

International Journal of Electrical Engineering and Computing
Vol. 3, No. 2 (2019)

61

Original research paper
UDC 004.42.045:004.738.1:004.432.2C#

 DOI 10.7251/IJEEC1902061М

Approach in the development of lightweight

microservice architecture for small data center

monitoring system

Milan Malić1, Dalibor Dobrilović2, Dušan Malić3, Željko Stojanov2

1 Panonit, Novi Sad, Serbia

2 University of Novi Sad / Technical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
3 Technical College of Applied Sciences in Zrenjanin, Zrenjanin, Serbia

milanmalic@outlook.com, dalibor.dobrilovic@uns.ac.rs, dmalic@sbb.rs, zeljko.stojanov@uns.ac.rs

Abstract— In the past decade there is a significant trend of implementing IoT technologies and standards in different industries. This

trend brings cost reductions to the companies and other benefits as well. One of the main benefits is real-time and uniform data

collection. The data are transferred using diverse communication protocols, from the sensor nodes to the centralized application. So far,

current approaches in developing applications are not proved itself to be efficient enough in scenarios when a significant amount of data

needs to be stored and analyzed. The focus of this paper is on development of software architecture suitable for usage in Internet of

Things (IoT) systems where the larger amount of data can be processed in real-time. The software architecture is developed in order to

support the sensor network for monitoring the small data center and it is based on microservices. Besides the system and its

architecture, this paper presents the method of analysis of system performances in real-time environment. The proposal for lightweight

microservice architecture, presented in this paper, is developed with .NET Core and RabbitMQ, with the utilization of MongoDB and

SQLite databases systems for storing data collected with IoT devices. In this paper, the system evaluation and research results in

different stress scenarios are also presented. Because of its complexity, only the most significant segments of architecture will be

presented in this paper. The proposed solution showed that proposed lightweight architecture based on microservices could deal with

the larger amount of sensor data in the case of using MongoDB. On the other hand, the usage of SQLite database is not recommended

due to the lower performances and test results.

Keywords- microservices; IoT; MongoDB; SQL; .NET Core; data center, RabbitMQ

I. INTRODUCTION

In the past few years, numerous studies have shown the
growing importance of using IoT devices in industries, as well
as the benefits and savings they bring. Direct and indirect
benefits of such solutions have brought companies to
significant reduction of financial expenses. This approach
additionally brings a substantial inflow of new data collected
with the help of IoT devices, which have disrupted the
functionalities of the applications used so far. The existing and
widely accepted architecture of monolithic applications is
unable to respond to the rigorous requirements needed for
applications that should function in real-time, and therefore it is
necessary to respond to this problem in changing approach in
application development.

Forbes, in cooperation with Hitachi, conducted a survey [1]
related with usage of IoT in industry. The results of the survey
indicate that over 64% of participants consider IoT today as a
significant segment of their company and their operations,

while 36% remained neutral. None of the participants
considered the IoT to be insignificant. When asked about the
future, 91% of participants answered that IoT was considered
as a very important segment of their business. Only 9% of
participants remained neutral, while none of the participants
considered it insignificant. Research [2], conducted by the
Capgemini Digital Transformation Institute, points to the
growth in the use of IoT devices in many industries around the
world. According to the study of the Statistic [3] by 2025, over
75 billion of connected IoT devices are expected, three times
more than today.

Previously mentioned statistics point to the importance of
IoT devices in the operations of modern companies, both today
and in the near future. In order to respond, in a more efficient
way to the massive inflow of data that IoT devices generate, it
is necessary to develop applications in order to enable easier
data processing and pre-process data for future real-time
analysis. In this paper is proposed a lightweight microservice
architecture system developed in C# programming language,
whose main functionality is small data center monitoring. In
order to provide cross-platform support, the .NET Core 2.2
framework is used. For the messaging system, within the This paper is a revised and expanded version of the paper presented at

the XVIII International Symposium INFOTEH-JAHORINA 2019 [4]

Milan Malic et al.

62

microservice system, RabbitMQ is used. The data storage
system consists of NoSQL MongoDB to store all incoming
messages, while the SQLite relational database is used to store
processed data.

The contribution of this paper is the proposal of the
lightweight system architecture for monitoring small data
centers as well as the methodology for its testing. The two
stress tests are performed in order to evaluate architecture
components, especially DBs used for data storage. This work is
extension of the research presented in [4].

This paper is structured as follows. After the introduction,
in Section II we presented the previous researches both in the
field of microservice oriented architectures and data
warehousing. In Section III, the example of microservice based
application in IoT and WSN systems is given. In Section IV,
the analyses of specific DBMS for potential usage in WSN and
IoT environments are presented. In section V, the architecture
of the data center, test and development platform as well as the
architecture of the proposed lightweight system based on
microservices is presented. The results of the system
evaluation, as well as a comparative analysis of two different
stress tests, are presented in Section VI. Finally, Section VII
gives conclusion as well as future research directions.

