

International Journal of Electrical Engineering and Computing
Vol. 5, No. 2 (2021)

77

Original research paper
UDC 75.071.1:[621.313.13:621.317.38

 DOI 10.7251/IJEEC2102077P

Can greedy-like heuristics be useful for solving the

Weighted Orthogonal Art Gallery Problem under

regular grid discretization?

Milan Predojević, Marko Đukanović, Milana Grbić, Dragan Matić

Faculty of Natural Sciences and Mathematics, University of Banja Luka, Bosnia and

Herzegovina

 E-mail address: Milan.Predojevic@pmf.unibl.org, Marko.Djukanovic@pmf.unibl.org, Milana.Grbic@pmf.unibl.org and

Dragan.Matic@pmf.unibl.org.

Abstract— In this paper we deal with the Weighted Orthogonal Art Gallery Problem. The task is to place guards on some vertices of an

orthogonal polygon P, such that the total sum of prices assigned to the chosen vertices is minimal and all points from the polygon P are

covered. The problem has applications in practice, for example, in installing cameras at the corners of a building such that all interior

space is covered by at least one of the cameras but the price of installation is the smallest possible. To solve the problem, the regular

grid discretization of the area of polygon is applied. We propose a novel greedy approach which is based on balancing the tradeoff

between the total sum of guards' costs and the total number of not yet covered points from the discretization. This new approach and

an existing greedy algorithm are further hybridized with the Integer Linear programming, which is originally formulated for the well-

known Minimum Set Cover problem. Our experimental results are conducted on two sets of polygons from the literature: one with

small area and the other one with large area. They proved that the proposed greedy methods can achieve the optimal solutions in most

cases for the class of large-area polygons, while in case of the small area polygons, they achieve solutions of reasonable quality within

lower runtime than the exact algorithms.

Keywords-component; art gallery problems; greedy heuristics; hybrid; integer linear programming.

I. INTRODUCTION

Given a polygon P, the Art Gallery Problem (AGP) asks for
a set of points G of minimal cardinality, such that for each point
y ∈ P there is 𝑥 ∈ 𝐺 such that 𝑥𝑦 ⊂ 𝑃. We say that the point y is
covered by the point x, or y is visible from x. Set G is called
guard set of P and the points from G are called guards. In the
Orthogonal Art Gallery Problem (OAGP) we suppose that edges
of the polygon are only horizontal and vertical w.r.t. the axes,
i.e. the angles allowed between adjacent edges are 90º or 270º.
The original AGP was initially stated by Victor Klee in 1973.
[1]. The problem is motivated by installing the cameras inside a
building (or gallery) such that the whole area of the building is
covered. Orthogonality constraint naturally comes out from the
orthogonality of the walls in buildings. Kahn et al. [2]

formulated and proved that ⌊
𝑛

4
⌋ guards are sufficient to cover an

orthogonal polygon with n vertices. In this study, we are
interested in the variant of the OAGP which allows only that
guards are positioned at the vertices of polygon P. This restricted
problem is known to be NP–hard [3, 4]. When it comes to real
situations (like installing the cameras in a building), it is justified
to assume that the prices of cameras are not equal and may
depend on several factors, like the quality of a camera

(respecting its range of spectrum of view) or installation price at
some specific parts of the building (like corners or tight places).
In the Weighted Orthogonal Art Gallery Problem (WOAGP) the
task is to place guards on some vertices of orthogonal polygon
P which cover all points from P, such that the total sum of prices
assigned to the chosen vertices is minimal. In this paper we
consider WOAGP problem under the regular grid discretization
of P, described in Section 1.B.

It is well known that AGP can be reduced to the Minimum
Set Cover Problem (MSCP) by a discretization of the set of all
points of polygon P [5]. Let us with D(P) denote a discretized
set of points of the polygon P. The appropriate discretization
should be performed in such a way that if each point from D(P)
is covered, then the whole polygon P is covered. After the
discretization is made, for each vertex of polygon P, a set of
visible points from D(P) is determined. In that way, the problem
of determining the minimum number of guards covering the
entire polygon is reduced to determining the minimum number
of subsets of points, such that each point from D(P) is included
in at least one of the chosen subsets, which is MSCP.
Analogously, WOAGP can be reduced to the Minimum
Weighted Set Cover Problem (MWSCP).

Milan Predojevic et al.

78

It is well known that AGP has been intensively studied in last
decades. For a systematic insight into the main results in this
area, we refer to a survey papers [6], where the authors reviewed
the literature regarding the AGP, also providing a timeline of
series of works on solving the AGP using the algorithmic
methodology. Two notable research groups from the Institute of
Computing at the University of Campinas, Brazil, and the
Algorithms Group at TU Braunschweig, Germany are focused
on solving the AGP, substantially improving the solutions
obtained on different kinds of problem instances. Also, one of
the main conclusions of the review paper [6] is that these
approaches are mainly based on reducing the AGP to the MSCP,
which is, as it is mentioned, also the case with WOAGP.

