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ABSTRACT
Mapping with LiDAR data is not a standardized practice, though LiDAR databases
are increasing in all countries in Europe. We develop and test a simple method for
automated land-cover mapping. The study area was a farm located at a natural park
of southern Spain. It comprises 502 ha covered by Mediterranean forest
agroecosystems, like dehesa (a very open woodland of scattered evergreen trees
used by grazing animals), woodland and scrubland, and transitions among them,
composing a heterogeneous landscape. This heterogeneity is caused by variations
in holm and cork oak tree density and a sclerophyllous shrub cover, i.e., 3D
structure of woody vegetation. Using aerial photographs digitization, Landsat
image classification, and image segmentation of tree crowns, land-cover maps were
generated. Besides, other maps were produced from LiDAR-derived canopy cover
and height of tree vegetation and shrub stratum. These 3D variables allowed to a
wall-to-wall characterization of woody vegetation land-cover classes in the study
area, that was completed with a NDVI assessment. The results show that automated
mapping with LiDAR is reliable and accurate enough in comparison with other
mapping techniques. It outperforms them because its higher spatial resolution, and
can be combined with other remote sensing methods to provides an improved
understanding of forest landscapes.
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INTRODUCTION
Remote sensing and Gegographic Information Systems (GIS) are used for land-
cover mapping, characterization and monitoring land-cover changes at a local,
regional and global scale (Rogan & Chen 2004; Giri 2012). Point cloud data from
active sensors like LiDAR provide a 3-dimensional (3D) information of features of
land-cover classes and, specifically, 3D structure of woody vegetation (e.g. Parent
et al. 2015). Land-cover mapping at high or moderate spatial resolution is a
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challenge in complex Mediterranean landscapes with mosaic vegetation and high
spatial variability of tree and shrub cover. In addition, recent studies combine
LIDAR with satellite images, demonstrating its capacity to characterize the
Mediterranean vegetation (Maselli et al. 2017; Gouveia et al. 2017). Land-cover
mapping with low-density LiDAR point clouds in Mediterranean agroecosystems
is not tested yet.
The goal of this research is to develop and to test an automated simple method for
land-cover mapping from airborne LiDAR data that can be applied to a
heterogeneous landscape. The specific objectives are: (1) to identify and to map the
woody vegetation land-cover classes with LiDAR data in a relatively large area,
and (2) to characterize the woody vegetation of land-cover classes and their
internal spatial structure from 3D variables extracted from LiDAR and multi-
spectral satellite data.