II. RELATED RESEARCH

The savings made by usage of IoT devices in everyday life
are numerous. The authors [5] present a platform for the
monitoring and management of a wide variety of energy-
related agents in buildings, emphasizing the importance of
proper management and analysis of the collected data. On the
other hand, research [6] presents potential opportunities
available in the IoT embedded sustainable supply chain for
Industry 4.0. As it can be concluded, IoT devices are becoming
more and more present in various aspects of everyday life. In
order to respond effectively to a large amount of generated
data, transferred from the IoT devices, it is necessary to
consider other aspects of the application architecture
development. The authors in [7] present the challenges which
modern applications are facing during their life cycles, and
what new paradigms are adopted by the companies during this
process. Also, they point out what rigorous standards need to
be fulfilled by modern applications. As a potential solution,
they propose application based on microservice architecture.
Similar, the authors [8] present the advantages that are
characteristic to microservice architecture such as agility,
insulation, resistance, elasticity, robustness, tolerance for
errors, scalability, etc.

The central segment of the micro service-based architecture
is communication between microservices itself [9, 10, 11].
Message brokers are used to handle the transmission of
messages between system components and they represent the
backbone of the system. Today, there are many message
brokers both in open-source and in closed-source versions,
each of which has its advantages and disadvantages. For this
research RabbitMQ developed by Pivotal [12] was used.
Through research [13], RabbitMQ managed to receive and
deliver over a million messages per second. These results place
him to the level of high-performance brokers.

Today, more and more companies have demand, as one of
the main requirements for IT departments, for services able to
work between different and multiple platforms. In order to

achieve this in June 2016, Microsoft developed a new
framework, .NET Core, which is open source and can be used
on all platforms with identical source code. The advantages
that this framework offers are numerous. In the research [14] it
was indicated that the Bing Internet search engine with .NET
Core version 2.1. framework achieved 31% better
performances. According to IEEE research [15], C# is
positioned in the five most popular programming languages.
Based on this, it was decided that the development of the
microservice system will be made with the usage of C# .NET
Core with last stable version 2.2.

A large amount of data requires an efficient way of storing
data. The research presented in [16] indicates a potential
solution for using MongoDB for Big Data storage and real-
time analytics. NoSQL MongoDB uses BSON (Binary JSON)
[17, 18] to store zero or more key/value pairs as a single entity.
This entity is also called a document. In this way, better
performance is achieved because there is no conversion of data,
from a human-readable such as JSON to a binary. This
indicates that MongoDB is a good solution for microservice
architecture. In [19], the analysis of the convenience between
NoSQL and NewSQL for use in Big Data is performed.

III. MICROSERVICE BASED APPLICATIONS IN IOT AND

WSN SYSTEMS

Since this paper proposes the lightweight microservice
based architecture for data center monitoring system, in this
section, various examples of similar applications being used in
the IoT, WSN and Smart city systems will be described. These
examples will help to understand different experiences and
approaches in implementation of sensor based IoT monitoring
systems as well as specific benefits of using microservices
architectures in these environments.

In [20] the authors adopt a microservices based architecture
in order to establish a real-time environmental sensors system
that have highly scalable applications deployed in cloud
environment. This architecture consists of a set of loosely
coupled and independently deployable services. This system is
designed to support various cooperating services such as real-
time hazmat monitoring, risk-knowledge, hazmat routing, and
transportation documents, in order to provide more effective
and reliable transport problem solutions aimed at monitoring
dangerous goods transportation in Mohammedia City.

According to authors [21] this paper is the first that deals
with the integration of WSNs in the IoT using microservice
approach through neural network, together with the cloud
computing approach. The proposed model allows the design
and the development of an extensible, distributed, and
adaptable middleware system for lightweight WSN device
integration. The focus on this work is on new middleware
design based on microservice architecture. It is called MsM,
and allows a complete WSNs integration with the internet and
deals with them as services. To achieve this goal the
microservice architecture is used.

The benefits of microservice architecture and Docker
containers are explored in [22] with the optimization of
application deployment in cloud data centers using
microservice and Docker containers. Their goal is to minimize
the application deployment costs as well as the operation costs
while preserving service delay requirements for applications.

International Journal of Electrical Engineering and Computing
Vol. 2, No. 1 (2018)

63

In the [23] authors present the implementation of a
distributed middleware developed within the frame of MAYA
European project. This middleware is tailored to enable
scalable interoperability between enterprise applications and
CPSs (Cyber-Physical-Systems). The proposed platform was
made in effort to be the first solution based on both
Microservices and Big Data paradigms to empower shop-floor
CPSs and Digital Factory.