In [7], greedy algorithms for solving AGP are considered by
using different strategies, evaluated through experimentation.
After the algorithm constructs a set of guard candidates, the
algorithm pick guards, by using a priority function, until the
whole gallery is covered. The authors present even 13 different
strategies for selecting the next guard candidate.

An iterative primal-dual relaxation approach proposed in [8]
is used to solve AGP to optimality.

The problem of locating visual sensors can be modelled by
AGP. In [9], the authors uses their previously developed Edge
Covering algorithm and adapted it to solve the so called Interior
covering problem, which is in fact a variant of AGP.

Concerning the exact and heuristic techniques to solve
OAGP, Couto et al. [10] presented an exact and efficient
algorithm for the OAGP based on preprocessing and refinement
phases of the discretized instance. In [11] an approximate
solution of the minimum vertex guard problem, which can be
computed in O(n4) time and this solution is at most O(log n)
times the optimal one. After that, on these constructed sets
Johnson’s approximation algorithm [12] for the MSCP is
applied. An anytime algorithm which computes successively
better approximations of the optimum for Minimum Vertex
Guard is proposed in [13]. A major idea of this approach is
exploring dominance of visibility regions to first detect pieces of
the polygon that are more difficult to guard. The same problem
is solved in [14] by applying successive approximations from
[13]. Tozoni et al. [15, 16] presented an exact Integer Linear
Programming (ILP)-based algorithm, which iteratively
generates upper and lower bounds through the resolution of
discretized space of the AGP. Although many variants AGP are
present in literature, WOAGP has not been so intensively
studied, which motivated us to consider this problem. A
comprehensive analysis of various greedy-like heuristics for the
MWSCP was presented in [17]. More detailed overview of the
extensive literature regarding MSCP and AGP is out of the scope
of this paper and for further reading we suggest review papers
[18, 19, 20].

A. Main contributions

The main contributions of this paper are:

• We developed a novel greedy approach which is based
on balancing the tradeoff between the total sum of
guards’ costs and the total number of not yet covered
points from the discretization.

• The greedy algorithm from [21] and the novel greedy
algorithm are hybridized with the ILP.

• We considered different types of weights for our
benchmarks, based on an approximation of the costs in
real situations.

• In comprehensive computational experiments, we
tested, analyzed and checked the efficiency of the
developed algorithms. The methods are then compared
to the exact approaches ILP and Constraint
Programming (CP) w.r.t. the quality of obtained
heuristic solutions as well as runtimes.

It should be noticed that the aim of this paper is not to propose a
new state-of-the-art method for solving discrete AGP, but a fast
and simple greedy approach which could be used in practical
situations. This greedy approach is based on balancing the
tradeoff between the total sum of guards’ costs and the total
number of not yet covered points from the discretization. In
addition, it considers different types of weights assigned to
polygon nodes, based on an approximation of the costs in real
situations.

B. The Regular Grid Discretization of Polygon

Building of the regular grid discretization D(P) of the
polygon P is shown in Algorithm 1. At the beginning, the
minimum bounding rectangle (usually called bounding box) of
P is created. Then, the regular grid, with resolution Δx × Δy and
starting at the lower left corner of the bounding box of polygon
P, is defined as follows:

𝛥𝑥 = min{|𝑢𝑥 − 𝑣𝑥||𝑢𝑥 ≠ 𝑣𝑥}
 (1)

𝛥𝑦 = min {|𝑢𝑦 − 𝑣𝑦|| 𝑢𝑦 ≠ 𝑣𝑦}

where (ux, uy), (vx, vy) are adjacent vertices of polygon P.

The algorithm further forms the whole regular grid of the
bounding box (line 5 of the pseudocode) and finally, all points
of the regular grid that belong to interior of P and all vertices of
P are added into the discrete set D(P).

It should be noted that the optimal solution of WOAGP on
D(P) (i.e. an optimal covering of D(P)) is not necessarily an
optimal covering of P. In the simple example shown in Fig. 1,
one can see that the guards placed on top left and top right
vertices (shown in red color) cover all points from D(P) (Fig. 1
(a)), but not the whole polygon, since the gray triangle is not
visible from any of these two vertices. The optimal solution
value in this case is 1.2. Two red vertices in Fig. 1 (b) optimally
cover the whole polygon, but this covering is not optimal w.r.t.
discrete set D(P), since the total sum of weights is larger (1.6).

The chosen resolution 𝛥𝑥 × 𝛥𝑦 is a compromise between the

algorithm speed and accuracy. More precisely, higher resolution
increases the accuracy, but also increases the execution time of
Algorithm 1 and vice versa, lower resolution decreases the
accuracy, but discretization is generated faster.

