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ABSTRACT
Climate change can be seen as a shock that decreases the value of economic
activities and production functions. Therefore, this study estimates technical
efficiency as an integrated approach with risk preferences and social capital for
small vineyard farmers who have adapted to climate change, because empirical
evidence shows the key role of adaptation, risk preferences and social capital
related to technical efficiency on a one-to-one basis, but not as overarching
analysis. This study took place in the O’Higgins and Maule regions of central
Chile, data were collected through a field experiment and an exit survey from
September to December 2016. Specifically, we conducted an artefactual field
experiment to elicit risk preferences from 175 small vineyard farmers; we used the
midpoint method to estimate the Cumulative Prospect Theory (CPT) parameters,
which indicate vineyard farmers are risk averse, sensitive to losses, and tend to
distort probabilities. Then we applied a stochastic frontier analysis on the main
variety area of vineyards. Results showed that the influence of capital (0.55) and
number of vines (0.32) is higher enough; whereas, labor (0.13) and intermediate
inputs (0.11) are also important but relatively low. The scale elasticity is 1.11,
showing a Constant Returns to Scale (CRS). On average, technical efficiency was
0.73, which means that farmers could improve their performance by 27%.
Additionally, results suggest that experience and education positively influence the
technical efficiency, contrary to age, gender, region and density; whereas, access to
extension services and irrigation increases efficiency. Also, general trust and
membership in farmer organizations increases efficiency; and, as we expected, risk
aversion and probability weighting decreases efficiency. In this regard, it is
necessary to design policies and strategies focused on facilitate accessibility to
exchangeable inputs; in the promotion of extension services with greater action
area; facilitate access to irrigation through subsidies and credits; improve trust in

96



AGROFOR International Journal, Vol. 6, Issue No. 1, 2021

programs and networks; develop cooperative enterprises or local and horizontal
organizations to share information and services from farmer to farmer; and also
generate action plans to promote a better risk and loss behavior in order to seize
technological and economic opportunities and not overestimate extreme events.

Keywords: Technical Efficiency, Sochastic Frontier Analysis, Cumulative
Prospect Theory, Risk preferences, Social Capital, Adaptation to Climate Change,
and Vineyard farmers.

INTRODUCTION

Climate change is an alteration of weather conditions over a period of time,
normally more than two decades, and has a negative or positive effect on human
societies or natural ecosystems. In the case of negative effects, changes in weather
patterns (e.g., as a result of changes in temperature or rainfall) can stimulate an
increase of pests and disease pressure, droughts or flooding, among other events
that could lead to damage on infrastructure and production systems. Climate
change means an immediate technological shock that decreases the value of
economic activities over time (Kelly et al., 2005); and indeed, climate change can
affect the deterministic and stochastic parts of a production function (Alpizar et al.,
2011; Kelly et al., 2005). Thus, one process to face climate change effects is
adaptation. Several studies point out that implementing relevant adaptation options
increases productivity or technical efficiency of crops by reducing negative effects
from climate change (Wossen et al., 2015; Roco et al., 2017; Khanal et al., 2018).
Accordingly, it is necessary to integrate the effect of adaptation options into
technical efficiency analysis. Also, to improve the analysis of technical efficiency
in the face of climate change, it is important to include farmers” risk preferences.
We contribute to the literature in three key aspects: 1) we apply Cumulative
Prospect Theory determining risk aversion, loss aversion, and the probability
weighting function to understand their effect in technical efficiency; 2) we extend
the analysis of the role of social capital by including trust and social norms in
addition to social network; 3) we incorporate in the analysis the effect of
anticipatory and reactive adaptation options. This study was implemented in the
O’Higgins and Maule regions of central Chile, home to 80% of the total grape
production in the country, where around 60% of the farmers are small. We
conducted an artefactual field experiment to elicit risk preferences from 175 small
vineyard farmers. We used the midpoint method to estimate the risk preference
parameters. We apply a stochastic frontier analysis on the main variety of grape
produced in the vineyard, which allows us the opportunity of appraisal of
individual farmer capacities in comparison to a frontier.