The definition of a simple model of the monitoring
infrastructure that provides an interface between the user and
the cloud management system is presented in [24]. The
interface follows the guidelines of Open Cloud Computing
Interface (OCCI), the cloud interface standard proposed by the
Open Grid Forum. The monitoring functionalities that are
defined through the interface are implemented as microservices
embedded in containers. The internals of each microservice
reflects the distinction between core functionalities which are
bound to the standard, and custom plugin modules. In the
paper, it is also described the engine that automatically deploys
a system of microservices in the monitoring infrastructure.

The software architecture design that can be used as a
template for the implementation of Smart City applications is
presented in [25]. The design is based on the microservices
architectural style, which provides properties that help in
making Smart City applications scalable and flexible. The
hybrid approach to securing sensitive data in the cloud is also
described. The contribution of the paper is generic architecture
design based on the microservice architectural style that can be
used as a template for secure cloud-based Smart City
applications. The hybrid model consists of a public and a
private cloud environment.

IV. DBMS IN WSN AND IOT ENVIRONMENTS

One of the important components in proposed system
architecture is DBMS (Database Management System) used for
real-time data storage and data analyses. The issue of chossing
suitable DBMS in IoT and WSN systems is very important.

In order to identify the best NoSQL DBMS to store tele-
monitoring big data, in the paper [26] were consider four of the
major current commercial solutions: MongoDB (adopting a
document-based data model), Cassandra (adopting a column-
based data model), Hbase (adopting a column-based data
model), and Neo4J (adopting a graph-based data model). In the
following, we provide a brief overview of such NoSQL DBMS
solutions. The authors concluded that for processing batch tele-
monitoring big data in background, apart MongoDB, also
Hbase, Cassandra (both adopting a NoSQL column-based
approach) represent good alternatives.

The paper [27] compares three databases for the purpose of
sensor data storage. The compared databases are one open
source SQL database (PostgreSQL) and two open source
NoSQL databases (Cassandra and MongoDB). A comparison
is also made between running these databases on a physical
server and running them on a virtual machine.

In order to choose particular DBMS we used DB-Engines
Ranking [28] scores. This source ranks database management
systems according to their popularity. The ranking is updated
monthly and the list of top 15 systems is presented in Table I.

TABLE I. DB-ENGINES RANKING SCORES [28]

Rank DBMS Type Score

1. Oracle Relational, Multi-model 1336.07

2. MySQL Relational, Multi-model 1266.28

3. Microsoft SQL Server Relational, Multi-model 1081.91

4. PostgreSQL Relational, Multi-model 491.07

5. MongoDB Document, Multi-model 413.18

6. IBM Db2 Relational, Multi-model 172.60

7. Elasticsearch Search engine, Multi-model 148.40

8. Redis Key-value, Multi-model 145.24

9. Microsoft Access Relational 130.07

10. Cassandra Wide column 123.23

11. SQLite Relational 121.03

12. Splunk Search engine 89.06

13. MariaDB Relational, Multi-model 85.57

14. Hive Relational 84.22

15. Teradata Relational, Multi-model 80.35

DB-Engines site represents the initiative that collects and

presents information on DBMS. Both relational DBMS and

growing NoSQL systems are covered with this ranking. The

DB-Engines Ranking is a list of DBMSs ranked by their

current popularity. Popularity of each database is reflected

with its score.
Method of calculating the scores of the DB-Engines

Ranking covers the measure of the system popularity
calculated using the following parameters: (1) number of
mentions of the system on websites (number of results in
search engines queries such as Google, Bing and Yandex
obtained with searching for <system name> together with the
term database, e.g. "Oracle" and "database"); (2) general
interest in the system based on data about frequency of
searches in Google Trends; (3) frequency of technical
discussions about the system based on the number of related
questions and the number of interested users on the well-known
IT-related Q&A sites such as Stack Overflow and DBA Stack
Exchange; (4) number of job offers, in which the system is
mentioned based on the number of offers on the leading job
search engines such as Indeed and Simply Hired; (5) number of
profiles in professional networks, in which the system is
mentioned such as data from LinkedIn and Upwork; (6)
relevance in social networks based on the count of the number
of Twitter tweets, in which the system is mentioned.

The final score is calculated by standardizing and averaging
of the individual parameters. The final score points to the
following conclusion: when system A has twice as large a
value in the DB-Engines Ranking as system B, then it is twice
as popular.

The Fig. 1 shows the growth of popularity of MongoDB in
last 6 years. MongoDB is the most popular non-relational
DBMS, and ranked as 5th DBMS in total with total score
413.18. Fig. 2 shows the growth of popularity of SQLite
DBMS. This database is ranked as 11th in total ranking and
with significantly lower score (121.03). This DBMS is most
popular database that requires no server and that is totally
platform independent.

