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Abstract—A power flow forecast it was shown for an industrial complex consisting of more than 20 different companies. The 

predominant consumer of electricity in the industrial complex is a steelworks company with an electric arc furnace. A steelworks with 

an electric arc furnace is a very specific example of an energy consumer. Other companies in the industrial complex are not connected 

to the steel plant technologically, but they are on the same energy connection. They have a weekly power flow profile significantly 

different from the steel plant. To calculate the forecast model and perform the forecast of power flows we need only two inputs of data: 

Historical measurements of power flows and the number of loads of the electric arc furnace in the following days. The first showed a 

prediction with linear regression. The next model to predict was the seasonal ARIMA model with a regressor, also called a dynamic 

regression model. The dynamic regression model improved the prediction by 15% compared to linear regression, according to the 

RMSE measure. This was followed by an improvement in the dynamic regression forecasting model by considering the seasonality 7/5 

in the time series. We did this with a model with superimposed noise. With this model, we improved the forecasting by 30% to linear 

regression. Logically, the filter model of the prediction model also improved, gaining more Lag coefficients and losing a constant. 

Qualitatively, the result is a forecast of power flow for one month with prediction error MAPE 8% and measure R2 is 0.9. 

Keywords- arc furnace; ARIMA with regressor;  forecasting; model with superimposed noise; power flow; steel plant. 

I. INTRODUCTION 

Predicting the future has been a great motivation for the 
human mind for centuries. Today's prediction methods are based 
on the time series theory. Time series harbour a wealth of 
information. With proper mathematical and statistical 
processing, they give us prediction models [1]. The goal is to 
make the forecast with as low an error rate as possible [14]. The 
motivation is to predict with as low an error rate as possible the 
amount of energy we need in the next days, which can be useful 
in reducing the cost of electricity [10],[12]. Secondly, the 
question is why we would produce more energy than we need 
and, thus, pollute the environment?   

The power flow forecasting project for the steel plant started 
with the study of the electricity consumption profiles. Typical 
consumers for a steel plant are an electric arc furnace, a hot 
rolling mill and mechanical processing. The study of the 
consumption profile of an electric arc furnace can be done with 
a physically mathematical model [3] or a stochastic model [4]. 
Hot rolling mill electricity consumption models are based on 
SCADA systems (Supervisory Control and Data Acquisition) 
[5]. Another large group of consumers in the industrial complex 
has a seasonal consumption profile with two seasonal cycles, the 
demand for electricity operates on 5 working days, which can be 
described by Winter`s multiplicative seasonal forecasting model 
[6]. 

Our prediction approach, however, was not based on the 
described partial models, but on a univariate stochastic ARMA 
[1],[8],[12],[13] model with regressor. Since we did not use the 
model of the electric arc furnace, we took the impact of this 
dominant consumer of electricity into account by introducing an 
explanatory variable, the regressor, the number of loads of the 
electric arc furnace per day.  In the power flow time series 
addition to the basic 7-day seasonality, we observe an additional 
two-stage seasonality of 7/5. The aim was to create a simple and 
transparent forecasting model, with a uniform ARMA 
methodology with a regressor [1], [8]. It was decided not to use 
the additional Winter`s multiplicative seasonal model to explain 
the 7/5 two-stage seasonality. Additional seasonality was 
covered by the model with superimposed noise [1], [7]. 

An alternative to the model with superimposed noise could 
be use  Wavelet transform. Wavelet transform is suitable for 
dynamic signal decomposition. In fact,  it is necessary to select 
the correct wavelets and the appropriate time sampling of the 
time series. In the case of an unfortunate choice of frequency 
bands, it can happen that an important signal is between two 
detailed coefficients and we do not find it [10],[11].  

Non-linear prediction models as described in [15],[16] could 
also be realized for the described system, but tests [12] showed 
that the use of a non-linear ARIMA model tree is not useful, 
because they do not have the possibility of using the regressor 
variable. 
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II. CHARACTERISTICS OF ELECTRICITY CONSUMERS IN THE 

INDUSTRIAL COMPLEX 

The steel mill on Fig. 2 uses 70% of all connected energy of 
the industrial complex for its production (Fig. 1). Steelworks 
with an electric arc furnace can work all 7 days of the week and 
at night. The energy consumption of the steelworks follows: 
Firstly, the steelmaker's commercial orders, secondly, the price 
of electricity, which is cheaper at night and at weekends.  