MATERIALS AND METHODS
The study area is the farm Zahurdillas, which is part of the Sierra de Hornachuelos
Natural Park located in Sierra Morena mountain range (Southern Spain). It
comprises 502 ha covered by different Mediterranean forest agroecosystems.
Dehesa is the Spanish name of a common type of vegetation similar to savanna. It
is a very open woodland of scattered evergreen trees –mainly holm and cork oak–
where grasses, tree and shrub biomass, and acorns are used by livestock, sheep and
pigs. Besides the dehesa, other woody vegetation were present, such as woodland
and scrubland, as well as transitions between them, composing a heterogeneous
land-cover landscape. The study area has been divided into a grid of 30x30 m cells.
The coordinate system used for the study area was ETRS89 and UTM projection,
zone 30.
Two conventional and two more modern mapping methods have been used. High-
resolution aerial images (50 cm pixel size) of June 2014, provided by the National
Geographic Institute of Spain (IGN), have been used for an accurate
photointerpretation and manual digitization This method allowed the identification
of six land-cover classes (digitized map). The criteria for the delimitation of these
classes with woody vegetation were the tree density, tree cover, and shrub
abundance. Landsat 8 satellite images (30 m pixel size and 7 spectral bands) of
July 2016, downloaded from the Earth Explorer website (USGSG 2017) were used
to generate a map of land-cover classes by the supervised classification method.
These images were also used to generate a NDVI (Normalized Difference
Vegetation Index) map, which is related to chlorophyll concentration and vigor of
vegetation (Glenn et al. 2008).
Segmentation of tree crowns from aerial images was performed using a
multiresolution algorithm, and the nearest neighbor algorithm for classification
(Aldrich 1997), both implemented on the eCognition software (Trimble 2017). The
multiresolution segmentation algorithm is a bottom up segmentation which departs
from one pixel and merges neighbor pixels according to a heterogeneity and size
parameters (Hamilton et al. 2007). A relatively simple segmentation was carried
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out. Compactness and shape parameters were set at default values and scale
parameter was defined at 50. The three bands of the image were used as input data
for segmentation, assigning the green band a double weight compared to the red
and blue bands. Classification was performed using two main classes (vegetation
and non-vegetation) to identify objects that were likely to represent tree crowns.
Several objects were manually selected for each class to be used as training data for
classification. Tree crown area within each cell estimated by segmentation was
used to calculate the relative total tree canopy cover (RTCCs) and delimitate land-
cover classes.
Airborne LiDAR data was acquired from the IGN, between December 2014 and
January 2015. The density of the point cloud was 0.5 points/m2. Data was
reclassified automatically. A Digital Terrain Model (MDT, 1x1 m), based on
LiDAR points classified as soil was obtained using the IDW method (interpolation
by weighted inverse distance; Watson et al. 1985) to calculate the normalized
height of the LiDAR point cloud. In each cell, four LiDAR-derived attributes were
estimated: tree canopy height (TCH) defined by the 85th percentile of height,
establishing a threshold of 3 m (Gopalakrishnan et al. 2015), after calibration with
an empirical model; shrub canopy height (SCH): 95th percentile height of shrub
stratum (points below 3 m); tree canopy cover index (TCCI), and shrub canopy
cover index (SCCI). These last two indexes have been estimated as the number of
high vegetation points and the number of vegetation points below 3 m,
respectively, expressing their units in points/ha.
ArcGIS 10.4 software has been used for the spatial data analysis. An additional tree
crown segmentation has been performed by the aggregation of LiDAR points of
high vegetation in polygons with a smoothed geometry using GIS tools. Relative
tree canopy cover derived from this segmentation (RTCCL) was used to evaluate
the TCCI significance. From the combination of the TCCI and SCCI maps using
GIS tools, an automated map of woody vegetation land-cover classes was
produced. The characterization of each vegetation class has been done by limiting
the descriptive statistical analysis to those cells which were completely within each
vegetation class, avoiding the other cells which contained different vegetation
classes. Coefficient of variation (CV) was used as a measure of total spatial
variability of a variable within a land-cover class. The automated map was
compared to the digitized map, without assuming its inherent quality. For those
cells that belonged to two or more land-cover classes derived from the manual
digitization, the class which occupied a larger area within the cell was assigned.
The agreement between automated and digitized (reference) maps was evaluated
using the confusion matrix method and Kappa index, which is a measure of
agreement for multinomial data commonly used for thematic mapping accuracy
assessment (Rossiter 2014). We have analysed both global accuracy and land-cover
class accuracy. R software was used for these data analyses.
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RESULTS AND DISCUSSION
Maps derived from digitization and image analysis
Figure 1a-c shows three maps. The first map represents a conventional map based
on digitization of aerial photography (Figure 1a). From this map, four main land-
cover classes with woody vegetation and different tree density and shrub cover
were identified and mapped: Woodland (W); Woodland/Scrubland Complex
(W/SC); Dehesa with a sparse shrub cover (D-ss), and Dehesa with a dense shrub
cover (D-ds). The relative area of these land-cover classes in the farm was: 42%
(W), 4% (W/SC), 48% (D-ss) and 5% (D-ds). Other minor land-cover classes were
also mapped but they do not include woody vegetation. The second map was
derived from supervised classification of Landsat images (Figure 1b). This map
only discriminated approximately between D-ss (48% of total area) and the rest
(W, W/SC and D-ds; 52%). The product of segmentation of tree crowns from aerial
photography (Figure 1c) produced similar land-cover units: D-ss (56%,
10%<RTCCs<70%); W, W/SC and D-ds (43%; woody canopy cover >70%);
besides, Grassland unit (1%) was identified (RTCCs <10%). Though RTCCs was
estimated and used to delimitate land-cover classes, there was an overestimation of
this variable, due to the limitations derived from the segmentation, but also
mapping the D-ss and the rest (W, W/SC and D-ds) was done approximately.

Tree canopy cover and height
LiDAR-derived TCCI was useful to discriminate vegetation classes (Figure 1d).
There was a strong nonlinear relationship between TCCI and a LiDAR estimation
of tree canopy area, RTCCL (N=4,216; R2

aj=0.86; p<0.001). TCCI was above 2,000
in most parts of W and W/SC, and below 2,000 in most parts of D-ss and D-ds.
LiDAR allowed to tree canopy height mapping (Figures 1h and 2a). TCH was 6-8
m in 92% of W area, but was more concentrated, 7-8 m, in W/SC, where
represented 73% of area. Average TCH was 7.1 m in W and 7.3 m in W/SC. TCH
was lower in dehesa: 6-7 m in most area of dehesa (76% in D-ss and 67% in D-ds).
Average TCH was 6.7 in D-ss and 6.5 m in D-ds. The CV in TCH in the four
woody vegetation classes was 6-8%.