Because of its features, and high scores (high popularity)
these two databases are chosen for implementation in proposed
software architecture.

https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/MySQL
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/Microsoft+SQL+Server
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/PostgreSQL
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/MongoDB
https://db-engines.com/en/article/Document+Stores
https://db-engines.com/en/system/IBM+Db2
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/Elasticsearch
https://db-engines.com/en/article/Search+Engines
https://db-engines.com/en/system/Redis
https://db-engines.com/en/article/Key-value+Stores
https://db-engines.com/en/system/Microsoft+Access
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/Cassandra
https://db-engines.com/en/article/Wide+Column+Stores
https://db-engines.com/en/system/SQLite
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/Splunk
https://db-engines.com/en/article/Search+Engines
https://db-engines.com/en/system/MariaDB
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/Hive
https://db-engines.com/en/article/RDBMS
https://db-engines.com/en/system/Teradata
https://db-engines.com/en/article/RDBMS

Milan Malic et al.

64

Figure 1. MongoDB score in six year period [28]

Figure 2. SQLite score in six year period [28]

V. SYSTEM ARCHITECTURE

The research covers three main elements: Data Center (A),
Test Laboratory (B) and micro service-based architecture
system (C). The Data Center was implemented as part of the
MIS ETC 1379 project "Cross-border access infrastructure to
high-level education through webcasts (EduWebCast)" within
cross-border cooperation program Romania-Serbia and funded
by the European Union under the instrument for pre-accession
assistance (IPA) and co-financed by the participating countries.

The test environment is a development laboratory
composed of a large number of computers for professional use.
The primary purpose of such environment is the development
of applications and their evaluation and testing.

Finally, the third element is system for monitoring and data
processing and it is based on microservice architecture. The
system consists of a number of components (microservices),
message brokers, NoSQL, and SQL data storage systems.

A. Data Center Architecture

The function and detailed description of the system is given
in [29, 30, 31]. The central parts of the system are two stacked

Brocade ICX 6610 switches, and they are shown in Fig. 3 as
(1).

Figure 3. Data center architecture

Next element in the system is network storage device

(Fujitsu Eternus DX200 D3) with 12 SAS disks with a

capacity of 600GB, giving a total of 7.2 TB storage capacity

(2). Ten disks are set in the working mode, and two are backup

disks. Disk RAID is set to High Performance (RAID1 + 0).

The total disk capacity of 2.67 TB is organized as follows: 900

GB uses server (3), and 1.79 TB uses a server (4).
Since the presented application is planned to be used for

data center monitoring it is important to describe what
environmental parameters can be acquired with sensors
currently deployed in the system. These two devices give the
following temperature sensor readings: cooler, MAC, CPU,
sensor A, sensor B, sensor C, sensor D, and a stacked card. The
MAC temperature is used as the reference temperature of the
device. Two stacked switches are placed in the central part of
the cabinet and the lower Brocade switch has a higher
measured temperature, and this temperature was taken as the
reference temperature of the entire cabinet and as one of the
most important parameter for monitoring.

The primary server is the Fujitsu PY RX350 S8 with 64GB
of RAM, two Xeon E5-2697 v2 12C/24T 2.7GHz CPUs, and
two Tesla K20X GPUs (4). The secondary server is Fujitsu
RX300 S8 has with two Xeon E5-2697 v2 with 10 cores (3).
Temperature data of the variety of components of these two
servers are collected in current system. In addition to
temperature, there is the ability to monitor CPU and DRAM
memory energy consumption, and the hard disk and memory
utilization. The system is powered with a 5000VA UPS system
(5). This unit has sensors for monitoring the temperature,
output voltage, frequency, power, and current consumption.

The small data center is additionally monitored with sensor
devices integrated in sensor stations built with
Arduino/Genuino UNO development boards and open-source
hardware. Three stations are used. SCF station uses the DHT11
and BH1750FVI sensors to monitor temperature, humidity, and
light levels. The QAL station uses the Grove temperature
sensor and the Bosch BMP85 sensor to monitor temperature
and barometric pressure. VVV station uses BMP85 and
DS18B20 sensors to monitor temperature and barometric
pressure. All three sensor stations are able to acquire three
sensor readings. Communication between the Arduino/Genuino
devices is based on the wireless ZigBee technology.

Three sensor stations are placed at different locations in the
data center in order to collect ambient temperature. The QAL

International Journal of Electrical Engineering and Computing
Vol. 2, No. 1 (2018)

65

station (6) is located inside, the VVV station (7) is located at
the top, and the third station SCF (8) is located at a distance of
2m from the cabinet.

Real data collected via SCF, QAL and VVV stations,
during the system operation, will be used as dummy data in the
development of the new lightweight system based on the
microservice architecture for monitoring and analysis. This
dummy data will be used for evaluation and testing purposes.
Messages generated by stations and transferred with ZigBee
technology. The data are in the following format: stationID,
sensor1 readings, sensor2 readings, sensor2 readings. In front
of these information, timestamp is inserted to help in analyzing
of how much time passes from the moment of generating a
message to its final storage in database.

B. Test & Development Hardware Architecture

The following platform is developed for testing purposes.
Its primary function is to be used for analyses of time needed to
process and to store data with proposed system architecture and
usage of microservices. Also, the big advantage of this
platform is in its mobility. All equipment is easily movable and
transferable. With such devices in a short period many types of
tests can be performed.

