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Abstract—The research focuses on optimizing and developing a breast cancer segmentation model utilizing multi-GPU arrays to 

maximize hardware resource utilization. By exploring various architectural strategies, the study aims to enhance resource allocation 

efficiency despite existing limitations. Detailed evaluations using mammography datasets have demonstrated significant improvements 

in tumor detection capabilities. This technology holds the potential to revolutionize breast cancer detection, a critical advancement 

given the global impact of the disease. Training data analysis confirms the scalability of these results across diverse 

hardware configurations, ensuring high efficiency and reliability. The study employs modern architectures, contributing valuable 

insights to the field of breast cancer segmentation and advancing medical imaging technologies. The development of efficient and 

clinically viable solutions is imperative in contemporary medical image analysis. While state-of-the-art deep learning architectures 

offer impressive capabilities, their substantial computational demands pose barriers to widespread clinical adoption. This research 

addresses the need for solutions that efficiently process large datasets while maintaining diagnostic accuracy, facilitating integration 

into clinical workflows and reducing operational costs. 
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I.  INTRODUCTION 

The exponential advancement in computational capabilities 
has catalyzed unprecedented progress in artificial intelligence 
(AI) applications across medical imaging domains. Deep 
learning architectures have demonstrated remarkable efficacy 
in medical image analysis, particularly in oncological 
diagnostics [1]. Recent developments in computer-aided 
diagnosis (CAD) systems have shown significant potential in 
augmenting clinical decision-making processes, with particular 
emphasis on breast cancer detection and segmentation 
methodologies [2]. 

The optimization of deep learning models for medical 
image segmentation presents multifaceted challenges, 
encompassing computational complexity, model 
generalization, and clinical reliability. Contemporary research 
indicates that while deep neural networks achieve state-of-the-
art performance in segmentation tasks, their deployment in 
clinical settings necessitates sophisticated optimization 
strategies [3]. The integration of transformer-based 
architectures and attention mechanisms has further expanded 
the computational paradigm, introducing additional 
optimization considerations in the context of medical image 
analysis [4]. This investigation addresses the fundamental 
challenges in optimizing deep learning models for breast 
cancer segmentation, with particular emphasis on the intricate 
balance between computational efficiency and diagnostic 
accuracy. The research methodology encompasses systematic 
analysis and implementation of advanced optimization 

techniques, including parallel processing architectures, memory 
management strategies, and precision optimization through 
weight quantization . 

A. Motivation 

The development of efficient and clinically viable solutions 
represents a critical imperative in contemporary medical image 
analysis. While state-of-the-art deep learning architectures 
demonstrate impressive capabilities, their implementation often 
requires substantial computational resources, creating 
significant barriers to widespread clinical adoption. This 
limitation becomes particularly acute in healthcare facilities 
with standard computational infrastructure, where 
the deployment of resource-intensive models proves 
impractical. 

The increasing volume of medical imaging data in clinical 
practice necessitates solutions that can process large 
datasets efficiently while maintaining diagnostic accuracy. 
Current complex architectures, despite their sophisticated 
nature, frequently present challenges in real-time processing 
scenarios, limiting their integration into time-sensitive clinical 
workflows. Furthermore, the operational costs and energy 
consumption associated with running computationally 
intensive models pose additional constraints on healthcare 
providers. These practical limitations underscore the necessity 
for optimized approaches that achieve a more favorable 
balance between model performance and computational 
efficiency. The development of streamlined architectures that 
maintain high diagnostic accuracy while 
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reducing computational overhead would significantly enhance 
the accessibility and utility of AI-based diagnostic tools across 
diverse clinical settings. 

II. METHODOLOGY 

In this research, a distributed strategy for training deep 
neural networks was applied. The initial step involved selecting 
the platform for the construction and training process. 
Subsequently, a credible source of mammographic images was 
identified, which were then preprocessed and prepared for the 
upcoming analysis. Upon completing the image import into the 
operational memory, a model architecture with pre-trained 
parameters (Imagenet) was created. However, the number of 
images was insufficient to achieve high precision 
generalization. Hence, data augmentation was applied to create 
batches for partial model training, which still has limitations on 
overall anomaly generalization in mammographic images. 
Nonetheless, there is potential for expanding the model to 
larger hardware architectures. 