 

 

Figure 1.  Power flows` branches and block diagram of steel plant 

The other 30% of electricity consumption is represented by 
the other companies, which are located locally in the industrial 
complex itself. These companies have their own electricity 
consumption profile 7/5.  It should be noted that the block 
diagram in Fig. 1 is symbolic. The companies in the energy 
network are not as physically connected as Fig. 1 shows, but only 
logically. They are physically different, and distributed 
throughout the industrial energy network. 

The beginnings of the ironworks in Koroška -Slovenia go 
back to the year 1620. After 1774, the first forges and nails` 
production started to operate along the river Meža, and, thus, the 
expansion of industrial iron production. In 1992, several 
production and service companies emerged in Ravne from the 
single company. Today, there are several companies around the 
former Ravne Ironworks, employing approximately 3,000 
people. The largest company on the site is Metal Ravne. Metal 
Ravne is the largest company and the largest consumer of 
electricity. The company consists of a steelworks, a rolling mill 
and electro-smelting of slag. In the steel plant, the basic unit is a 
45-tonne electric UHP oven and a vacuum refill kiln for castings 
of classical ingots. In the Electro-under-slip section under the 
slag, 36-tonne, and 3-tonne ESR devices are in use (Fig. 2).  

To understand the energy consumption profile in a steel plant 
it is good to understand the melting process in the electric arc 
furnace. The melting process [3] is always carried out in an arc 
furnace with reduced voltage, since the conditions for burning 
the arc are poor in the cold cartridge; the ignition of the arc is 
carried out in such a way that the graphite electrode is lowered 
to the cartridge until it touches it, and until contact is reached 
with the other electrodes with the cartridge.  

 

Figure 2.  Steel mill technological scheme,  Source: 

https://sij.metalravne.com/ 

At the discharge of the electrode, an electric arc is then 
triggered - like the firing of the arc during manual arc welding. 
Because of this, the current size changes from the short-circuit 
current through the rated power to the zero current at the end of 
the arc. We say that the arc furnace is operating restlessly at the 
beginning of melting. Due to the formation of the first melt at the 
bottom of the furnace, the conditions for burning the arc are 
improved due to good ionization conditions, so we increased the 
voltage of the arc gradually and the power of melting to the full 
power: This is always the largest when melting the cartridge 
when there is already a melt on the bottom of the furnace. We 
say that we are melting with a hidden arc, which radiates at full 
power in the crater, which the boulder has drilled into the 
plunged insert of old iron. In the further heating of the melt or in 
maintaining its temperature, the power of the furnace is 
significantly lower. The characteristics of the electric arc must 
be different in this situation since the arc can now freeze to the 
walls and the furnace vane. 

III. LINEAR REGRESSION MODEL 

Power consumption is measured at 15-minute intervals. We 
addressed the daily summary consumption in our study (Fig. 3). 
We would like to predict a complete load at the industry plant 
for a month in advance.  

 

Figure 3.  Energy consumption by days in the year  

Given the described structure and characteristics of energy 
consumers in the industrial complex, we can conclude quickly 
that the electric arc furnace is the main consumer of energy. This 

https://sij.metalravne.com/
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is also indicated by Fig. 4, the correlation between the number of 
loads at the arc furnace per day and common power flow. 

  

Figure 4.  Correlation between the number of loads at the arc furnace per day 

and power flow 

Thus, the first logical attempt at a prediction model is linear 
regression. An independent predictor variable is the number of 
loads at the electric arc furnace per day.  

Inspections of Fig. 4 indicated that, although no simple curve 
will pass exactly through all the points that represent 
relationship, there is a strong indication that the points lie 
randomly along a straight line. It is reasonable that the mean of 
random variable 𝑌 is related to 𝑥 by a straight-line relationship: 

 

𝑌 = 𝛽0+𝛽1𝑥 + 𝜀  (1) 

 

Where 𝛽0 is a regression coefficient intercept, 𝛽1 is a 
regression coefficient slope, 𝑥 is a regressor or predictor variable 
and 𝑌 is a criterion variable. 𝜀  is a random error term 𝑁 (0, 𝛿2), 
with mean zero and variance 𝛿2.  

The estimates 𝛽0 and 𝛽1 should result in a line that is the best 
fit to the data. The German scientist Karl Gauss proposed 
estimating the parameters 𝛽0  and  𝛽1 to minimize the sum of the 
squares of the vertical deviations.  We call this criterion for 
estimating the regression coefficients the method of least squares 
[2]. Next, we explain only the major steps to estimating 𝛽0 and 
𝛽1, such as definitions: 

𝛽1̂ =
𝑆𝑥𝑦

𝑆𝑥𝑥

 
(2) 

 

 

𝛽0̂ = 𝑦̅ − 𝛽1̂. 𝑥̅ (3) 
 

𝛽0̂…. observed intercept, is an unbiased estimator of the true 
intercept 𝛽0, 

𝛽1̂….. is an unbiased estimator of the true slope 𝛽1. 