This platform contains several computers and network
devices. The main computer that runs all microservices has
following configuration:

▪ Intel-based i7-8700k 6 core / 12 threads CPU,
▪ Asus Z-370 motherboard
▪ 16 Gb DDR4,
▪ M.2 NVMe Samsung 960 256Gb,
▪ 1 Gbit/s network interface
▪ Nvidia Asus 1070 8 Gb
▪ Windows 10 x64 OS

Laptop Lenovo T440 is used for running RabbitMQ. The
laptop has following configuration:

▪ Intel i5-4300U vPRO with 2 cores / 4 threads
▪ 8 Gb DDR3
▪ Intel 256 SSD
▪ 1 Gbit/s network interface
▪ Ubuntu Server 18.04 x64 LTE

As network device, MikroTik router RB2011UiAS-2HnD-
IN is used. This device has five 1Gbit ports and five 100 Mbit
ports. It also has a Wi-Fi connection. The latest version of
RouterOS is installed on the router with a level 5 license.
Gigabit network is used for communication between the central
computer and Lenovo T440.

Simulation software is used to simulate QAL and VVV
stations and to transmit data. This software is deployed on 2
laptops and connected via Wi-Fi 54Mbits network. In addition,
the simulator of SCF station is deployed on the central
computer. The configuration of these two laptops is irrelevant
for this research.

C. Microservice Architecture

As mentioned in the introduction section, all microservices
are written in the C# programming language supported by
.NET Core 2.2. framework. The system consists of several
components as it is shown in Fig. 4.

Figure 4. Schematics of data flow in microservice system with following
elements: (1) task_queue, (2) RabbitMQ, (3) data_to_parse, (4) MongoDB

database, (5) data_to_save, (6) SQLite database

As it can be seen from Fig. 4 station simulators are directly
connected (I) to RabbitMQ (2) and send messages to it. In this
model, all messages are sent to the same queue task_queue (1).

After publishing the message to the queue, an event is
generated on the microservice side, and the message is
processed further by one of the available MongoDB_Logger
micro-services (II). For testing purposes in this research, the
Round Robin system is implemented to download messages
between two instances of micro-services. The downloaded
message is forwarded to the MessagesDB collection located on
MongoDB and placed in the appropriate collection (III). The
timestamp is added when the message is taken and sent to the
database. In addition to storing a message, the microservice
sends a new message (IV) to a new queue data_to_parse (3).

Publishing message to the queue data_to_parse generates
an event on the ParseData microservice (V). After that, a
message is taken, and the same is processed in the appropriate
data model. As in the first case, a timestamp processing is
added. After the processing is done, a new message is
published (VI) on the queue data_to_save (5). Round Robin
system is used for taking messages from a queue by two
instances of ParseData microservice.

Finally, after setting the message to the queue data_to_save,
the event (VII) is generated on the microservice
SaveDataToSQLite. The only task of this microservice is to
forward the message with the processed data to store in the
SQLite database. The Entity Framework Core was used to
communicate with the database (VIII). Table in SQLite has
trigger places on Insert, so timestamp is added after insert. The
syntax for the trigger is:

CREATE TRIGGER log_insert_new_record_after_insert
AFTER INSERT ON Messages BEGIN update Messages SET
InsertDateTime = strftime("%Y-%m-%d %H:%M:%f", "now",
'localtime') WHERE ID = NEW.ID; END

After the data is stored in the SQLite database, the data
application analytics can use the data for further processing.
Communication with the SQLite database, as in the previous
case, was achieved through Entity Frameworks Core (IX).

It is important to note that the system is not designed to
allow simultaneous connections of several microservices to the
database. In the initial phase of the system development, no
competing queries and database modifications can be made at
the same time. The reason for this approach is that only one
record in the current system configuration can be downloaded

Milan Malic et al.

66

from the message broker and only one record can be inserted at
a given moment. On the other hand, there may be more
concurrent readings from the database and this does not affect
the system performances.

VI. RESEARCH RESULTS

Two stress tests are performed in this research in order to
evaluate proposed lightweight architecture. During each test,
each of the station simulators sent 10,000 messages so that in
the end, each database should have 30,000 records.

Figure 5. Statistical data of RabbitMQ performance during the first test

During the first test simulators generated a message every

half of a second and during the second test every 0.1 seconds.

In this way, simulation of the stressful environment will be

achieved and the arrival of multiple messages on the system

will be simulated with the goal to collect performance results

in these two modes of operation. At the same time, the

identification of the system bottlenecks will be possible in the

early stages of development in order to avoid them in the

future.

During the execution of each test, RabbitMQ behavior was

analyzed using web client monitoring tool that comes with its

official installation. In this case, the number of messages on

each queue as well as the amount of incoming and sent

messages per second was monitored.