Spatial internal structure of land-cover classes
Figure 2b-c shows the spatial variability within each woody vegetation land-cover
class considering two different LiDAR-derived attributes, SCCI and SCH. Shrub
canopy cover was clearly mapped (Figure 1e). W and D-ss showed strong
skewness of SCCI values (Figure 2c). The distribution of SCCI was right-tailed in
both vegetation classes, which indicates a spatial uniformity with predominance of
low and very low shrub cover classes in 75-80% of the total area, being average
shrub cover slightly less in D-ss than in W. Oppositely, W/SC and D-ds showed a
more symmetric distribution of SCCI values (Figure 2c). SCCI was medium in
about a third of total area of both woody vegetation classes, and almost 40% of
total area showed higher SCCI in D-ds. Shrub cover map clearly showed spatial
variability and differences among woody vegetation classes (Figure 2e). Their



AGROFOR International Journal, Vol. 2, Issue No. 2, 2017

166

internal variability could be partly the effect of a misidentification of training
objects within the vegetation classes (Martin et al. 2001). For example, some
isolated areas with SCCI over 400 in northern and southern parts of W area should
have been classified as W/SC. W and D-ss showed a left-tailed skewness of SCH
values (Figure 2b) with a relatively large variation range in canopy height classes
in most part of the total area within these vegetation classes. SCH was between 1.5
and 2.5 m, but SCH in 35% of the total area was below 1.5 m in D-ss, where
variability in SCH was greater than in W. Conversely, W/SC and D-ds showed a
more concentrated distribution of SCH values (Figure 2b). SCH was between 1.5
and 2.5 m in 99% of total area of these woody vegetation classes, though higher
SCH classes were more relevant in D-ds.

Spectral characterization of land-cover classes
NDVI variability was clearly related with the relevance of leaf biomass in woody
vegetation (Figure 1g). The higher the TCH, the greater the values of NDVI
(N=4,245; R2

aj=0.28; p<0.001). Landsat images dates from June, meaning that
during that month, almost all the natural grass vegetation in southern Spain is dry,
losing all its chlorophyll (Figure 1c). Average NDVI in the small grassland patches
in the farm was the lowest, 0.20. Average NDVI in both types of dehesa were 0.28
and 0.29, reflecting probably both, a large area of dry grass stratum and a low
density of tree and shrub leaf biomass, being its overall spatial variability relatively
low (CV<10%). NDVI values were below 0.3 in most of the area of dehesa (81%
of D-ss and 67% of D-ds); this last class showed NDVI between 0.3 and 0.4 in
34% of total area, probably due to the contribution of shrub leaf biomass. Average
NDVI in W and W/SC was 20-25% higher than in dehesa classes, which could be
attributed to a greater density of leaf biomass of trees and trees with shrubs,
respectively. NDVI range of 0.3-0.4 was observed in 98% of total area of W/SC,
while the same range was limited to 75% of W area, which interestingly showed
10% of area in the top values recorded in the farm, range 0.4-0.5. The overall
internal variability of W and W/SC classes was also low, with CV of 12% and 6%,
respectively. Spectral discrimination through NDVI was useful but not enough to
differentiate between dehesa classes nor between W and W/SC. NDVI allows to
differentiate among ecosystems (Pettorelli et al. 2005), but not among woodlands
with similar species composition as occur in the study area.

Automated map generation and accuracy
Combining two LiDAR-derived indexes related to tree cover (TCCI) and shrub
cover (SCCI), allowed to generate and automated land-cover map of woody
vegetation (Figure 1f). This map represented a similar image of the land-cover
classes area and distribution identified by digitization. In fact, its accuracy can be
considered higher than other maps because it was based in high spatial resolution
measures of 3D the vegetation structure. The comparison of digitized and
automated maps of land-cover classes revealed a reasonable accuracy of the
automated mapping method based just in LiDAR point-clouds.
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First, the confusion matrix derived had a Kappa index of 0.297. Although it was
not very high, it was a statistical evidence of a general agreement of automated and
digitized classification of land-cover units. Accuracy in automated identification of
W and D-ss was high (Kappa values of 0.415 and 0.412, respectively). These
results are relevant because the 65% of the W area and the 71% of the D-ss area
were correctly identified. These vegetation classes represented the 90% of total
woody vegetation in the study area. The automated identification of the other two
classes, W/SC and D-ds, was less accurate. Nevertheless, these apparent incorrect
classifications were probably related to the identification errors, caused by the
manual digitization of both land-cover classes, that included a mixture of tree and
shrub strata, not easily perceived by the human eye. The accuracy of the automated
map was the effect of the quality of 3D data and the standardized method applied,
with quantitative thresholds. The automated map can be considered better than the
real reference digitized map. Besides, the high spatial resolution of the automated
map suggested that its quality outperforms the digitized map. These results are
consistent with previous applications of LiDAR data for automated land cover
mapping in non-Mediterranean areas (e.g. Parent 2015).

CONCLUSIONS
Preliminary results indicate that airborne LiDAR data allows to automate the
production of land-cover maps, and to characterize their 3D vegetation structure in
relatively large areas of complex Mediterranean vegetation with a high spatial
heterogeneity.

Figure 2. LiDAR-derived attributes of
3D structure of land-cover classes.
Frequency distributions of: tree
canopy height (a), shrub canopy height
(b), and shrub canopy cover (c).
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