𝑆𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 
(4) 
 

 

𝑆𝑆𝑥𝑦 = ∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 
(5) 

n…. the number of observations in a sample. 

Error 𝜀  is a random variable normally distributed with a 
mean of 0 and variance  𝛿2: 

𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖  (6) 
 

𝑒𝑖………...is called the residual. 

 

𝑆𝑆𝐸 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

 
(7) 
 

𝑆𝑆𝐸………. error sum of squares.  

There is another unknown parameter in our regression 
model, 𝛿2  (the variance of the error term 𝜀 ): 

𝛿 2̂ =
𝑆𝑆𝐸

𝑛 − 2
 

(8) 
 

 

𝛿 2̂…. calculated value of  𝜀  with properties 𝑁(0, 𝛿2). 

In simple linear regression the estimated standard error of the 
slope and the estimated standard error of the intercept are: 

𝑆𝐸(𝛽1̂) = √
𝛿 2̂

𝑆𝑋𝑋

 

(9) 
 

 

𝑆𝐸(𝛽0̂) = √𝛿 2̂ [
1

𝑛
+

𝑥̅2

𝑆𝑥𝑥

] 

(10) 
 

where  𝛿 2̂ is computed from Equation 8. 

An important part of assessing the adequacy of a linear 
regression model is testing the statistical hypotheses about the 
model parameters and constructing certain confidence intervals. 
Hypothesis testing in simple linear regression is discussed and 
presents the methods: 

𝐻0: 𝛽0 = 𝛽0,0 (11) 
 

𝐻1: 𝛽0 ≠ 𝛽0,0 (12) 
 

Test statistics for the intercept 𝛽0:  

𝑇𝑜 =
𝛽1̂ − 𝛽0,0

𝑆𝐸(𝛽0̂)
 

 (13) 
 

 

A method called the analysis of variance (ANOVA) can be 
used to test for significance of regression. The procedure 
partitions the total variability in the response variable into 
meaningful components as the basis for the test. In an F-test the 
test statistics have an 𝐹1,𝑛−2  distribution.  The analysis of 

variance identity is as follows:  

𝐹0 =
𝑆𝑆𝑅

𝑆𝑆𝐸

𝑛−2

=  
𝑀𝑆𝑅

𝑀𝑆𝐸

 
(14) 
 

 

𝑆𝑆𝑅 = ∑ (𝑦𝑖̂ − 𝑦̅)2
𝑛

𝑖=1
 

(15) 
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where 𝑆𝑆𝑅 is the sum of the squared errors. We followed the 
𝐹1,𝑛−2 distribution, and we would reject H0 if: 

𝑓0 > 𝑓𝛼,1,𝑛−2 (16) 
 

Fitting a regression model requires several assumptions. 
Estimation of the model parameters requires the assumption that 
the errors are uncorrelated random variables with mean zero and 
constant variance. Tests of hypotheses and interval estimation 
require that the errors be normally distributed. In addition, we 
assume that the order of the model is correct; that is, if we fit a 
simple linear regression model, we are assuming that the 
phenomenon behaves in a linear or first-order manner: 

𝑒𝑖 = 𝑦𝑖 −
𝑦̂𝑖                    i=1,2… n 

(17) 
 

𝑒𝑖……residual 

𝑑𝑖 =
𝑒𝑖

√𝛿̂2
                         i=1,2 … 

n 

(18) 
 

𝑑𝑖 …. standardized residual. 

We may also standardize the residuals by computing. If the 
errors are normally distributed, approximately 95 % of the 
standardized residuals should fall within the interval (-2, +2). 
Residuals that are far outside this interval may indicate the 
presence of an outlier, that is, an observation that is not typical 
of the rest of the data.  