The first statistic data show the average time needed

between sending the message by the simulator and forwarding

this entry to MongoDB. Second statistics shows the average

time between the sending data to the MongoDB and the

processing of received message. The third statistical data

presents the average time difference between processing and

entering the data in the SQLite database.

During the first test, there were no major problems during

processing and data storing. RabbitMQ received messages and

forwarded them to its subscribers without a problem, as it can

be seen in Fig. 5.
As shown in Fig. 5 statistical data recorded with RabbitMQ

monitoring tool showed that in every queue average of 6
messages per second are processed. For every processed
message microservices sent the acknowledgment back to
RabbitMQ notifying it that message was successfully
processed and that it can be deleted from the queue.

On the other hand, statistical data about computer resources
utilization showed that RabbitMQ takes per queue from 279
KB to 1.1MB of memory. All retrieved statistical data indicates
that there were no delays and that all messages were forwarded
to the processing task in real-time. For each received message,
its arrival to the destination is acknowledged.

The average time required to store the data to MongoDB
from the moment of generation of the message is 331
milliseconds in the first test. It should be emphasized that the
data transmission time is included in the message transfer time.
The average data processing time is about 3.4 milliseconds,
while in the first test the average time for entering data from
processing up to the entry in the SQLite database is about 4.7
milliseconds. Also, it is necessary to emphasize that the
maximum recorded time required from generating the data up
to its registration in MongoDB is 5.337 milliseconds. Also, the
maximum recorded processing time is 118 milliseconds and
time needed for saving data to SQLite is 614 milliseconds.

During the second test, similar data were recorded,
although it should be emphasized that on several occasions
there were delays in process of storing data in the SQLite
database. As in the first test, RabbitMQ correctly received
messages and sent them to their subscribers. Figure 6. gives a
statistical overview of RabbitMQ during the second test.

In Fig. 6 statistical data retrieved with RabbitMQ
monitoring tool are presented. In the second test, average of 30
messages per second are processed in every queue. As in the
previous test, every microservices sent an acknowledgment
message back to RabbitMQ that the messages was successfully
processed and that it can be deleted from the corresponding
queue. Total of 30,000 messages are received and processed
via microservices.

International Journal of Electrical Engineering and Computing
Vol. 2, No. 1 (2018)

67

Figure 6. Statistical data of RabbitMQ performance during the second test

Looking at statistical data on computer resource utilization,

it can be noticed that RabbitMQ uses per queue around

1.5MB. In this case, the majority of delays occurred during

data storage process in SQLite database.

During the second test, average time required to store data

in MongoDB from the moment of generating the message is

about 440 milliseconds. About 3.2 milliseconds was needed

for data processing, while the average time required to enter

data in the SQLite database was 1,330 milliseconds. These

results indicate the main problem with proposed architecture

and usage of SQLite in it. Also, it is necessary to point out that

the maximum recorded time required for the entry of one

record in the SQLite database, from the moment of its

processing is 29.646 seconds.

VII. CONCLUSION

Modern companies are increasingly taking advantage of
IoT devices and use their ability to collect massive amounts of
data. The usage of IoT devices and system could lead
companies to significant cost reductions. Together with the
advantages, a large amount of data generated by these devices
has set rigorous standards for the development of new
applications that need to be able to process and store data in
real-time.

New architectures and approaches in the development of
applications with the usage of microservices can respond to
imposed challenges. As shown in this paper, processing of data
and their storage is possible with the utilization of such
architectures. In this paper we presented the proposal of
lightweight system developed for small data center monitoring.
The development of this system is in the initial phase, and the
results indicate the possibility of its application in real
environments. Further research will be performed on the data
center system described in the paper.

The test platform, developed for testing and evaluation of
the proposed system is also described in this paper. The focus
in this testing is given to examination of two DBMS
performances in IoT microservice based system. Two tested
DBMS are MongoDB and SQLite. MongoDB is selected for
the research because it represents most popular NoSQL
database. SQLite is chosen because it represents most popular
database that is completely platform independent and requires
no server for its operation.

This platform showed that proposed lightweight
architecture based on microservices could deal with the larger
amount of sensor data in the case of using MongoDB. On the
other hand, the usage of SQLite database is not recommended
due to the lower performances and test results. The SQLite
database shows a lower performance in the case of the higher
data amount generated from the sensor stations. For future
usage, the SQLite will be replaced with other DBMS. The
selection of additional DBMS will be made on analyses of data
from DB-Engines Ranking [28] scores.

ACKNOWLEDGMENT

This research is supported by the Ministry of Education and
Science of the Republic of Serbia under the project number
TR32044 "The development of software tools for business
process analysis and improvement," 2011-2019.