MATERIALS AND METHODS
Area of study
This research took place in the two most important regions for the cultivation of
vineyards in Chile: Region VI of O"Higgins and Region VII of Maule. For
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instance, Region VI of O'Higgins contains 34.44% (47,382.07 ha) of the total area
in Chile under grape cultivation, while Region VII of Maule contains 38.88%
(53,496.51 ha).

Data

Sample data

In general, the data for this study were collected through a field experiment and an
exit survey with vineyard farmers of central Chile. We selected farmers based on a
database from the University of Talca, Chile. This original database was collected
from November 2014 through February 2015 and consisted of 452 vineyard
farmers from the Region VI of O’'Higgins and Region VII of Maule and it is a
cross-sectional data with socioeconomic, irrigation systems, production and social
capital variables.

From this database, we randomly selected 204 small vineyard farmers from the
regions mentioned above because of their importance for vineyard cultivation.
Afterwards, we contacted these farmers by phone to find out their willingness to
participate in the research. From these 204 vineyard farmers, 22 were excluded
because they no longer cultivate vineyards, and another 7 also were excluded
because we identified inconsistencies in the data. In the end, the sample size for
this study was 175 small vineyard farmers distributed throughout the regions of
O'Higgins and Maule in a total of 16 communities.

Stochastic frontier specification and variable selection

Small vineyard farmers from Region VI of O"Higgins and Region VII of Maule
(central Chile) show different proportions of area allocated to vines, a large range
of vine varieties, different technologies, management, and market orientation,
which means different scales of the vineyards’ production. In this regard, the
stochastic frontier analysis (SFA) allows us the opportunity of appraisal of
individual farmer capacities in comparison to a frontier (Meeusen and van Den
Broeck 1977), where deviations from the frontier are explained by the composed
error term: the statistical error term or random noise (v;) distributed as N (0; 62,),
and the inefficiency error term (u;) distributed as N* (0; 6,) (Aigner et al., 1977),
as we explained in section 2 of the theoretical framework. Nevertheless, as we used
a production function based on cross sectional data where farms vary in size,
among other factors, we can expect that the inefficiency error term (u;) is
heteroscedastic (Caudill and Ford 1993; Caudill et al., 1995: Wang and Schmidt
2002) and can be dependent on a group of covariates (Wang and Schmidt 2002).
Basically, we considered the effect of a vector of variables on the variance of the
inefficiency arror term distribution, as we can see in equation (15) N* (0; ¢2)
where o, = exp(z6), this condition is called the scaling property and explains if
the models adjust to the data (Simar et al., 1994; Caudill et al., 1995: Wang and
Schmidt 2002). However, not all models have this condition. For instance, authors
such as Kumbhakar et al. (1991), Huang and Liu (1994), and Battese and Coelli
(1995) take into account the effect of a vector of variables on the mean of the

98



AGROFOR International Journal, Vol. 6, Issue No. 1, 2021

inefficiency error term distribution, in this case, N* (u; 6°,), where u= f(z6); thus,
a higher u means a higher inefficiency.

In this research, we applied the model developed by Wang and Schmidt (2002)
taking into account the scaling property, because, as we mentioned before, due to
the differences in area for vines, vine varieties, technologies, management, and
market orientation, we anticipated variation at the efficiency level. We were sure
about this model after the procedure of estimation and analysis of technical
efficiency because we identified the effects of covariates in the model. For the
production frontier, we have chosen the Cobb-Douglas function form and tested it
against the more flexible translog form. The likelihood Ratio Test (LRT) confirms
the selection of the Cobb-Douglas form at a 1% significance level. We also
performed the LRT for the selection of the input variables, to avoid omitted or
overestimated variable bias.