A widely used measure for a regression model is coefficient 
of determination following the ratio of the sum of squares 𝑅2 
(0 ≤ 𝑅2 ≤ 1): 

𝑅2  =
𝑆𝑆𝑅

𝑆𝑆𝑇

= 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇

 
(19) 
 

 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸  (20) 
 

𝑆𝑆𝑇 ……total corrected sum of squares, 

 

TABLE I.  MODEL SUMMARY LINEAR REGRESSION 

R2 Std. Error of the 

Estimate 

Change Statistics 

  
R Square 
Change 

F 
Change 

df1 df2 Sig. F 
Change 

.91 49318.90 .91 2279 1 231 .000 

 

In Table 1 independent variable loads of the arc furnace per 
day are explained with 91 % of variance (R2 = 0.91) in the power 
flow, which is highly significant, as indicated by the F-value of 
2279. That F-test says we can trust 𝛽0 and 𝛽1   > 99,9 %.  

TABLE II.  ANOVA TEST LINEAR REGRESSION 

Model Sum of Squares df Mean 

Square 

F Sig. 

Regression 5542770416189 1 5542770416
189 

2279 .000 

Residual 561874316138 231 2432356346 
  

Total 6104644732328 232 
   

 

An examination of the t-test indicates that if the number of loads 

at the electric arc furnace contribute to the electric load the t-test 

says we can trust 𝛽0 > 99,9 % and 𝛽1 > 99,9 %.   The Standard 

Deviation of the sampling distribution is called the standard 

error.  

TABLE III.  COEFFICIENTS` LINEAR REGRESSION 

Model Unstandardized 

Coefficients 

t Sig. 95.0% Confidence 

Interval for B 
 

B Std. 

Error 

  
Lower 

Bound 

Upper Bound 

Constant 209480 5767 36 .000 198116 220843 

Loads 40072 839 48 .000 38418 41726 

 

The equation of the linear regression model is:    

[Load Forecasting] = 209,480 + 40,072 
[Number of Loads at the Electric Arc Furnace per 
Day] +𝜀    

 
(21) 

IV. ARIMA MODEL WITH REGRESSOR 

A stochastic model that can be extremely useful in the 
representation of certain practically occurring series is the 
autoregressive model [1]. In this model, the current value of the 
process is expressed as a finite, linear aggregate of previous 
values of the process and a random shock at. Let us denote the 
values of a process at equally spaced times t, t − 1, t − 2, . . . by 
zt , zt−1, zt−2 , zt−3 , . . . Also let  z̃t= zt– μ   be the series of 
deviations from μ. Then 

 

z̃t= ф1z̃t−1 + ф2z̃t−2 + ・・+ ф𝑃z̃t−P 

+ at 

(22) 
 

is called an autoregressive (AR) process of order p.  In (22) 
the variable z is regressed on previous values of itself; hence the 
model is autoregressive. The model contains p + 2 unknown 
parameters μ, ф1 ,  ф2,  .,  фp  ,  δa

2, which, in practice, must be 

estimated from the data. The additional parameter is the variance 
of the white noise process at. Equivalently, as we have just seen, 
it expresses z̃t  as an infinite weighted sum of the a’s.  

Another kind of model, of great practical importance in the 
representation of the observed time series, is the finite moving 
average process. Here we take  z̃t, to be linearly dependent on a 
finite number q of previous a’s. Thus, 

z̃t = at  − θ1 at−1  − θ2  at−2  −・・
−θq at−q 

(23)                                           

 

is called a moving average (MA) process of order q. It 
contains q + 2 unknown parameters μ, θ1 , θ2 , . . . , θq , δa

2  , 

which, in practice, must be estimated from the data. We will 
define an ARMA (p, q) model with no regressor: 

z̃t= ф1z̃t−1  + ф2z̃t−2  + ・+ ф2z̃t−2   

+at − θ1 at−1− θ2 at−2−・ ・− θq at−q 

 

(24) 
 

B is defined to perform the following operation: It causes the 
observation that it multiplies to be shifted backwards in time by 
1 period. That is, for any time series 𝑧̃𝑡  and any period t:  

(𝐵) 𝑧̃𝑡 =  𝑧̃𝑡−1 (25) 
 

With the B operator ARMA can be written: 
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ф(𝛣) 𝑧̃𝑡  =   𝛳(𝐵) 𝑎𝑡 (26) 
 

where  ф(𝛣) = 1 − ф1𝐵 − . . . − ф𝑝𝐵𝑝 and    𝛳(𝛣) =  1 −
𝛳1𝐵 −. . . − 𝛳𝑞𝐵𝑞 .         

