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ABSTRACT

Long-term structural dynamics of shrub layer of temperate oak forest communities
were not extensively reported in published studies. The serious oak decline was
first reported in 1979-80 and nowadays 63.0% of canopy oak trees died in a forest
stand. The data were used to obtain (1) quantitative information on shrub layer
growth, including height (H) and shoot diameter (DSH) condition and basal area
(BA) values; (2) structural information on foliage cover rate of the shrub layer,
mean cover of some shrub species; (3) comprehensive description from the
ecological processes in the shrub layer in the last 45 years and our objective was
(4) to analyze the possible effects of oak decline on the shrub growth dynamics.
The following measurements were carried out in the 48 x 48 m plot: shoot height,
shoot diameter, basal area and foliage cover of each individuals in the high shrub
layer. Correlation analysis confirmed that significant positive relations were
between mean H, mean DSH of the dominant woody species (Acer campestre,
Acer tataricum and Cornus mas) and oak tree density between 1972 and 2017. The
decreasing oak tree density did not show detectable impact to the co-dominant
shrubs growth. There was a low significant association between number of oak
trees and basal area of high shrub layer. Finally, there was a statistically significant
interaction between mean cover of A. campestre and C. mas and oak trees. The
findings of the study indicate that forest responded to oak decline with significant
structural rearrangement in the shrub layer.
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INTRODUCTION
Shrub layers of forests change dynamically and respond sensitively to the
environmental changes (Chipman and Johnson, 2002; Rees and Juday, 2002). They
are strongly related to the structure and composition of the tree layer (De Grandpré
et al., 1993; Klinka et al., 1996). Understory plants are important components of
forests because shrubs play a crucial role in the cycles of some essential nutrients,
including the dynamics of N, K and carbon (Gilliam, 2007). The shrub layers of
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forests are directly contributes to the forest biodiversity (Kerns and Ohmann, 2004;
Aubin et al., 2009), enhancing the aesthetics of forest ecosystems and helping to
protect watersheds from erosion (Alaback and Herman, 1988; Muir et al., 2002).
Shrubs can mitigate forest decline and influence forest regeneration through
affecting light availability (Kunstler et al., 2006). On the other hand, tree and shrub
individuals may compete for resources such as light, nutrients, or water during later
stages of development (Wang et al., 2016). The shrub’s cover may also vary along
with the changes in tree density (Hallinger ef al., 2010).

Serious oak decline was first reported in 1979—80 from our study site, heavily
affecting Quercus petraea Matt. L. (sessile oak) individuals, and by 2017, 62.9%
of canopy oak trees had died (from 816 living trees to 303 trees ha'). An increase
in the decline of living oak trees was reported in many regions of Hungary since
1978 (Kotroczo et al., 2007). Many biotic and abiotic factors have been identified
as important in oak decline events, such as extreme weather conditions (Drobyshev
et al., 2008; Bolte er al., 2010), insect fluctuations (Moraal and Hilszczanski,
2000), disease outbreaks (Mistretta, 2002) or climate change, air pollution and fires
(Signell et al., 2005; Kabrick et al., 2008). The resulting changes in the forest stand
were described in many papers (Jakucs, 1988; Kotroczé et al., 2005; Mészaros et
al.,2011; Misik et al., 2014, 2017).

Few published papers have investigated the long-term dynamics and structural
changes in the understory shrub layer of deciduous oak forests (Alaback and
Herman, 1988; Chapman et al., 2006; Gracia et al., 2007; Gazol and Ibafiez, 2009;
Chapman and McEwan, 2016). Our comprehensive investigations play a gap-
filling role.

The research data were used to obtain (1) quantitative information on shrub layer
growth, including height (H) and shoot diameter (DSH) condition and basal area
(BA) values relation with oak tree density; (2) structural information on foliage
cover rate of the shrub layer, mean cover of some shrub species relation with oak
tree density; (3) comprehensive description from the ecological processes in the
shrub layer in the last 45 years and our objective was (4) to analyse the possible
effects of oak decline on the shrub growth dynamics.

MATERIAL AND METHODS

The 24ha reserve study area is located in the Biikk Mountains of northeast Hungary
(47°55' N, 20°46’ E) and at an altitude of 320-340 m above sea level. Descriptions
of the geographic, climatic parameters, soil conditions, and vegetation of the forest
were reported in detail by Jakucs (1985, 1988). The most common deciduous forest
association in this region is Quercetum petraeae-cerridis So6 1963 (sessile
oak—Turkey oak) forest with a dominant canopy of Q. petraea and Quercus cerris
L. (Turkey oak). Both oak species are important dominant, native tree in Hungarian
natural woodlands.