REFERENCES

[1] Forbes Insights, “The Internet of Things: From theory to reality - How
companies are leveraging the IoT to move their businesses forward”,
[Online]. Available: http://info.forbes.com/rs/790-SNV-
353/images/Hitachi%20IoT%20 Report.pdf, 2017. [Accessed: January
2019]

[2] Capgemini Digital Transformation Institute, “Unlocking the business
value of IoT in operations”, [Online]. Available:
https://www.capgemini.com/wp-content/uploads/2018/03/dti-research-
report_iot-in-operations_web.pdf, [Accessed: January 2019]

[3] Statista, “Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025 (in billions)”, [Online]. Available:
https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/, 2019. [Accessed: January 2019]

[4] M. Malić, D. Dobrilović, D. Malić, “Lightweight microservice
architecture for small data center monitoring supported with
RabbitMQ”, Proceedings of 18th International Symposium INFOTEH-

Milan Malic et al.

68

JAHORINA, pp 436-441, 20-22 March, Jahorina, Republic of Srpska,
Bosnia and Herzegovina, 2019.

[5] F. Terroso-Saenz, A. González-Vidal, A. P. Ramallo-González, A. F.
Skarmeta, “An open IoT platform for the management and analysis of
energy data”, Future Generation Computer Systems, Vol. 92, 2019, pp
1066-1079, https://doi.org/10.1016/j.future.2017.08.046.

[6] E. Manavalan, K. Jayakrishna, “A review of Internet of Things (IoT)
embedded sustainable supply chain for industry 4.0 requirements”,
Computers & Industrial Engineering, 2018,
https://doi.org/10.1016/j.cie.2018.11.030.

[7] B. Götz, D. Schel, D. Bauer, C. Henkel, P. Einberger, T. Bauernhansl,
“Challenges of Production Microservices”, Procedia CIRP, Vol. 67,
2018, pp 167-172, https://doi.org/10.1016/j.procir.2017.12.194.

[8] M. Ciavotta, M. Alge, S. Menato, D. Rovere, P. Pedrazzoli, “A
Microservice-based Middleware for the Digital Factory”, Procedia
Manufacturing, Vol. 11, 2017, pp 931-938,
https://doi.org/10.1016/j.promfg.2017.07.197.

[9] S. Newman, “Building Microservices - Designing Fine-Grained
Systems”, O'Reilly Media, 2015.

[10] S. Fowler, “Production-Ready Microservices - Building Standardized
Systems Across an Engineering Organization”, O'Reilly Media, 2016

[11] R. Rodger, “The Tao of Microservices”, Manning Publications Co.,
helter Island, NY, USA, 2018. https://www.rabbitmq.com/

[12] Pivotal Software, Inc., “Messaging that just works — RabbitMQ”,
[Online]. Available: https://www.rabbitmq.com/, Retrieved January
2019. [Accessed: January 2019]

[13] J. Kuch, “RabbitMQ Hits One Million Messages Per Second on Google
Compute Engine”, [Online]. Available: https://content.pivotal.io/blog/
rabbitmq-hits-one-million-messages-per-second-on-google-compute-
engine, Posted March 25, 2014. [Accessed: January 2019]

[14] D. Ramel, “.NET Core 2.1 Powers 34 Percent Bing Performance Boost”,
[Online]. Available: https://visualstudiomagazine.com/articles/2018/
08/22/bing-net-core.aspx, Posted 08/22/2018. [Accessed: January 2019]

[15] S. Cass. P. Bulusu, “Interactive: The Top Programming Languages
2018”, [Online]. Available: https://spectrum.ieee.org/at-
work/innovation/the-2018-top-programming-languages, Posted 31 Jul
2018. [Accessed: January 2019]

[16] A. Celesti, M. Fazio, “A framework for real time end to end monitoring
and big data oriented management of smart environments”, Journal of
Parallel and Distributed Computing, 2018,
https://doi.org/10.1016/j.jpdc.2018.10.015.

[17] BSON Specification Version 1.1, [Online]. Available:
http://bsonspec.org/spec.html, Retrieved January 2019. [Accessed:
January 2019]

[18] B. Dayley, “NoSQL with MongoDB in 24 Hours, Sams Teach
Yourself”, Pearson Education, USA, 2015.

[19] P. Raj, “Chapter One - A Detailed Analysis of NoSQL and NewSQL
Databases for Bigdata Analytics and Distributed Computing”, Editor(s):

Pethuru Raj, Ganesh Chandra Deka, Advances in Computers, Elsevier,
Vol. 109, 2018, pp 1-48, https://doi.org/10.1016/bs.adcom.2018.01.002.