Algorithm 1 Discretization D(P) of polygon P

1: Input: The set of vertices V of polygon P

2: Output: The discretization D(P) of polygon P

3: 𝐵𝐵 ← 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔_𝑏𝑜𝑥(𝑃);

4: ∆𝑥 , ∆𝑦← 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑃);

5: 𝐷(𝐵𝐵) ← 𝑟𝑒𝑔𝑢𝑙𝑎𝑟_𝑔𝑟𝑖𝑑(𝐵𝐵, ∆𝑥 , ∆𝑦);

6: 𝐷(𝑃) ← 𝐷(𝐵𝐵) ∩ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝑃);

7: 𝐷(𝑃) ← 𝐷(𝑃) ∪ 𝑉;

International Journal of Electrical Engineering and Computing
Vol. 5, No. 2 (2021)

79

II. EXACT METHODS

In this section we present the exact ILP, initially developed
for MWSCP from [22] and CP models for solving discrete
WOAGP under regular grid discretization, which are used in the
rest of the paper.

A. Integer linear programming model

Let us suppose we are given a polygon P with weights assigned

to vertices and the discretization D(P) of P. The task we

consider is covering all points from D(P) by some vertices 𝑉 =
{𝑣1, . . . , 𝑣𝑛} of P such that the sum of their weights is

minimized. The problem is related to the known MWSCP as

follows. Family F of nonempty sets consists of the sets 𝑆𝑖 ∈ 𝐹

which include points 𝑝 ∈ 𝐷(𝑃) that are visible from guard 𝑣𝑖 ∈
𝑉. For each set 𝑆𝑖, the cost 𝑐(𝑆𝑖) = 𝑤𝑖 is assigned. This way,

our starting task is equivalent to finding a covering 𝐶 ⊆
{𝑆1, . . . , 𝑆𝑖} in order to minimize

 𝑓(𝐶) = ∑ 𝑐(𝑆)𝑆∈𝐶 ,

such that

⋃ 𝑆

𝑆∈𝐶

= 𝐷(𝑃).

The ILP model for the MWSCP [22] is adopted to discrete

WOAGP as follows:

 𝑚𝑖𝑛 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (2)

 𝑠. 𝑡.

 ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≥ 1, (∀𝑝𝑖 ∈ 𝐷(𝑃)) (3)

 𝑥𝑗 ∈ {0,1}, 𝑗 ∈ {1,2, … , 𝑛}, (4)

where 𝑎𝑖𝑗 = {
1, 𝑝𝑖 ∈ 𝑆𝑗 ,

0, otherwise.
 Notice that variable 𝑥𝑗 has value 1

if guard is placed in vertex 𝑣𝑗, otherwise 0.

Set 𝑍 = {𝑣𝑗 ∈ 𝑉|𝑥𝑗 = 1} represents a solution of the

problem w.r.t. discretization D(P) of polygon P. Constraint (3)

enforces that any point 𝑝𝑖 ∈ 𝐷(𝑃) is visible from at least one

guard from Z.

To solve this model, we apply a general-purpose solver

CPLEX [23].

B. Constraint programming model

An equivalent CP model was implemented and tested by

IBM ILOG CP Optimizer [24]. In this case, constraint (3) is

transformed into

 ⋁(𝑎𝑖𝑗 ∧ 𝑥𝑗)

𝑛

𝑗=1

= 1, ∀𝑝𝑖 ∈ 𝐷(𝑃), (5)

whereas the other constraints and the objective function are the

same as in the above ILP model. Note that CP approach works

in a branch-and-bound manner employing a constraint

propagation and variable domain filtering [25].

III. ALGORITHMIC APPROACHES FOR SOLVING DISCRETE

WOAGP

In this section we present the heuristic greedy approaches

for solving the discrete WOAGP and their hybridization with

the exact ILP method.

A. Greedy approaches for solving discrete WOAGP

Greedy algorithms produce a solution of reasonable quality

within a short interval of time and are relatively easy to

implement. Efficiency of such heuristic is related to a greedy

criterion utilized to expand current (non-complete, i.e., partial)

solution up to its completion, i.e., until all points from D(P) are

covered.

A general pseudocode of Greedy heuristics is given in

Algorithm 2. Let us with 𝑠𝑝𝑠 denote a partial solution, i.e. a

solution which can be further extended in a way that a larger

region of the polygon is covered .The set 𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑝𝑠) includes

those guards from set 𝑉\𝑠𝑝𝑠 that cover some points from D(P)

that are not yet covered by 𝑠𝑝𝑠 . Extension 𝑠𝑝𝑠 by a vertex v

corresponds to adding the guard v into set 𝑠𝑝𝑠.