The Cobb-Douglas production function as an empirical model has an easy
interpretation and also assumes equal production elasticities, scale elasticities and
unitary elasticities of substitution for firms (Coelli and Sanders, 2013; Greene,
2008), and in general, the coefficients can be interpreted as output elasticities.
Fundamentally, the general model is:
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Where the output (y;) is the value of the total production of grapes in tons per main
variety area, the inputs are capital stock (k;) explained by the value of vineyards in
the main variety area plus one-time investments such as irrigation and training
system and labor (L;) is the total labor days per year to apply agrochemical
(fertilizer, acaricide, herbicide, insecticide, and fungicide) and carry out
management activities (pruning, harvesting, disbudding, and toping). Intermediate
inputs (IM;) is defined as the total value or cost of agrochemicals (fertilizer,
acaricide, herbicide, insecticide, and fungicide) and water rights, the number of
vines (NV;) per area of the main variety, and the plantation age (PA;). In addition,
we included variables that might shift the production frontier: a dummy variable
for variety quality (low or high), and training system (parron or espaldera). All
these variables were selected in order to generate a constant flow of services across
the farmers, and also to avoid multicollinearity. Furthermore, these variables were
scaled by their mean and then we took logarithms in order to have a better
convergence of the function. Then, we analyzed the determinants of technical
efficiency to explain deviations from the frontier accordingly to Wang and Schmidt
(2002) and the scaling function defined as: (;,) = exp (2):
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Where EX; is experience in vineyards (years), Ag; is age of farmers (years), Ed; is
level of education (years), Ge; is gender (male), Ti; is distance to market (minutes),
De; is density (number of vines per ha), Ad; is advisor, Ir; is type of irrigation (drip
or furrow), Pp; is prevention of pests through pheromone diffusers (yes or no), Pd;
is prevention of diseases (yes or no), Ma; is management (conservation practices),
Hs; is mitigation of frost (heating systems), Md; is mitigation of diseases
(chemical), In; is insurance (yes or no), Tr; is general trust (yes or no), Nt; is
network (number of farmers who adopted technologies), Nr; is norm of reciprocity
(organization of agricultural events to improve knowledge), M; is membership in
agricultural organizations (yes or no), Ra; is risk aversion, La; is loss aversion, and
Pw; is probability weighting (distortion or not of probabilities). Finally, we use
Battese and Coelli (1988) for the estimation of technical efficiency (TEi) of each
farmer, as it shows in Kumbhakar and Lovell (2000):
S SRR (3)

RESULTS AND DISCUSSION

Risk preferences parameters

From the total farmers of the sample (175), we estimate the Cumulative
Prospective Theory (CPT) risk preferences parameters (g, A and y) (Table 1). Our
estimations are consistent with estimations in the literature (see section 2.2). For
instance, ¢ =0.84 which indicates risk aversion among the farmers. Regarding loss
aversion, A =2.98, we can assume that vineyard farmers are three times more
sensitive to losses than to gains. Finally, the value of probability weighting is
¥=0.75 which means that vineyard farmers tend to overestimate small probabilities.

Table 1. Risk preference parameters using the midpoint method (inequalities).

Parameter Value Std. Bo=1
Err.

Curvature of value function (Risk aversion) (o) 0.84*** 0.034 0.000

Loss Aversion (M) 2.98*** 0.286 0.000

Probability weighting (-5 0.75*** 0.013 0.000

Observations 175

Clusters 0

Source: own calculation.
Note: *p < 0.1, ** p < 0.05, *** p < 0.01.

To estimate the parameters of risk aversion, probability weighting and loss
aversion for each observation (each individual farmer), we follow the midpoint
method established by Tanaka et al., (2010) and applied by Liu (2013); Bocquého
et al., (2014); and Ward and Singh (2015).