[20] Cherradi, G., Bouziri, A. E., Boulmakoul, A., & Zeitouni, K. (2017).
Real-Time Microservices Based Environmental Sensors System for
Hazmat Transportation Networks Monitoring. Transportation Research
Procedia, 27, 873–880. doi:10.1016/j.trpro.2017.12.087

[21] Benayache, A., Bilami, A., Barkat, S., Lorenz, P., & Taleb, H. (2019).
MsM: A microservice middleware for smart WSN-based IoT
application. Journal of Network and Computer Applications.
doi:10.1016/j.jnca.2019.06.015

[22] Wan, X., Guan, X., Wang, T., Bai, G., & Choi, B.-Y. (2018).
Application deployment using Microservice and Docker containers:
Framework and optimization. Journal of Network and Computer
Applications, 119, 97–109. doi:10.1016/j.jnca.2018.07.003

[23] Ciavotta, M., Alge, M., Menato, S., Rovere, D., & Pedrazzoli, P. (2017).
A Microservice-based Middleware for the Digital Factory. Procedia
Manufacturing, 11, 931–938. doi:10.1016/j.promfg.2017.07.197

[24] Ciuffoletti, A. (2015). Automated Deployment of a Microservice-based
Monitoring Infrastructure. Procedia Computer Science, 68, 163–172.
doi:10.1016/j.procs.2015.09.232

[25] Krämer, M., Frese, S., & Kuijper, A. (2019). Implementing secure
applications in smart city clouds using microservices. Future Generation
Computer Systems, 99, 308–320. doi:10.1016/j.future.2019.04.042

[26] Celesti, A., Lay-Ekuakille, A., Wan, J., Fazio, M., Celesti, F., Romano,
A., Bramanti, P., Villari, M., “Information management in IoT cloud-
based tele-rehabilitation as a service for smart cities: Comparison of
NoSQL approaches”, Measurement, Volume 151, 2020, 107218,
https://doi.org/10.1016/j.measurement.2019.107218.

[27] Van der Veen, J. S., van der Waaij, B., & Meijer, R. J., Sensor Data
Storage Performance: SQL or NoSQL, Physical or Virtual. 2012 IEEE
Fifth International Conference on Cloud Computing.
doi:10.1109/cloud.2012.18

[28] DB-Engines, https://db-engines.com/en/ranking

[29] M. Marcu, S. Ficiu, D. Dobrilovic, M. Popa, B. Odadzic, „Cross-border
infrastructure for educational webcasting“, Proceedings of International
Conference on Applied Internet and Information Technologies AIIT
2015, pp 225-230, October 23, Zrenjanin, Serbia, 2015.

[30] S. Fuicu, M. Popa, D. Dobrilovic, M. Marcu, R. Bogdan, “Developing
Distance Learning Environments in the Context of Cross-Border
Cooperation”, BRAIN Broad Research in Artificial Intelligence and
Neuroscience, pp 52-58, Vol. 8, Issue 1, April, 2017.

[31] D. Dobrilović, Ž. Stojanov, Z. Čović, J. Simon and N. Petrov, "Model of
data center temperature monitoring system with the use of open source
hardware," 2016 IEEE 14th International Symposium on Intelligent
Systems and Informatics (SISY), Subotica, 2016, pp. 221-226. doi:
10.1109/SISY.2016.7601501

International Journal of Electrical Engineering and Computing
Vol. 2, No. 1 (2018)

69

Milan Malić was born in 1984. Currently

works as a Software Engineer at PanonIT in

Novi Sad. M.Sc degree in Information

Technology from University in Novi Sad,

2016. Student of PhD studies at University

in Novi Sad, Technical faculty “Mihajlo

Pupin” in Zrenjanin. Published more then

30 scientific and technical publications. His

research interests include IoT, NoSQL DB,

MapReduce, GIS and programing languages

C#, Python, C/C++, PHP.

Dalibor Dobrilović received PhD degree in

2012 in Information Technology at

University of Novi Sad. He works at

Technical faculty “Mihajlo Pupin” in

Zrenjanin (University of Novi Sad) as

associated professor. Published more than

50 in refereed journals, books, and

conferences' proceedings. His areas of

interest include Wireless communications,

IoT, Smart City technologies, Open-source

Hardware, Computer networks, Computer

network security etc. Member of IEEE and ACM.

Dušan Malić was born in 1975. Currently

works as a Professor of Applied Sciences at

the Technical College of Applied Sciences

in Zrenjanin. He defended (2012) at the

Faculty of Management in Sremski

Karlovci, University Union - Nikola Tesla

in Belgrade, PhD thesis entitled "The

possibility of improving the efficiency of

maintenance functions by applying lean

concepts - the fourth generation system of

maintenance" and earned scientific degrees

doctor of science in the scientific field of Management. Published

more then 50 scientific and technical publications. Interested in the

research in the field of engineering management and information

technology

Željko Stojanov received PhD degree in

Computer science and Informatics at the

University of Novi Sad in Serbia. He works

as an associate professor at the University

of Novi Sad, Technical Faculty ”Mihajlo

Pupin”, Serbia. His research interests are in

the fields of software engineering, business

informatics, learning and knowledge

management, data analysis, qualitative

research, and human aspects of engineering.

He is coauthor of more than 50 articles published in refereed journals,

books, and conferences' proceedings. He participated in several

research and industrial projects. He is the member of IEEE and

ACM.