An ARMA model can be considered as a special type of 
regression model, so it is straightforward in principle to extend 
an ARMA model to incorporate information provided by leading 
indicators and other exogenous variables: You simply add one or 
more regressors to the forecasting equation. How to include a 
regressor in ARMA models: 

 

z̃t =  𝛽𝑥𝑡  + ф1z̃t−1 + ф2z̃t−2  +・・
+ф𝑃z̃t−P  + at − θ1 at−1 − θ2 at−2 −・ ・
− θq at−q      

(27) 

 

where 𝑥𝑡  is a regressor at time t and β is its coefficient. While 
this looks straightforward, one disadvantage is that the regressor 
coefficient is hard to interpret. The value of β has no effect on z̃t 
when the 𝑥𝑡  is increased by one (as it is in classic linear 
regression). The presence of lagged values of the response 
variable on the right-hand side of the equation mean that β can 
only be interpreted conditionally on the value of previous values 
of the response variable. 

If we write the model using backshift operators, the ARMA 
model with regressor is given by: 

 

ф(𝛣)z̃t  =   𝛽𝑥𝑡 + 𝜃(𝐵)z̃t (28) 
 

or   

z̃t =   
𝛽

ф(𝛣)
𝑥𝑡 +

𝜃(𝛣)

ф(𝛣)
at 

 

Notice how the AR coefficients get mixed up with both the 
regressor and the error term. This model can be considered as a 
special case of transfer function models [1]: 

 

z̃t =   
𝛽(𝛣)

υ(𝛣)
𝑥𝑡 +

𝜃 (𝛣)

ф(𝛣)
at 

 
(29) 
 

 

This allows for lagged effects of the regressor (via the 𝛽(𝛣) 
operator), and for decaying effects of the regressor (via 
the υ(𝛣) operator). These are called dynamic regression models. 

The forecasting model was made from the observed N=234 
data records. As an independent predictor we used the number of 
loads at the electric arc furnace per day.  The time series model 
ARIMA supports an exponential smoothing model and, for our 
example, used the standard notation (0,0,1)(1,0,0), where 0 is the 
order of autoregression, 0 is the order of differencing, and 1 is 
the order of moving-average, and (1,0,0) are their seasonal 
counterparts. The seasonal part has a periodicity of 7 days. The 
forecasting model has determined that the load is best described 
by a seasonal ARIMA model with no order of differencing. 

The model statistics in Table 4 provide summary information 
and goodness-of-fit statistics for the estimated model. First, 

notice that the model contains one predictor. The stationary R2 
value provides an estimate of the proportion of the total variation 
in the series, that is explained by the model and is preferable to 
ordinary R2   when there is a trend or seasonal pattern, as is the 
case here. Larger values of stationary R2 indicate a better fit. A 
value of 0.956 means that the model does the job of explaining 
the observed variation in the time series very well. 

TABLE IV.  MODEL FIT STATISTIC ARIMA WITH REGRESSOR  

Predictor R2 RMSE MAPE 

1 .956 34636.490 10.557 

Ljung-Box Q (18) 

Statistics DF Sig. 

18.988 15 .214 

 

The Ljung-Box statistic, also known as the modified Box-
Pierce statistic, provides an indication of whether the model is 
specified correctly. A significance value less than 0.05 implies 
that there is a structure in the observed series which is not 
accounted for by the model. The value of 0.214 shown here is 
significant, so we can be confident that the model is specified 
correctly. 

In Table 5 all Lags coefficients have a Sig. value less than 
0.01; meanings are significant, trust in them is 99%. The only 
exception is MA Lag 2, which has a confidence of 97%.  

TABLE V.  MODEL PARAMETERS ARIMA WITH REGRESSOR  

 Estimate SE t Sig. 

Constant 212449 9025.6 23.538 .000 

MA Lag 1 -.664 .067 -9.874 .000 

Lag 2 -.156 .068 -2.314 .022 

AR, Seasonal Lag 1 .415 .063 6.631 .000 

Numerator Lag 0 35755.8 864.3 41.4 .000 

Lag 2 -16258.6 4486.6 -3.624 .000 

 

When we want to compare the absolute values of individual 
Lags, we must consider that we did not standardize the time 
series of power flows, nor the regressor. Therefore, the 
comparison of absolute values for individual lags is difficult. The 
time series of power flows could be normalized with a maximum 
power flow, i.e., around 600,000. The time series of the regressor 
could be standardised with the maximum number of arc furnace 
loads per day, i.e., 12. When we consider these two values, we 
can conclude that Numerator Lag 0 and MA coefficient Lag 1 
have about 80% contribution to the forecast.  