1) An existing greedy method

Concerning the greedy heuristic from the literature for

solving MWSCP [21, 26], one of the most efficient greedy

heuristics was based on the following criterion:

 𝑔1(𝑠𝑝𝑠, 𝑣𝑖) =
𝑤𝑖

ℎ(𝑠𝑝𝑠 ∪ {𝑣𝑖}) − ℎ(𝑠𝑝𝑠)
, (6)

where

 ℎ(𝑠𝑝𝑠) = | ⋃ 𝑆𝑖

𝑣𝑖∈𝑠𝑝𝑠

|. (7)

This heuristic also ensures an approximation with 𝑂(𝑙𝑜𝑔(𝑛))

approximation factor.

2) A Novel Greedy Heuristic

In this subsection we present a novel greedy criterion. First,

we introduce a term “incorrect point”. For a point from D(P) we

(a) Optimal coverage of
discretization D(P).

(b) Optimal coverage of polygon P.

Figure 2. Optimal coverage of discretization D(P) does not imply a

coverage of polygon P.

Milan Predojevic et al.

80

say that it is incorrect if it is not covered by any guard from the

current partial solution 𝑠𝑝𝑠. Let us denote by 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑠𝑝𝑠)

the total number of incorrect points from discretization D(P)

w.r.t. solution 𝑠𝑝𝑠. Note that

 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑠𝑝𝑠) = |𝐷(𝑃)| − ℎ(𝑠𝑝𝑠), (8)

where ℎ(𝑠𝑝𝑠) is defined in (7) and |𝐷(𝑃)| is the cardinality of

discretization set. Let 𝑤 be the sum of all weights among all

vertices. The greedy function w.r.t. partial solution 𝑠𝑝𝑠 and

candidate guard v is defined as follows.

 𝑔2(𝑠𝑝𝑠, 𝑣) =
∑ 𝑤𝑖𝑖∈𝑠𝑝𝑠∪{𝑣}

𝑤
+

 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑠𝑝𝑠 ∪ 𝑣)

|𝐷(𝑃)|
, (9)

In the Equation (9) both terms are normalized to achieve

better balance between the total sum of guards’ costs and the

total number of not yet covered points from the discretization.

The algorithm does not ultimately prefer any of criteria for

choosing next vertex. Although it cannot be a rule, it is justified

to suppose that the second term has a more influence on the

choice of the next vertex in earlier phases of the algorithm

execution. At the beginning, more points are uncovered and the

algorithm chooses such vertices which cover larger area of the

polygon. At the ending stage of the algorithm’s execution, it

could be expected that the first term plays more significant role,

since the total number of uncovered points is small.

It is possible that ties occur in the search, that is, two or more

vertices with the best score w.r.t. any of the two greedy criterion

occur. Therefore, these ties are broken by using price-per-unit

heuristic which is stated as follows. For each not yet considered

vertex 𝑣𝑖, we denote the region of polygon P that is visible from

𝑣𝑖 by 𝑆𝑢𝑟𝑓(𝑣𝑖). As the next candidate to extend 𝑠𝑝𝑠, we choose

such a guard, with the smallest ratio between the price and the

visible surface area. More precisely, this criterion is given as:

 𝑔′(𝑠𝑝𝑠, 𝑣𝑖) =
𝑤𝑖

|𝑆𝑢𝑟𝑓(𝑣𝑖)|
, (10)

where |𝑆𝑢𝑟𝑓(𝑣𝑖)| represents the area of surface 𝑆𝑢𝑟𝑓(𝑣𝑖). In

our experimental studies, we found out that this heuristic does

not perform well on its own, but it represents a reasonable tie-

breaking mechanism which boosts quality of the greedy

heuristics.

3) Partial calculation of greedy functions

In order to enable fast calculation of greedy functions

described in previous subsections, we noticed that it could be

useful to allow fast updating of the number of uncovered

vertices. Therefore, we introduced two useful structures in our

calculations:

• structure 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑢𝑎𝑟𝑑𝑠 – which is a map
structure, where each point from D(P) is mapped to the
number of guards in solution which cover that point;

• structure 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 – as a set structure which
keeps the points from D(P) that are covered by the
partial solution;

When adding vertex v into partial solution, we update current

𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 and 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑢𝑎𝑟𝑑𝑠 by considering only

new points from D(P) covered by v. When v is removed from

partial solution, we update current 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 and

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑢𝑎𝑟𝑑𝑠 by omitting all points which are covered

only by v. These two functions also allow a fast calculation of

functions (7) and (8): a candidate vertex v is temporarily added

to the partial solution, new status is checked and then being

removed from the solution.

B. A Hybrid of the GREEDY and CPLEX

The performance of CPLEX degrades w.r.t. the instance size

due to the complexity of the problem. On the other hand, in the

later stage, there is an increased chance for Greedy to worsen

the obtained greedy solution due to an increased number of

guards which are similar w.r.t. greedy value. So, it makes sense

to combine partial solutions generated with a Greedy procedure

over a few iterations and only then to make use of the CPLEX to

do the completion of the partial solution. In details, our

approach consists of the following steps:

1. Run a Greedy method up to K iterations to obtain a
partial solution 𝑠𝑝𝑠 , where K is a parameter of the
algorithm;

2. Take solution 𝑠𝑝𝑠 and make it complete by solving a
corresponding sub-model via CPLEX:

• CPLEX solves corresponding sub-model which is
formed by adding constraints 𝑥𝑖 = 1, for all 𝑣𝑖 ∈ 𝑠𝑝𝑠
into the existing ILP model (2)–(4);

• a complete solution �̅� is obtained;

3. Return the objective function value 𝑜𝑏𝑗(�̅�) and the total
number of guards |�̅�|.

This method is, therefore, called GREEDY+CPLEX.