Monitoring activities started in 1972 and it was repeated in 1982, 1988, 1993,
1997, 2002, 2007, 2012 and finally in 2017 in the growing seasons. The shrub layer
was divided into a low and a high sub-layer in the 48 X 48 m monitoring plot.
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Specimens which were higher than 1.0 m were categorized as high shrubs. Lower
specimens were categorized as low shrubs. The term "dominant woody species” is
used to refer to the Acer campestre L. (field maple), Acer tataricum L. (Tatar
maple) and Cornus mas L. (European cornel) that play a key role in the understory.
Several size variables of each high shrub specimen in the sampling plot were
determined. Plant height (H) was measured with a scaled pole and shoot diameter
(DSH) at 5.0 cm above the ground with a digital caliper. Total basal area of the
high shrub layer and of high shrub species was calculated based on the shoot
diameter values (BA, m* ha™). Mean cover of high shrub species and actual foliage
cover of high shrub layer were calculated in m” and in the latter case expressed in
percentage of the permanent sampling area. The foliage map was built in a GIS
environment (ESRI, 1999). Based on the digitized map we estimated the foliage
cover values with the Spatial Analysis Tools - Calculate Area function of the GIS.
Statistical regression analysis was performed using the PAST statistical software
and significant differences for all statistical tests were evaluated at the level of *P <
0.05; **P < 0.01. There was no significant correlation found between the test
variables at "*P > 0.05.

RESULTS AND DISCUSSION

Mean height and diameter, basal area of shrub species and of shrub layer, foliage
cover and other importance values of understory shrub layer are given in Table 1
and in Table 2. Mean H of dominant woody species in the shrub layer increased
considerably after the start of the oak decline; these species reached maximum
below 3.0 m in height before the oak decline and were growing suddenly after
1982 and were measured between 5.3-8.7 m in height to 2017. Mean H of the co-
dominant shrubs increased from 1.8 m to 2.4 m until 1997, after which it started to
decrease again. Mean DSH of these species increased from 1.5 cm to 2.9 cm;
however, after 1993, the mean values started to decrease. BA of the understory was
only 0.005 m* ha™. After the decline, already in 1982, a considerably increase in
the high shrub layer’s BA was found, and this continued in the following observed
years. The biggest total BA was recorded in the second last measuring with 11.66
m*-ha”. The rate of maples species and C. mas BA together in the total BA was
higher than §9.0%.
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Table 1. Long-term tendency of the mean size values (=SD) in the high shrub layer.

height (m) | diameter (cm)
ear A A 0 4. A o
! camp. tatar. C.mas | dom. camp. tatar. C.mas | dom.
shrubs shrubs
1972 2.29 2.68 2.36 1.75 2.60 2.41 2.45 1.48
1982 4.83 3.43 3.64 2.21 5.20 3.39 3.95 1.91
1988 4.85 3.52 3.69 2.25 6.11 3.57 4.44 2.36
1993 5.20 3.37 3.81 2.34 6.63 4.69 5.68 2.92
1997 5.21 3.75 3.87 2.37 6.83 4.63 4.89 2.46
2002 5.88 4.22 4.66 2.14 8.61 5.36 6.43 2.33
2007 8.23 4.92 4.85 1.96 11.03 6.45 7.82 2.19
2012 7.60 5.50 5.37 1.82 10.63 7.4 7.50 1.94
2017 8.74 5.31 5.26 1.86 9.61 6.08 6.95 2.00
meantSD 5.87 4.08 4.17 2.08 7.47 4.89 5.57 2.18
+2.02 | £0.97 | +0.96 | £0.23 +2.75 | £1.61 | £1.79 | +0.41

The regression analysis confirmed that significant positive relations were between
mean H of maples species and decreasing oak tree density (» = 0.77* and 0.72%)
between 1972-2017. This relation between canopy tree density and mean H of C.
mas (r = 0.82*%*) and mean DSH of dominant woody species (» = 0.84**, 0.80%*,
0.84**) was stronger (Fig. 1. A, B). The relationship was non-significant between
oak density and mean sizes of co-dominant shrub species (» = 0.25™* and 0.62"").