If we look at the ARIMA model parameters, we notice a little 
more closely the constant 212,449, which is very close in value 
to the pure linear regression coefficient intercept. Another detail 
of comparison ARIMA with linear regression is Numerator Lag 
0 35,755, which is essentially a linear regression coefficient 
slope. In models it is generally accepted that we put values in 
constants that we cannot explain with the model. Our model was 
disturbed by a constant with a value of 212,449.  
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V. DYNAMIC REGRESSION AND MODEL OF 

SUPERIMPOSED NOISE 

We got the idea of how to improve the forecast model during 
a visual inspection of the shape of the annual time series. The 
electric arc furnace is maintained once a year, so it does not 
operate, and the technologically related production processes do 
not produce. In Fig. 5 we see this characteristic shape on the 
graph of the annual power flow between 187 and 195 days of the 
year. At that time, the other companies are operating normally. 
The form of electric consumption has the characteristic: 5 
working days and 2 days off, and its amplitude is only 1/3 of the 
maximum. So, we can conclude that there are two periodicities 
in the time series, first a period of 7 days and then a two-stage 
7/5. The seasonal ARIMA model presented in the previous 
chapter has a periodicity of 7 days. Periodicity 7/5 could be 
modeled with the seasonal Winter`s multiplicative model. 
Winter's multiplicative model was confirmed manually for the 
mentioned partial signal with R2 = 0.95 and MAPE 3%, and 
cannot be interpreted with any combination of ARIMA 
coefficients. For the seasonal ARIMA with a regressor the signal 
7/5 is a noise. 

 

Figure 5.  Characteristic power flow when the arc furnace is not in operation 

Thus, to improve our predictions, we moved on to the theory of 

models with superimposed noise. This problem was 

complicated in practice by the presence of noise  𝑁𝑡, which we 

assumed corrupts the true relationship between input and output 

according to 

z̃t =   
𝛽(𝛣)

υ(𝛣)
𝑥𝑡 + 𝑁𝑡 

 

(30) 

 

𝑁𝑡 =  
𝜃 (𝛣)

ф(𝛣)
at 

(31) 

 

where 𝑁𝑡  and 𝑋𝑡 are independent processes.   

Of course, equation (29) from the previous chapter and 
equation (30) in this chapter are the same. In the previous 
chapter, we wanted to show how ARIMA and the regressor 
merged into a single model. In this chapter, however, we are 

more interested in pure transfer function 
𝛽(𝛣)

υ(𝛣)
𝑥𝑡  and a noise  

𝑁𝑡 =
𝜃 (𝛣)

ф(𝛣)
at . According to the indications at the beginning of 

this chapter about additional periodicity 7/5, it is necessary to 

supplement for our transfer function (30) with additional noise 
𝑁𝑡

1 

 

z̃t =   
𝛽(𝛣)

υ(𝛣)
𝑥𝑡 +  𝑁𝑡 +  𝑁𝑡

1 

 

(32) 

Noise 𝑁𝑡
1 represents the power flow of 20 companies in the 

characteristic 7/5.   

Ideally, the common prediction mode for our case would 
consist of three partial models: Dynamic regression (predictor), 
ARIMA, and Winter`s multiplicative model. In any case, this 
would be a complex model that would require a dynamic 
decomposition of the time series or additional measurements in 
an industrial energy network.  

We opted for a simpler and more efficient path that does not 
require the Winter`s multiplicative model. The detail for a week 
of the noise 𝑁𝑡

1  is given in Fig. 6. We assume that the noise is 
repeated periodically throughout all weeks of the year, for the 
same days of the week (Fig. 5).  It is not really like that, but we 
take that as like a definition that holds true for a year.  

 

Figure 6.  Estimated noise 𝑁𝑡
1 for a week 

The noise 𝑁𝑡
1  was subtracted from the original measured 

time series.  When the prediction model was obtained based on 
a modified time series and a prediction was made, an inverse 
transformation must be performed for the result of the prediction, 
i.e., noise 𝑁𝑡

1is added back for the final prediction.  Here, we 
would also write a dilemma: Whether we are talking about the 
transformation of the basic time series, or about the subtraction 
and addition of noise. Basically, an additive signal 
transformation is used, but our time series did  not need a 
characteristic ARIMA transformation, since the base time series 
was stationary without it. But, we needed this transformation to 
improve our forecast. 