IV. COMPUTATIONAL RESULTS

We used two different kind of benchmark sets from [27, 14]:

• MinArea instances: include polygons with small areas
and tiny interior. They present a lower boundary case
for the cardinality of set D(P) which means that, beside
the polygon vertices, D(P) contains only a few
additional points.

Algorithm 2 Greedy Heuristic

1: Input: An instance of a problem

2: Output: A (feasible) non-expandable solution 𝑠𝑝𝑠 (or

 reporting that no feasible solution exists)

3: 𝑠𝑝𝑠 ← () //partial solution set to empty solution

4: while 𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑝𝑠) ≠ ∅ do

5: Select solution component 𝑒 ∈ 𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑝𝑠) w.r.t.
 some criterion 𝑔

6: Extend 𝑠𝑝𝑠 by 𝑒

7: end while

International Journal of Electrical Engineering and Computing
Vol. 5, No. 2 (2021)

81

• FAT instances: include polygons of large areas and wide
interior. In this case, many points of regular grid is
included into D(P).

For each benchmark set – MinArea and FAT instances – one

polygon with n vertices, for each 𝑛 ∈ {8, 10, . . . , 200} has been

considered and the appropriate discretization is made, which

makes 97 instances per each benchmark set. In overall, we have

194 instances. Discretization is performed by using CGAL

library, version 5.0.2 [28].

We included two kinds of weights into each of 194 instances:

• point-based related weights (W0): For each vertex 𝑣𝑖 ,
the assignment of prices is based on the number of
points in D(P) that are visible from 𝑣𝑖, as follows:

 𝑤𝑖 = 𝑛 ∙
|𝑆𝑖|

|𝐷(𝑃)|
, 𝑖 = 1, … , 𝑛. (11)

Introducing these weights can be justified by the
assumption that cameras which cover larger range of
points should be of a higher spectrum and quality, and
thus more expensive.

• topologically-based related weights (W1): For each
vertex 𝑣𝑖 of polygon P we denote by 𝑙𝑖 and 𝑙𝑖+1 the
lengths of two edges that come out of the vertex 𝑣𝑖 (note
that indices are taken modulo n). Then, we set

 𝑤𝑖 =
𝑙𝑖 + 𝑙𝑖+1

2
, 𝑖 = 1, … , 𝑛. (12)

Similarly, as in the case of W0, if the arithmetic length of
both edges that comes out of vertex 𝑣𝑖 is longer, it is
expected that a guard can see a larger pieces of polygon
P. This implies that the spectrum of camera installed at 𝑣𝑖
must be larger, which again implies that it should be of a
higher quality, i.e., a higher price.

A. Settings and the choice of the Parameters

All variants of our algorithms were implemented in C++

with g++ 7.4 compiler and the experiments were conducted in

single-threaded mode on a machine with an Intel Xeon E5-2640

processor with 2.40 GHz and a memory limit of 8GB. The

maximum computation time of each of our algorithms was set

to 5 min. For solving ILP and CP models, CPLEX version 12.7

was used.

After conducting preliminary results, for GREEDY+CPLEX

we decided to set up 𝐾 = ⌈0.05 ∙ 𝑛⌉ to allow less

computational time of the hybrid than the average runtime of

the pure greedy method.

The benchmark sets and the executable file of our software

for this project are provided at a public git repository, available

at https://github.com/milanagrbic/WOAGP.

B. Results and Discussion

The following algorithms are included in our computation:

• two exact approaches: ILP approach, henceforth called
CPLEX and constrained programming approach,
henceforth called CP;

• four heuristic approaches:

– two pure greedy methods, guided by 𝑔1 and 𝑔2 ,
labeled as GREEDY-1, GREEDY-2, respectively;

– two GREEDY+CPLEX variants, henceforth labeled by
GREEDY-1+CPLEX and GREEDY-2+CPLEX.

Summarized numerical results for each of 6 variants of our

algorithms are displayed in Tables 1 – 4. For each table, the

average results are reported for each subset of instances

grouped w.r.t. a specific kind of instances and a specific weight

(97 instances per each instance group). Each of the tables list

the tested algorithms in the first column. Starting with column

two, each of the lines provide detailed statistics for respective

algorithm. The statistics report: the average solution quality

(𝑜𝑏𝑗̅̅̅̅̅), the average time (𝑡̅[𝑠]) in seconds, the average number

of guards which are included in each of the solutions (|𝑔|̅̅ ̅̅), the

number of solutions which match to the optimum solutions

 TABLE 1: THE RESULTS ON THE BENCHMARK SET MINAREA FOR THE TYPE OF WEIGHT W0.