Functional form: parameters of the production function and determinants

As we stated before, this research took place in Region VI of O"Higgins and
Region VII of Maule, central Chile. In these regions, the vineyard production is
well explained by a Cobb —Douglas Stochastic Frontier production function, we
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choose this functional form after testing it against the translog production function.
In general, we performed the Likelihood Ratio Test (LRT) to confirm our selection
at a 1% significance level (p-value=0.055). This is consistent with the literature, for
example, Moreira et al (2011) analyzed the technical efficiency of Chilean grape
farmers in central Chile through a Cobb —Douglas production function. In our
production model, capital, number of vines per main variety, labor and
intermediate inputs are the most important inputs. The coefficients of this group of
inputs are all significant, positive and were estimated through the Maximum
Likelihood (ML) approach. Other studies in grape vine production indicate that the
most influential inputs are block size (an area with one variety and a certain
management), labor and machinery (Moreira et al., 2011), and also that land, labor,
and agrochemicals (pesticide, herbicide and fertilizer) are the most imperative
inputs (Piesse et al., 2018). To a certain extent, these results are similar, as we
included the land value in capital and we used number of vines per main variety
instead of area in order to avoid multicollinearity among the variables. In addition,
our model includes intermediate inputs such as agrochemicals (pesticide, herbicide
and fertilizer), but including water rights.

According to the literature, the influence of capital (0.55) and number of vines
(0.32) is high enough, whereas, labor (0.13) and intermediate inputs (0.11) are also
important but relatively low (Table 2). Finally, the sum of these exchangeable
inputs or the scale elasticity is 1.11, showing a Constant Returns to Scale (CRS),
we confirm this condition by the Wald-test (p=0.8507). This Constant Returns to
Scale (CRS) means that output increases by the same proportional change as all
inputs change. Regarding the variables that might shift the production frontier, age
of vines is negative, as we expected, but not significant. Whereas, variety quality is
negative and significant, which makes sense because generally, the higher the
quality the less production. The training system (“parrén”) is positive and
significant, which means this trellising system helps to improve production.

Table 2. Estimated coefficients for the stochastic production frontier.

Parameter Value Std. Err.
Intercept 0.29*** 0.091
Capital 0.55*** 0.164
Labor 0.13** 0.073
Intermediate inputs 0.11** 0.058
Number of vines 0.32%** 0.087
Age of vines -0.004 0.002
Variety quality -0.44%** 0.104
Training system 0.50*** 0.133
Observations 175

Chi2 441.41

P 0.0000

Source: own calculation.
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Note: *p < 0.1, ** p < 0.05, *** p < 0.01.
The mean Technical Efficiency index is 0.73 (73%) with a standard deviation of
0.17, which indicates that farms could improve their performance by 27%.

0 2 4 6 1
Technical efficiency via E[exp(-u)le]

Figure 1. Technical efficiency of vineyard farmers in central Chile.
Source: own calculation.

Deviations from the frontier could be explained by socioeconomic, technological,
social capital and behavioral determinants, as we can see in Table 3. As we
mentioned in the theoretical framework and methodology, the inefficiency model
has a half-normal distribution. In general terms, it is possible to see and understand
the effect of socioeconomic variables, adaptation options, social capital forms and
risk preference parameters in technical efficiency of small vineyard farmers of
central Chile.

Table 3. Determinants of technical efficiency.

Variable Coefficient -  Effecton ME

Err. TE

Experience -0.04***  0.015 + -0.004
Age 0.04** 0.020 - 0.002
Education -0.08 0.057 + -0.544
Gender 1.91** 0.812 - 0.015
Time to market 0.02 0.019 - 0.004
Region 2.01***  0.752 - 0.013
Density 0.001*** 0.001 - 0.002
Advisor -1.27** 0.560 + -0.001
Irrigation -0.99** 0.530 + -0.003
Prevention of pests (pheromone -0.06 0.662 4 0.004
diffuser)

Prevention of diseases -0.98 0.808 + 0.015
Management 1.90***  0.664 - 0.016
Mitigation of frost -0.67 0.513 + -0.007
Mitigation of diseases -0.10 0.468 + 0.015
Weather insurance -0.58 0.765 + 0.005
General trust -0.60** 0.254 + -0.003
Network with adaptation 0.43 0.568 - 0.005
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Norm of reciprocity (events) 0.34* 0.198 - 0.046
Membership -0.90* 0.533 + -0.002
Risk aversion 0.76** 0.454 - 0.003
Loss aversion 0.25 0.413 - 0.003
Probability weighting 2.88* 1.628 - 0.019
Observations 175

Chi2 441.41

P 0.0000

Source: own calculation.
Note: *p < 0.1, ** p < 0.05, *** p < 0.01.