The use of superimposed noise (32) changed the model 
greatly. Our time series model ARIMA supports exponential 
smoothing. Dynamic regression and the model of superimposed 
noise was using the standard notation ARIMA (0,0,1)(1,0,1), 
where 0 is the order of autoregression, 0 is the order of 
differencing, and 1 is the order of moving-average, and (1,0,1) 
are their seasonal counterparts. We noticed changes in the 
symbolic notation of the ARIMA model, where the AR part 
appeared in the seasonal part. The forecasting model determined 
that a load is best described by the seasonal ARIMA model with 
no order of differencing. A value of R2  = 0.97 means that the 
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model does an excellent job of explaining the observed variation 
in the time series. 

TABLE VI.  MODEL FIT STATISTIC FOR ARIMA  MODEL WITH 

REGRESSOR AND A SUPERIMPOSED NOISE 

Predictor R2 RMSE MAPE 

1 .968 29823.6 12.577 

Ljung-Box Q (18) 

Statistics DF Sig. 

12.653 15 .629 

 

TABLE VII.  MODEL PARAMETERS – ARIMA WITH REGRESSOR 

AND SUPERIMPOSED NOISE 

 
Estimate SE t Sig. 

MA Lag 1 -.607 .056 -10.9 .000 

AR, Seasonal Lag 1 .913 .142 6.446 .000 

MA, Seasonal Lag 1 .854 .178 4.788 .000 

Numerator Lag 0 36526 780 46.82 .000 
 

Lag 1 15507 4419 3.509 .001 
 

Lag 2 17705 3905 4.535 .000 

Denominator Lag 1 .631 .118 5.342 .000 
 

Lag 2 .313 .109 2.886 .004 

 

Consideration of superimposed noise caused improvements 
on the ARIMA model. Table 7 shows that constant 212,449 from 
the previous model disappeared and had been replaced by 3 new 
Lags in the transfer function model. The ARIMA MA Lag 1 
value coefficient changed very little compared to the previous 
model. The seasonal part of ARIMA was given a new structure 
(1,0,1) and new values. The Numerator coefficient at the Lag 0 
changed a bit. Numerator Lag 1 was new  and Lag 2 coefficients 
had new positive values. In the Denominator segment were 
completely new  Lag 1 and Lag 2 coefficients. 

The use of a modified superimposed noise model in 
conjunction with the structure of the ARIMA model caused the 
constant in the forecasting model to disappear. The role of the 
constant was taken over by the new Lags, so we could get a better 
filter model of the prediction. As a result, the RMSE also 
decreased, and the accuracy of the prediction increased. 

VI. FORECASTING WITH MODELS 

Various statistics are used to evaluate the performance of 
models of forecasts. We decided to use in the final test only 
MAPE, RMSE and R2 to obtain a comparison between 
individual solutions: 

R squared in statistics, the coefficient of determination, 
denoted R2, is the proportion of the variance in the predictable 
variable Fi that is from the actual value Ai: 

𝑅2    = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

 
(33) 
 

 

where            𝑆𝑆𝑡𝑜𝑡   = ∑ (𝐴𝑖 − 𝐴̅)2𝑛
𝑖=1  

and 𝑆𝑆𝑟𝑒𝑠 =  ∑ (𝐴𝑖 − 𝐹𝑖)2 = ∑ 𝑒𝑖
2𝑛

𝑖=1
𝑛
𝑖=1 . 

 

The Root-Mean-Square Error (RMSE) is a frequently used 
measure of the differences between values predicted by a model 
and the values observed. The RMSE represents the sample 
Standard Deviation of the differences between predicted values 
and observed values. These individual differences are called 
residuals when the calculations are performed over the data 
sample that was used for estimation, and are called prediction 
errors when computed out-of-sample. RMSE is a measure of 
accuracy to compare forecasting errors of different models for 
the same data. 

RMSE =  √
∑ (𝐴𝑖 − 𝐹𝑖)2𝑛

𝑖=1

𝑛
 

(34)  
 

All three models we compared were calculated from the 
same historical time series N = 234. With the models thus 
obtained, we predicted the same 30 days in the future. 

The linear regression itself is a static method, since there is 
no time in the equation. We assumed that the linear dependence 
was valid in the future as well, and so we made a prediction.  It 
is usually the case that the forecast is worse than the model. The 
linear regression model promises R2 0.91, but this was not 
achieved during the 30-day simulation predictions – they gave 
us R2 0.78, values of MAPE 12.5% and RMSE 57824.3.  

 

Figure 7.  Monthly load forecasting using the linear regression model 

There is another problem in linear regression as we do not 
have a satisfactory confidence interval in which the predictions 
lie. Table 3 shows a 95% confidence interval for regression 
coefficient intercept  and regression coefficient slope, but this 
was not the 95% confidence interval for the predicted values. So, 
it’s hard to say with linear regression, the prediction is so much, 
with the lower limit of the LCL and the upper limit of the UCL. 
In Fig. 7 we see that most of the measurements lay outside the 
95% confidence interval. 