Algorithm 𝑜𝑏𝑗̅̅̅̅̅ 𝑡̅[𝑠] |𝑔|̅̅ ̅̅ #𝑜𝑝𝑡𝐻𝑖𝑡 𝜎(𝑂𝑝𝑡) #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻 𝜎(𝑀𝑖𝑛𝐻)

CPLEX *15.93 0.152 18.93 97/97 0.00 N/A N/A

CP 16.04 98.215 18.96 67/97 0.02 N/A N/A

GREEDY-1 22.63 0.002 26.28 0/97 0.79 3/97 7.61

GREEDY-2 19.97 0.002 20.14 0/97 0.44 0/97 0.20

GREEDY-1+CPLEX 18.49 0.073 21.19 2/97 0.30 57/97 0.06

GREEDY-2+CPLEX 18.39 0.004 19.59 0/97 0.26 53/97 0.04

TABLE 2: THE RESULTS ON THE BENCHMARK SET MINAREA FOR THE TYPE OF WEIGHT W1.

Algorithm 𝑜𝑏𝑗̅̅̅̅̅ 𝑡̅[𝑠] |𝑔|̅̅ ̅̅ #𝑜𝑝𝑡𝐻𝑖𝑡 𝜎(𝑂𝑝𝑡) #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻 𝜎(𝑀𝑖𝑛𝐻)

CPLEX *36.03 0.003 18.93 97/97 0.00 N/A N/A

CP *36.03 18.953 18.93 97/97 0.00 N/A N/A

GREEDY-1 39.28 0.001 20.15 2/97 0.35 4/97 0.24

GREEDY-2 40.92 0.001 20.96 0/97 0.51 0/97 0.40

GREEDY-1+CPLEX 37.78 0.006 19.41 4/97 0.21 19/97 0.08

GREEDY-2+CPLEX 37.31 0.003 19.58 2/97 0.15 81/97 0.19

https://github.com/milanagrbic/WOAGP

Milan Predojevic et al.

82

(#𝑜𝑝𝑡𝐻𝑖𝑡), average standard deviation of the obtained solutions

w.r.t. optimal solutions (𝜎(𝑂𝑝𝑡)), then the number of minimal

solutions the algorithm obtained w.r.t. the four heuristics

achieved by the respective algorithm (#ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻) and

average standard deviation w.r.t. best (minimal) solutions

achieved by the four heuristic algorithms (𝜎(𝑀𝑖𝑛𝐻)). An

asterisk in front of a number means that the exact approach

could prove optimality in all cases. Best values among heuristic

approaches in each column are bolded.

From the numerical results, we observe the following

conclusions concerning exact solvers:

• CPLEX could solve all solution to optimality within a
fraction of a second;

• CP was able to solve all those instances with weight W1
but with significantly higher execution time than the
time required for CPLEX;

• For the subset of instances MinArea which includes
weight W0, the performance of CP degrades
significantly, which can be seen by the respective
average runtime and the number of proven optimal
solutions found (67/97).

From the numerical results, we observe the following

conclusions concerning heuristic solving:

• In case of the instances that include small–area polygons
(MinArea) and weight W0 (Table 1): A novel GREEDY-
2 was able to outperform the GREEDY-1 from literature.
In this case, the best performing heuristic algorithms is
hybrid GREEDY-2+CPLEX which needs the two order of
magnitude lower average runtime to finish than the pure
greedy methods. The average runtimes of all four
heuristic methods are an order of magnitude lower than
the average runtime of CPLEX. Pure greedy methods
deliver solutions of reasonable quality within 20% of the
quality of optimal solutions but needs the time which is

7-8 times lower than the average runtime of CPLEX. The
overall average execution times of all tested algorithms
are displayed in Fig. 4. Note that vertical axis is scaled
logarithmically. Although all heuristic methods could
not achieve optimal solutions (except for the two cases
of Greedy two cases for GREEDY-1+CPLEX heuristic),
the average standard deviation w.r.t. optimal solution is
rather small. From last two columns, it is evident that
both hybrid variants are more successful, hitting more
than a half best solution each, with very small average
standard deviation w.r.t. optimal solutions.

• In case of the instances that include small-area polygons
and weight W1 (Table 2): the best heuristic approach is
GREEDY-2+CPLEX which is able to deliver solutions
which are within 3% of the optimum ones. Note that in
81 cases (out of 97) GREEDY-2+CPLEX is able to deliver
equally good or better results that the other heuristic
approaches. As it was the case of the weight W0,
heuristic methods could not achieve many optimal
solutions, but the obtained average standard deviation
w.r.t. optimal solutions is rather small. The results of
pure greedy method GREEDY-1 outperform the results of
GREEDY-2. These two methods are effective since they
deliver solutions which are within 10% of the CPLEX
results but need 3 times lower runtime. The results of
GREEDY-1 match just in two cases to the optimum.