Table 2. Long-term tendency of the mean cover, foliage canopy and basal area
values (£SD) in the high shrub layer.

mean cover (m°) foliage basal area (m” ha™') e
year Cali; t ,;1 C. car;/opy A. A. C mas | shrab
p. atar. mas (%) camp. | tatar. layer
1972 2.79 187 | 245 6440 | 0.177 | 0.137 | 0.137 | 0.48~
1982 4.06 3.19 4.14 85.30 1.85 0.30 0.90 3.13
1988 5.59 3.32 5.21 84.16 2.18 0.19 0.89 3.40
1993 6.88 4.47 7.93 74.00 1.97 0.28 091 3.49
1997 7.23 3.20 5.66 79.50 3.00 0.34 1.38 5.30
2002 6.22 5.58 7.18 67.50 4.19 0.42 1.54 6.85
2007 11.54 9.71 12.44 86.20 4.69 0.35 2.18 7.99
2012 6.12 4.29 6.39 61.48 6.35 0.57 3.92 11.66
2017 12.34 9.97 12.67 91.26 5.16 0.31 1.66 8.04
mean+SD 6.97 5.07 7.12 77.09 3.27 0.31 1.49 5.54
+3.14 | £290 | £3.48 +10.68 +1.99 | £0.16 | +1.10 | +3.48
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Figure 1. Relationship between oak tree density and (A) mean height, (B) mean
diameter of the dominant woody species between 1972-2017. [4. campestre —.
(A) R* =0.60, P < 0.05; (B) R*=0.70, P < 0.01; A. tataricum ---, (A) R* = 0.51, P
< 0.05; (B) R* = 0.64, P < 0.01; C. mas - - - , (A) R* = 0.68, P < 0.01; (B) R* =
0.70, P <0.01]

The analysis did show a significant relation for maples species (r = 0.79%, 0.74%),
for E. verrucosus (r = 0.75%) and for high shrub community (» = 0.77%) between
BA values and decreasing oak tree density (Fig. 2. A). Over last 45 years; the
association is non-significant for BA of C. mas (r = 0.65™"). Low significant
relationship are observed between mean cover of A. campestre, C. mas and oaks
density (= 0.70* and 0.68*) (Fig. 2. B). Changes of mean cover of A. tataricum (r
= (0.57"%), co-dominant shrubs ( = 0.58""), foliage cover of the high shrub layer (»
= 0.20™) and oak decline for the long-term study are found to have a non-
significant relationship. According to Rohrig and Ulrich (1991) 4. campestre is a
relatively drought tolerant species. On the other hand, maples have got "Oskar"-
strategy (Silvertown, 1982). Maples typically develop a “sit-and-wait” strategy so
they wait for example for the canopy decline events. Oaks cannot successfully
compete with these species (McDonald et al., 2002, Zaczek et al., 2002). Our
results support these statements, because in our site maples showed a significant
increase in size and foliage cover after the oak decline. In the upland oak forest of
USA the total basal area in the understorey was substantially higher in 2002 than in
1934, increasing from 0.9 to 3.6 m*-ha', while the density of most oaks and
shortleaf pines in the canopy decreased (Chapman et al., 2006). We found similar
tendency in Sikfékut. Our findings confirm that long-term DSH changes of the
dominant woody species and size values of A. campestre most significantly
associated with oak decline (Fig. 1., 2.).
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Figure 2. Relationship between oak tree density and (A) basal area, (B) foliage
cover changes in the shrub layer between 1972-2017. [4. campestre —. (A) R* =
0.63, P <0.05; (B) R* = 0.49, P < 0.05; A. tataricum -+, (A) R* = 0.55, P < 0.05; E.
verrucosus - - - , (A) R* = 0.56, P < 0.05; high shrub layer -« - « - (A) R* = 0.60, P
<0.05; C. mas - - -, (B) R*=0.46, P < 0.05]

CONCLUSION

Our study suggests that (1) dominant woody species growth was significantly
affected by serious oak decline; this association was higher to the DSH values of
these species. (2) Decreasing density of canopy oak trees was significantly affected
on the long-term trend of basal area of maples species and E. verrucosus. The
association was similar to the high shrub community. (3) A significant relationship
between mean cover of A. campestre and C. mas and oak tree density was observed
for the 45 years in the studied forest stand. Overall, the shrub layer condition and
growth dynamics consistently associated with canopy oak mortality.
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