As we expected, experience in vineyard production has a positive effect on
technical efficiency (-0.04) at a significance level of 1%, because more experience
can lead to better decision making when farmers face production problems. In the
case of age, this determinant decreases efficiency (0.04) and is significant at a 5%
level, which is, in some cases, an expected result because we can assume that old
farmers are not interested in change or improving their production system. On the
contrary, young farmers could show more willingness to participate in extension
services programs, adopt new technologies, improve or make changes to their
systems in order to have better revenues, etc. Gender (=1 if male) also has a
negative effect (1.34) on efficiency at a significance level of 5%, this could be
interpreted as female farmers being generally better decision-makers. The distance
to the closest market in minutes also has a negative effect on technical efficiency
(0.02), this could be interpreted as: the farther from the market the less efficient,
because more distance implies more logistics and costs to deliver the grapes, also
those farmers that are further away from the market have less access to information
and services (prices, technologies, extension services, credits, insurance, etc.). In
the case of region, we identified that this variable decreases efficiency (2.01) with a
significance level of 1%, which indicates that farmers from Region VII of Maule
are less productive than farmers from Region V1 of O Higgins. To confirm this, we
compared yields of each region. It turns out that farmers from Region VII of Maule
has an average yield of 11.95 tons per ha, whereas farmers from Region VI of
O’Higgins has an average yield of 15.37 tons per ha. This may be due to the
proximity of Region VI of O"Higgins to the metropolitan region of the country,
what means better access to markets, information and services. An interesting
determinant is density (vines per ha) because this decreases efficiency (0.01) and is
significant at a 1% level. Nevertheless, this could be interpreted as: the small
vineyard farmers are more interested in high quality levels of grapevines which
implies less vines per ha.

Regarding access to extension services, we identified that this has a positive effect
on technical efficiency (-1.27) at a significance level of 5%, which could be
interpreted as: the extension services from the government and ministries are well
structured with enough quality to solve problems. In the case of irrigation (furrow),
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this increases efficiency (-0.99) and is significant at a 5% level. This could lead us
to believe that farmers do not have problems with water access, of course they paid
for water rights but once they have access there are no problems with the amount,
this could explain why so few adopt modern irrigation. Moreover, management
decreases efficiency (1.90) at a significance level of 1%. This could be due an
overuse of cultural practices such as pruning, disbudding, and topping. It would be
interesting to analyze the effectiveness and costs of each activity. In relation to
other technologies or adaptation options that help to face the negative effects of
climate change (prevention of pests, prevention of diseases, mitigation of frost,
mitigation of diseases), we found that these could have a positive effect on
technical efficiency but they are not significant. Regarding social capital forms, as
we mentioned before, empirical studies have showed that social capital plays a key
role in understanding sources of inefficiency — efficiency (Binam et al 2004;
Muange (2015)). Concretely, we found that general trust makes farmers more
efficient or increases efficiency (-0.60) at a significance level of 1%: maybe
farmers are more willing to cooperate or engage in productive interactions, they are
able to learn from others and also from extension services. In general, more
trusting farmers may be more open to receive and share information and services.
In the case of the norm of reciprocity, it has a negative effect on technical
efficiency (0.34), this is significant at a 10% level. This result could be explained
as such: more time invested in the organization of events to share knowledge could
lead to having less time to make decisions about production or to be involved in
key production activities on the farm, or perhaps the effect of these agricultural
events is not as expected. Membership (-0.90) increases efficiency at a significance
level of 1%, this could be explained by farmers being more exposed to information,
services, shared experience and having access to technologies or adaptations
options. Muange (2015) reports similar findings; he analyzed the effect of social
network and membership as mechanisms to access finance, information, and other
benefits. Binam et al., (2004) emphasize the role of social capital on technical
efficiency; basically, they analyzed the relationship between membership and
inefficiency, highlighting how social capital provides incentives for efficient
production. They explained that member farmers of an association can share
information about technologies and production activities, and they can increase
their access to extension services. All of these effects improve market access and
incomes.