A. Hadrware specifications 

The Kaggle platform facilitates computationally intensive 

tasks through a synergistic combination of scalable cloud 

resources and advanced hardware accelerators. These 

resources encompass Central Processing Units (CPUs), 

Graphics Processing Units (GPUs), and Tensor Processing 

Units (TPUs), each playing a pivotal role in various stages of 

machine learning and data processing workflows.  

The Intel Xeon 2.20 GHz CPU, featuring four virtual cores 

and 32 GB of Random Access Memory (RAM), is optimized 

for general-purpose computations and serves as the foundation 

for preprocessing, data Smanagement, and sequential 

computations. CPUs are particularly well-suited for tasks 

requiring flexibility, such as handling heterogeneous data 

pipelines, executing conditional logic, or performing 

operations that are not easily parallelizable. The CPU's 

multithreaded architecture enables concurrent task handling, 

ensuring efficient resource allocation and reduced latency 

during operations such as data loading, transformation, and 

feature extraction. 

TABLE I.  ACCESSIBLE HARDWARE SPECIFICATIONS 

Hardware 

Components   

Number of 

Cores 
Memory 

NVIDIA Tesla P100 

GPU  

3584 CUDA  

cores  

16 GB 

VRAM 

NVIDIA T4 x2 GPU 
2560 CUDA  

cores  

16 GB 

VRAM 

Google TPU v3-8  
8 TPU v3 

cores 

128GB 

VRAM 

Intel Xeon 2.20 GHz 

CPU  

4 vCPU  

cores  

32GB 

RAM 

 

B. Source and Processing of Images 

For model training, mammographic images from the 

CBIS-DDSM (Curated Breast Imaging Subset DDSM 

Dataset) [5] dataset were utilized, following a preprocessing 

procedure involving extraction, normalization, and pairing for 

training. In total, 10,642 images were preprocessed and loaded 

into memory. Employing parallelism, in accordance with 

Amdahl's Law [6]: 

 

  (1) 

  

where S(N) represents the theoretical speedup factor, p is the 

proportion of the program that can be parallelized, and N is the 

number of processing cores. Using this equation with our 

quad-core processor (N=4) and a parallelizable portion of 85% 

(p=0.85), an acceleration of 392% is attained, in contrast to the 

image processing duration without parallelism utilization. 

Subsequent to partitioning the dataset, images undergo 

resizing to dimensions of 224x224 to ensure efficient and 

uniform model training. 

 

 
 

Figure 1.  Mammogram Normalization - Original vs. Normalized Images 

Fig. 1 demonstrates various normalization 

techniques applied to a breast image. The original image (a) 

serves as the baseline. Min-Max normalization (b) adjusts 

pixel values to a specific range, preserving appearance but not 

significantly enhancing contrast. Z-score normalization (c) 

standardizes pixel values, increasing the signal-to-noise ratio 

but potentially causing overexposure and detail loss in 

bright areas. CLAHE (d) enhances local contrast through 

histogram equalization in small regions, preserving details and 

making subtle differences more visible. This method 
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is preferred in medical imaging for its ability to improve 

feature visibility without excessive noise amplification. 

Through this normalization process, the model has become 

more sensitive to details in the images, facilitating the 

identification of tumorous regions and other pathological 

changes. This method has provided stability, generalization, 

and better differentiation of tissue characteristics in medical 

breast images, thereby contributing to overall improvement in 

segmentation processes and result quality. 

 

C. Model Architecture 

In this study, three deep learning architectures were 

selected: VGG19, InceptionV3, and SEResNet50. VGG19, 

known for its simplicity and effectiveness in hierarchical 

feature extraction, was selected for its well-established 

performance in image classification tasks [7]. InceptionV3, 

with its innovative Inception modules, enables the model to 

efficiently learn multiscale features, making it suitable for 

complex image analysis tasks [8]. SEResNet50, which 

incorporates Squeeze-and-Excitation (SE) blocks into the 

ResNet architecture, was chosen for its enhanced 

representational power by adaptively recalibrating feature 

responses [9]. 

 

The Dice coefficient, as represented by (2), is a robust metric 

for evaluating the similarity between predicted and actual 

image segments [10]. Particularly suited for breast cancer 

segmentation, it quantifies the overlap between predicted and 

actual tumor regions by accounting for true positive overlap 

while penalizing false positives and false negatives. This 

balanced evaluation is critical in medical imaging, where 

precise delineation of tumor boundaries significantly impacts 

diagnosis and treatment planning. By ensuring accurate 

capture of intricate tumor morphology, the Dice coefficient 

facilitates reliable model performance assessment and supports 

effective clinical decision-making. 