• In case of the instances that include large-area polygons
(FAT) and weight W0 (Table 3): the exact CPLEX
approach is a clear winner concerning average
solutions’ quality as well as the average runtimes; the
best heuristic algorithm w.r.t. solution quality is
GREEDY-2 +CPLEX. It also matches in more cases (on 6
instances) to the optimum result then the other heuristic
approaches. The obtained average results are within
22% of the average of optimal solutions. The pure
GREEDY-1 slightly outperforms the pure greedy
GREEDY-2. It is interesting that GREEDY-1 assigns in
average a higher number of guards in solutions when
compared to the average number of guards of GREEDY-

 TABLE 3: THE RESULTS ON THE BENCHMARK SET FAT FOR THE TYPE OF WEIGHT W0.

Algorithm 𝑜𝑏𝑗̅̅̅̅̅ 𝑡̅[𝑠] |𝑔|̅̅ ̅̅ #𝑜𝑝𝑡𝐻𝑖𝑡 𝜎(𝑂𝑝𝑡) #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻 𝜎(𝑀𝑖𝑛𝐻)

CPLEX *2.62 0.02 7.32 97/97 0.00 N/A N/A

CP *2.62 8.17 7.32 97/97 0.00 N/A N/A

GREEDY-1 3.39 0.35 7.81 0/97 0.09 23/97 0.05

GREEDY-2 3.52 0.32 6.61 2/97 0.10 28/97 0.08

GREEDY-1+CPLEX 3.34 0.35 8.91 4/97 0.08 25/97 0.04

GREEDY-2+CPLEX 3.32 0.33 6.81 6/97 0.08 25/97 0.04

TABLE 4: THE RESULTS ON THE BENCHMARK SET FAT FOR THE TYPE OF WEIGHT W1.

Algorithm 𝑜𝑏𝑗̅̅̅̅̅ 𝑡̅[𝑠] |𝑔|̅̅ ̅̅ #𝑜𝑝𝑡𝐻𝑖𝑡 𝜎(𝑂𝑝𝑡) #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻 𝜎(𝑀𝑖𝑛𝐻)

CPLEX *6.72 0.02 6.44 97/97 0.00 N/A N/A

CP *6.72 0.36 6.44 97/97 0.00 N/A N/A

GREEDY-1 6.77 0.31 6.49 92/97 0.02 92/97 0.04

GREEDY-2 6.77 0.31 6.49 92/97 0.02 92/97 0.04

GREEDY-1+CPLEX 6.73 0.32 6.45 96/97 0.01 96/97 0.03

GREEDY-2+CPLEX 7.42 0.31 6.46 90/97 0.33 92/97 0.33

International Journal of Electrical Engineering and Computing
Vol. 5, No. 2 (2021)

83

2. The runtimes of our heuristic approaches are an order
of magnitude higher than the time of CPLEX approach.
Reason for that can be seen in the used regular
discretization of the polygon. For the polygons with a
larger area, more points are involved in the discrete set
D(P) and, therefore, iterations of greedy methods take a
longer time than in case when D(P) is smaller (which
was the case of MinArea polygons).

• In case of the instances that include large-area polygons
(FAT) and weight W1 (Table (4)): the best heuristic
algorithm w.r.t. solution quality is GREEDY-1+CPLEX
which is able to match in 96 instances the quality of
optimal solutions. Slightly worse results are delivered
by GREEDY-1 and GREEDY-2. The obtained (heuristic)
solutions of these two approaches are within 1% of
optimal solutions and they are able to reach the quality
of the optimal solution for 92 instances. Unfortunately,

Figure 2. Polygon coverage for the type of weight W0.

Figure 3. Polygon coverage for the type of weight W1.

Figure 4. The overall average execution times of all tested algorithms.

Milan Predojevic et al.

84

the runtimes in comparison to the runtimes of CPLEX are
significantly higher for all of our heuristic approaches.
However, the average runtime for CP is a bit higher that
the avg. runtimes of the heuristic approaches. Again,
average standard deviation for each heuristic method is
rather small w.r.t. optimal solutions, indicating good
quality of the proposed algorithms.

• If we compare the execution times of the algorithms with
respect to the weight type (W0 and W1), we see that all
algorithms needs slightly more time to find solution for
the case of W0 weight type. Although it cannot be
claimed with certainty, a possible reason could lie in the
fact that algorithms for W0 type need more guards to
construct a complete solution in comparison to the case
W1, where the corresponding complete solution often has
smaller cardinality (more guards are necessary up to
completion), see the column 3 of Table 1 and 2. The latter
implies that the greedy heuristic in that case needs less
iterations, so, the execution time is smaller.