Regarding risk preferences, in agriculture, risk plays an essential role for
production decision making (Bocquého et al., 2014). Moreover, it has an important
effect on decisions concerning inputs and also outputs (Kumbhakar 2002).
However, thus far, risk preferences, estimated under cumulative prospect theory
(CPT), have not been included in the combined analysis of technical efficiency,
social capital and adaptation. For these reasons, we included the risk averse, loss
averse and probability weighting variables in order to understand their effect on
efficiency. In this case, we use these parameters as dummy variables because as
Liu (2013) stated, these parameters show some grade of correlation that could lead
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to a misinterpretation of the results. In this context, under cumulative prospect
theory (CPT), farmers exhibit risk averse behavior (0.76), which is significant at a
5% level. Basically, this variable has a negative effect on technical efficiency, as
risk averse farmers tend to avoid changes in technologies or practices, even more
when these activities are expensive. Finally, the probability weighting variable
(2.88) decreases efficiency at a significance level of 1%. This is because farmers
who distort probabilities try to avoid changes in production systems.

CONCLUSIONS

This study estimates technical efficiency as an integrated approach including risk
preferences and social capital for small vineyard farmers who have adapted to
climate change. Empirical evidence shows the key role of adaptation options, risk
preferences and social capital related to technical efficiency of productive systems
on a one-to-one basis, however up to this point there has been no overarching
analysis. This study focuses on Stochastic Frontier Analysis, in order to estimate
technical efficiency and its determinants, which are: adaptation options to face
climate shocks, risk preferences (risk aversion, loss aversion and probability
weighting) and social capital forms (trust, network, and social horms). We also
control for socioeconomics variables and physical characteristics of the farm. It is
important to highlight that we estimate risk preference parameters under
cumulative prospect theory (CPT) (curvature of the function as a measure of risk
aversion, loss aversion and probability weighting) because to date, the majority of
literature regarding the analysis of risk and technical efficiency has been based on
expected utility theory (EUT), which cannot capture how farmers make decisions
based on the possibility of gains or losses and how farmers distort probabilities. We
used a Cobb — Douglas production function with a sample of 175 small vineyard
farmers. Results showed that the influence of capital (0.55) and number of vines
(0.32) is relatively high. Whereas, labor (0.13) and intermediate inputs (0.11) are
also important but on a relatively low level. The scale elasticity is approximately
1.11, showing a Constant Returns to Scale (CRS), in other words, output increases
by the same proportional change as all inputs change.

On average, technical efficiency was 0.73, which means that farmers could
improve their performance by 27%. Results suggest that experience and education
positively influence the technical efficiency of vineyard systems, as opposed to
age, gender, region and density. Access to extension services and irrigation
increases technical efficiency. Additionally, general trust and membership in
farmer organizations increases technical efficiency. Finally, as we expected, risk
aversion and probability weighting (distortion of objective probabilities) negatively
influence the technical efficiency. In light of our findings, it is necessary to design
policies that facilitate small farmers’ access to a wide range of exchangeable
inputs, in order to take advantage of the Constant Returns to Scale. In addition, it is
necessary to promote strategies and policies with an emphasis on more extension
services with greater action area, facilitating access to irrigation through subsidies
and credits and improving trust in programs, projects, and networks. It is also
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necessary to develop cooperative enterprises or local and horizontal organizations
to share information and services from farmer to farmer and also to generate action
plans to promote a better risk and loss behavior in order to seize technological and
economic opportunities and not overestimate extreme events.
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