 

   (2) 

 

Due to the model's sigmoid activation function at the output, 

the intersection and union are mapped to multiplication and 

addition, while the purpose of the auxiliary variable set to 

0.0001 is to avoid division by zero. 

 

The Intersection over Union (IoU) coefficient [11], as 

described in (3), is a key measure in evaluating model 

performance, as it enables the quantification of tumor 

segmentation accuracy relative to actual contours in medical 

images. 

 

     (3) 

 

The loss function is formulated as a fusion of the Dice 

coefficient and the Intersection over Union (IoU) coefficient. 

This composite function offers a holistic evaluation of the 

model's performance in image segmentation, accounting for 

both the precision of segmentation localization and the degree 

of overlap with ground truth image segments. The weighting 

assigned to the Dice coefficient is 0.4, whereas for the IoU 

coefficient, it is 0.6. By subtracting the resultant value from 1, 

the ultimate expression of the loss function is derived. 

D. Training Methodology 

 

In the initial phase of the research, a dynamic strategy was 

employed for model training, utilizing available hardware 

resources based on model size and computational needs. 

Initially, a single Nvidia Tesla P100 GPU was used for 

training smaller models. The training involved a batch size of 

8 augmented image pairs, with data augmentation through 

rotation applied to increase model robustness. As the models 

became larger, two NVIDIA T4 graphics cards were 

employed, utilizing a distributed training strategy. This 

enabled the scaling of the batch size to 16 pairs, processing 32 

augmented pairs per epoch. This flexible approach ensured 

efficient resource utilization and maintained optimal training 

times, allowing the models to be trained effectively while 

leveraging the hardware's capabilities. Data augmentation 

through rotation remained a key strategy, enhancing the 

dataset and improving model generalization. 

III. RESULTS 

Neural Architecture Search (NAS) was used to explore 

various models and identify optimal architectures for 

performance and efficiency. Among the models tested, 

SEResNet50, InceptionV3, and VGG19 were selected based 

on their distinct characteristics and performance. SEResNet50, 

with its attention mechanisms and residual connections, 

outperformed the others, showing superior Dice and IoU 

scores while maintaining a balance in computational 

complexity. InceptionV3 demonstrated strong performance 

and was chosen for further training to evaluate its scalability. 

VGG19, despite its lower performance, was included to 

analyze the impact of architectural simplicity and parameter 

count on segmentation. This selection highlights the 

importance of varying model complexity in optimizing 

segmentation tasks. 

TABLE II.  NEURAL ARCHITECTURE SEARCH (NAS) PERFORMANCE 

Backbone Params Dice IoU 
Training 

Time 

SEResNet50 35.05M 0.6642 0.4640 3.4 

inceptionv3   29.90M 0.6544 0.4568 3.1 

densenet121 12.06M 0.6409 0.4256 3.6 

mobilenet  
 

8.31M 
0.6498 0.4106 1.6 

vgg19 29.06M 0.4182 0.2515 2.9 
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InceptionV3 outperforms SE-ResNet50 despite its lower 

initial NAS ranking due to its architectural strengths. Its 

inception modules enable efficient multi-scale feature 

extraction, improving adaptability and generalization, 

particularly in tasks like medical image segmentation where 

capturing fine details is crucial. This flexibility, often 

overlooked in NAS evaluations prioritizing efficiency, 

becomes evident with further training and optimization. 

Additionally, task-specific hyperparameter tuning likely 

enhanced its performance, emphasizing the interplay of 

architecture and training in model effectiveness. 

  

 
 

Figure 2.  Validation Metrics Comparison 

 

 

The performance metrics, as shown in Fig. 2, 

highlight the distinct capabilities of VGG19, InceptionV3, and 

SeResNet50 in breast cancer image segmentation. 

InceptionV3 stands out for its exceptional accuracy, attributed 

to its advanced architecture that effectively captures complex 

patterns, as evidenced by its superior Dice and IoU scores. 

SeResNet50 also demonstrates strong performance, benefiting 

from its design that enhances feature focus and precision, 

resulting in competitive validation metrics. In contrast, 

VGG19, despite a comparable parameter count, shows 

limitations in detail capture, as reflected in its lower 

performance metrics. These insights emphasize the importance 

of sophisticated network designs in achieving high precision 

in medical image analysis. 

