reassigning shifts to controllers. Now, the
changed schedule is used as a basis for generating a
new one. Constraints specifying position assignments
are not considered and only the constraints specify-
ing the number of controllers for each day and each
shift are considered. If enough controllers are assigned
to each shift on each day, then the positions will be
fi lled as each shift on each day is mapped to certain
position assignment in previously found solution. Th e
original encoding is called complete and the encoding
avoiding position constraints is called reduced encod-
ing. A separate asymmetric (inner) binary search is
used on the problem now specifi ed only using shift
constraints. Optimum on the reduced encoding is not
necessary the optimum of the initial problem. How-
ever, this optimum can reduce the upper bound of the
outer binary search. When refi ning of the solution is
complete, the outer binary search can continue fi nd-
ing better solution on complete encoding.

Position avoiding with hill climbing
Refi ning solution in case of this technique is done

in two phases.

Th e fi rst phase is stochastic hill climbing algo-
rithm that uses restarting. Th e algorithm consists of
iterative exchanging shifts between any two control-
lers. Two shifts can be exchanged if neither of them
is vacation shift and if the exchange does not violate
any of the hard constraints. For the purpose of check-
ing if after exchange all constraints will be still satis-
fi ed, special testing software was developed and used.
Exchange is actually performed if it does not increase

the higher of the penalties of the two controllers
involved in the exchange. Th is way, some number
of exchanges (p) is tried. After specifi ed number of
trials is completed, the number of exchanges (q) is
performed, even in case the higher of the penalties is
increased - this enables the escape from a local mini-
mum and continuation of the search from some so-
lution potentially leading to global minimum.

Th e second phase is the technique ‘Position
avoiding technique’, presented in previous section.
It is used to potentially further improve the solution
found prior to using the fi rst phase, but starting with
the upper bound that was potentially improved (de-
creased) by the fi rst phase.

EXPERIMENTAL EVALUATION

All the tests were performed on a multiprocessor
machine with AMD Opteron(tm) CPU 6168 on
1.9Ghz with 2GB of RAM per CPU, running Linux.
Th e timeout per instance was 60 minutes (1 hour),
including both encoding and solving time.

Techniques used. In our experiments, we used
three techniques that were described in previous sec-
tion: Basic binary search (denoted bs), Position avoid-
ing (bsNoPos) and Position avoiding with hill climb-
ing (hybrid HC). When using hybrid hill climbing,
after each 9000 iterations of exchanges aimed not to
increase the value of greater of the considered sums
of penalties, we conducted 50 exchanges possibly in-
creasing greater of the sum of penalties of controllers
considered for the exchange (as already stated, the
aim is to escape from local minimum).

Instances. We used the existing set of 13 hard
instances previously introduced [11] (they are called
interesting instances and represent the subset not
easily solved in the cited paper). Th is set consists
of instances used for generating shift schedule for a
small airport in Vršac, Serbia.

Experimental results
Table 2 summarizes the results of the experiments.

Th e new technique (hybrid HC) is better than both
previously developed techniques in case of solving 10
out of 13 instances. Average objective value also con-

December 2015 Journal of Information Technology and Applications 85

JITA 5(2015) 2:81-87 MIRKO STOJADINOVIĆ:

fi rms that the new technique is more effi cient than
the other techniques. Note that the timeout used is
smaller than in the cited paper (60 minutes compar-
ing to the original 600 minutes). As already stated,
the focus here is on faster search for the solutions.

Table 2. Results of three techniques (timeout 60 minutes): each
cell contains objective value and the time needed to achieve this
value is given in parenthesis; columns corresponding to different

techniques and rows represent different instances

Instance index\ bsBasic bsNoPos hybrid HC

2 60 (3) 61 (1) 60 (1)

3 71 (2) 55 (3) 50 (2)

4 32 (30) 34 (7) 30 (5)

5 20 (54) 6 (49) 12 (26)

6 20 (26) 20 (28) 20 (15)

10 28 (12) 22 (5) 22 (4)

14 0 (58) 16 (37) 6 (41)

15 102 (28) 102 (27) 28 (28)

18 24 (15) 20 (13) 16 (30)

19 72 (50) 8 (28) 8 (17)

20 160 (0) 105 (58) 14 (60)

21 160 (0) 160 (0) 160 (0)

22 114 (35) 71 (55) 31 (37)

average 66.4 52.3 35.2

Figure 2. Average objective value achieved in time - each mark on
the curves represents one decrease in value.

Figure 2 shows the decrease of the optimum
achieved during time. Solutions are found quickly in
the fi rst couple of minutes in case of all three tech-
niques (in this period, their solving process is mostly

the same). After some time, the new technique man-
ages to improve found solutions more quickly than
the other techniques (its graph is closer to the hori-
zontal axis). Th is means that this technique fi nds so-
lutions fulfi lling more preferences of the employees
in shorter time. Th is trend continues until the time-
out is reached.

CONCLUSIONS AND FURTHER WORK

We have introduced technique for solving Air
traffi c controller shift scheduling problem that is the
combination of the SAT solving and hill climbing.
Th ese two solving approaches are interleaved and the
technique manages to fi nd more quality solutions in
less time, comparing to the best technique previously
reported in literature.

In the future, we plan to implement more meta-
heuristic techniques for solving the problem. Com-
parison and investigating the infl uence of parameters
of the techniques on the quality of the solution is
another interesting direction.

86 Journal of Information Technology and Applications www.jita-au.com

HYBRID OF HILL CLIMBING AND SAT SOLVING FOR AIR TRAFFIC CONTROLLER SHIFT SCHEDULING JITA 5(2015) 2:81-87

REFERENCES

[1] Arnvig, M., Beermann, B., Koper, B., Maziul, M., Mellett, U., Niesing, C., Vogt, J. (2006). Managing shiftwork in
european atm. Literature Review. European Organisation for the safety of air navigation.

[2] Biere, A., Heule, M., van Maaren, H., Walsh, T. (2009). Handbook of Satisfi ability, volume 185 of Frontiers in Artifi cial
Intelligence and Applications. IOS Press.

[3] Burke, E.K., De Causmaecker, P., Berghe, G.V., Landeghem, H.V. (2004). The state of the art of nurse rostering. Journal
of Scheduling, 7(6):441–499.

[4] Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O. (2006). An effective hybrid algorithm for university course
timetabling. Journal of Scheduling, 9(5):403–432.

[5] Committee for a Review of the En Route Air Traffi c Control Complexity and Workload Model (2010) Air traffi c con-
troller staffi ng in the en route domain: A review of the federal aviation administration’s task load model.

[6] Cook, S.A. The complexity of theorem-proving procedures (1971). In STOC, pp 151–158.
[7] EUROCONTROL. (2006). Shiftwork practices study - atm and related industries. DAP/SAF-2006/56 Brussels : EU-

ROCONTROL.
[8] Krzysztof, R.A. (2003). Principles of constraint programming. Cambridge University Press.
[9] Lev, K., Dovgobrod, M., Moiseevich, G. (2015). Control systems for automated vessel piloting through local stationary

obstacle. Journal of Information Technology and Application (JITA), 5(1):61–64.
[10] Rossi, F., Beek, P.V., Walsh, T. (2006). Handbook of Constraint Programming. Elsevier.
[11] Stojadinović, M. (2014). Air traffi c controller shift scheduling by reduction to csp, SAT and sat-related problems. In

Principles and Practice of Constraint Programming- 20th International Conference, CP 2014, Lyon, France, pp 886–902.

Submitted: July 29, 2015.
Accepted: December 3, 2015.

December 2015 Journal of Information Technology and Applications 87