TABLE VIII.  FORECASTING STATISTICS FOR 30 DAYS IN 

ADVANCE WITH THREE DIFFERENT FORECAST MODELS 

 

Linear 

regression 

ARIMA 

with regressor 

ARIMA with 

regressor an 

superimposed noise 

 

RMSE 57824.3 50205.8 40699.8 

MAE 50950.1 41452.8 35144.1 

MAPE 12.5 % 10.3 % 8 % 
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STDEV 

forecasting 
131028.7 128506.7 131474.4 

AVG forecasting 445618 451552.7 447023 

STDEV measured 123688.5 123688.5 123688.5 

AVG measured 450870.5 450870.5 450870.5 

R2 0.78 0.84 0.89 

 

In the ARIMA model with regressor, parameters were 
optimized for a step or two into the future from the historical 
learning time series itself. In fact, during the optimization of the 
ARIMA model, we predicted right through the historical time 
series itself. A 95% confidence interval was calculated for such 
a short model prediction. For a 30-day forecast, we must check 
the model with a simulation forecast, and we make a forecast 
with the model for 30 days ahead. Only in this way can we 
determine whether the model is useful for medium-term 
forecasting of 30 days.  Fig. 8 shows the forecast for 30 days 
using the ARIMA model with regressor and superimposed noise. 
All predictions and measured values lay within the 95% 
confidence interval.  The exception was 24 and 25 days (national 
and religious holidays). These are two so-called outliers.  

Outliers first appeared during model computation and during 
forecasting.  In our time series for one year, we  had 7 outliers, 
on  national and religious holidays.  Power flows were extremely 
low on these days.   There are different strategies when working 
with outliers: Replace with an average value, replace with a 
previous value, or delete. We did not do any of that, which is 
often a good solution as well. However, it is necessary to 
mention that they are here, and have an impact on the results. 

 

Figure 8.  Monthly load forecasting using the ARIMA model with regressor 

and a superimposed noise 

VII. CONCLUSION 
For an industrial complex with very specific and different 

types of electricity consumers, we performed a forecast of power 
flows for a month into the future.  In our case, we had two groups 
of electricity consumers: The first is a steelworks with an electric 
arc furnace that can work all 7 days of the week and at night. 
Secondly, there are companies that work only 5 days a week. The 
choice of prediction technique is highly dependent on the 
properties of the measured power flow time series. Our time 
series was created in a very specific industrial environment and 
required a regressor a (so-called predictor). At this point, the 
number of possible choices of forecasting techniques is greatly 
reduced. 

Various authors have described very different models of 
prediction technique [6],[7],[8],[10] but all acknowledge that 
ARIMA is a universal model, while other models are specialized 
for a particular type of time series.  ARIMA  has the great 
advantage that it can also include one or more regressors in its 
filter model. The loads of the electric arc furnace per day were  
the regressor at our case.  

First attempts to predict daily consumption were by linear 
regression. This technique is relatively simple.  The 
disadvantage of it is that is a static method and cannot track daily 
variation in consumption dynamically. It was the basis for 
comparison with the improved ARIMA models. When we 
combined linear regression and ARMA methodology, we 
obtained a dynamic regression model that, with its linear filter 
structure, adapted dynamically to changes in time series. This 
model can be considered as a special case of transfer function 
models.  If we compare  the predictions with linear regression 
and predictions using the ARIMA model with a regressor was 
the second, 15% better model.  

In the last prediction model, we considered superimposed 
noise: Classic forecasting models, each of which works well for 
a certain form of time series. The problem occurs when the time 
series signal is complex, meaning it consists of several 
characteristic signals. At that time, no known classic model gives 
a satisfactory result. The solution is to decompose or denoise the 
time series. In our case, we split the time series it into two 
signals. Because of the above, we opted for the superimposed 
noise method.  

Thus, we obtained a simple model with 8 Lags and a reliable 
predictive model that offered a  30-day forecast into the future 
with R2 = 0.9 and RMSE = 40699, which was 30% better than 
for the linear regression model. Finally, the prediction showed a 
MAPE error of 8% and a very narrow constant confidence 
interval UCL and LCL for 30 days. This type of forecast can be 
extended to a longer period, but we only needed to know how 
many times a day we would fill the electric arc furnace.  
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