TABLE III.  AVERAGE METRICS OF THE MODEL ON THE VALIDATION SET 

 
Dice 

coefficient 
IOU 

Parameter 

Count 

VGG19 0.822  0.708 29.06M 

inceptionv3 0.879 0.759 29.90M 

Seresnet50 0.836 0.717  29.90M 

 

 
 

Figure 3.  Image Segmentation Comparison 

The segmentation results of breast cancer images using 

InceptionV3, SeResNet50, and VGG19 are compared against 

ground truth annotations, which highlight the precise region of 

interest. SeResNet50 achieves the most accurate boundary 

delineation, closely followed by InceptionV3, while VGG19 

captures the general region but with less precision. This 

comparison highlights the effectiveness of NAS in selecting 
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architectures that optimize segmentation accuracy, with SeResNet50 and InceptionV3 outperforming VGG19.

 

IV. DISCUSSION 

The results of this study highlight the potential of advanced 

neural network architectures like InceptionV3 and 

SeResNet50 in addressing real-world challenges in breast 

cancer diagnosis. These models demonstrated superior 

segmentation capabilities, with InceptionV3 achieving the 

highest Dice coefficient (0.879) and IOU (0.759), followed 

closely by SeResNet50 (Dice coefficient: 0.836, IOU: 0.717). 

These architectures excel at identifying regions of interest 

(ROIs) with high precision, which could significantly enhance 

clinical workflows in hospital settings. 

One practical application of these findings is the development 

of automated ROI selection tools. By leveraging segmentation 

models such as InceptionV3 or SeResNet50, clinicians could 

rapidly identify critical regions in medical scans, reducing the 

manual effort required for diagnosis. This could be 

particularly valuable in breast cancer diagnosis, where 

identifying the tumor boundary and extent is essential for 

treatment planning. Automating these tasks not only saves 

time but also minimizes the risk of human error, ensuring 

consistent and accurate results across cases. 

Moreover, the adoption of such models could alleviate the 

reliance on high-performance computational infrastructure. By 

pre-processing scans to segment ROIs before storage, 

hospitals could significantly reduce the data volume required 

for long-term archival. For instance, rather than storing full-

resolution images, only the segmented ROIs—augmented with 

relevant metadata—could be saved. This approach could 

optimize storage resources while ensuring that critical 

diagnostic information remains accessible. 

In resource-constrained settings, deploying slightly less 

complex models like SeResNet50 or even optimized variants 

of InceptionV3 might allow hospitals to perform segmentation 

locally, avoiding the need for cloud-based solutions or 

powerful centralized hardware. Additionally, integrating these 

models into edge devices, such as portable imaging systems or 

workstation-level machines, could make high-accuracy 

diagnostics feasible in remote or under-equipped facilities. 

These advances also have implications for patient-centered 

care. Faster segmentation and ROI identification could 

streamline workflows for radiologists, enabling quicker 

diagnostic reports and reducing patient wait times. 

Furthermore, accurate segmentation could guide treatment 

decisions, such as biopsy locations or radiation therapy 

planning, thereby improving outcomes. 

To fully realize these benefits, further efforts are needed to 

optimize these models for computational efficiency. 

Techniques such as model pruning, quantization, and transfer 

learning could enable their deployment on standard hospital 

systems without compromising accuracy. Additionally, 

integrating these models into existing radiology software and 

ensuring compliance with data privacy regulations would be 

essential for practical adoption. 

 

V. CONCLUSION 

This research demonstrates the effectiveness of advanced 

neural network architectures, particularly SeResNet50 and 

InceptionV3, in improving breast cancer segmentation in 

medical imaging. These models exhibited strong performance 

in accurately delineating tumor boundaries, which is essential 

for precise diagnosis and treatment planning. By enhancing 

segmentation accuracy, these models can serve as valuable 

tools for doctors, providing additional support in tumor 

detection and assessment. 

In practical applications, these models could be integrated into 

clinical workflows, aiding radiologists in making more 

informed decisions and streamlining the diagnostic process. 

Future work will focus on optimizing these models for real-

time deployment and exploring their potential across other 

areas of medical imaging. Additionally, cutting-edge 

architectures such as Vision Transformers (ViTs) and 

ConvNeXT, which have demonstrated superior performance 

in capturing both global and local features, offer exciting 

possibilities for further improving segmentation accuracy and 

efficiency in medical imaging [12][13]. 
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