• Concerning the percentage of covering of polygons for
the best solutions (found by CPLEX) we noticed that FAT
instances are covered in almost all cases (see Fig. 2 and 3
and the blue curve).

• Concerning the MinArea instances, it gets harder to cover
all polygon and in almost all cases the whole area of
polygon P cannot be covered. For these instances, we see
that the solutions cover more regions of small–area
polygons when weight W1 is considered then when
considering W0 (≈ 93% vs. ≈ 85%). From Fig. 2 and 3
one can conclude that the proposed algorithms are more
suitable for polygons of large areas and wide interior than
for the polygons with small areas and tiny interior.

V. CONCLUSIONS AND FUTURE WORK

In this work we have considered the Weighted Orthogonal

Art Gallery Problem under the regular grid discretization. We

have developed a novel greedy criterion which provide a trade-

off between the number of guards and the cost of guards.

Moreover, a hybrid of a greedy method and CPLEX was

proposed to make a maximal completion of the greedy solution

obtained by the greedy method supplemented by solving

respective subproblem via CPLEX. The performances of the

heuristic approaches are compared to the exact ILP and CP

approaches. From the computational experiments, the heuristic

approaches were highly efficient in terms of obtaining solutions

of reasonable quality in an order of magnitude lower runtime

than the exact approaches for the small-area polygons. For the

large–area polygons, heuristic approaches were able to reach

the quality of optimal solutions in almost all cases but in cost of

larger times than the times of the ILP approach.

The proposed greedy approach could be used in practical

situations whenever regular grid discretization could be

applied; for example to help engineers in their tasks related to

the problem, such as determining location of cameras in

buildings in order to minimize the installation costs.

For the future work, we tend to improve the results of our

greedy method as well as runtimes on the FAT benchmark sets

by considering other types of polygon discretization’s, some of

them are proposed in [1, 29].

ACKNOWLEDGMENT

This research is partially supported by Ministry for

Scientific and Technological Development, Higher Education

and Information Society, Government of Republic of Srpska,

B&H under the Project “Development of artificial intelligence

methods for solving computer biology problems”.

REFERENCES

[1] J. O’rourke. Art gallery theorems and algorithms, volume 57. Oxford

University Press Oxford, 1987.

[2] J. Kahn, M. Klawe, and D. Kleitman. Traditional galleries require fewer
watchmen. SIAM Journal on Algebraic Discrete Methods, 4(2):194–206,
1983.

[3] M. J. Katz and G. S. Roisman. On guarding the vertices of rectilinear
domains. Computational Geometry, 39(3):219–228, 2008.

[4] D. Schuchardt and H.-D. Hecker. Two np-hard art-gallery problems for
ortho-polygons. Mathematical Logic Quarterly, 41(2):261–267, 1995.

[5] Erdem, U. M., and Sclaroff, S. (2006). Automated camera layout to satisfy
task-specific and floor plan-specific coverage requirements. Computer
Vision and Image Understanding, 103(3), 156-169.

[6] P.J. de Rezende, C.C. de Souza, S. Friedrichs, M. Hemmer, A. Kröller,
and D.C. Tozoni, D. C. (2016). Engineering art galleries. In Algorithm
Engineering (pp. 379-417). Springer, Cham.

[7] Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility
coverage of polygons. Int. J. Comput. Geom. Appl. 20(5), 601–630 (2010)

[8] Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C.: Facets for art gallery
problems. Algorithmica 73(2), 411–440 (2014)

[9] Bottino, A., Laurentini, A.: A nearly optimal algorithm for covering the
interior of an art gallery. Pattern Recogn. 44(5), 1048–1056 (2011).

[10] M. C. Couto, C. C. De Souza, and P. J. De Rezende. An exact and efficient
algorithm for the orthogonal art gallery problem. In Proceeding of
SIBGRAPI 2007 – The 20th Brazilian Symposium on Computer Graphics
and Image Processing, pages 87–94. IEEE, 2007.

[11] S. K. Ghosh. Approximation algorithms for art gallery problems in
polygons. Discrete Applied Mathematics, 158(6):718–722, 2010.

[12] D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256–278, 1974.

[13] A. P. Tomás, A. L. Bajuelos, and F. Marques. Approximation algorithms
to minimum vertex cover problems on polygons and terrains. In
Proceedings of ICCS 2003 – The International Conference on
Computational Science, pages 869–878. Springer, 2003.

[14] A. P. Tomás, A. L. Bajuelos, and F. Marques. On visibility problems in
the plane–solving minimum vertex guard problems by successive
approximations. In Proceedings of ISIAM 2006 – The 9th International
Symposium on Artificial Intelligence and Mathematics, 2006.

[15] D. C. Tozoni, P. J. de Rezende, and C. C. de Souza. A practical iterative
algorithm for the art gallery problem using integer linear programming.
Optimization Online, pages 1–21, 2013.

[16] D. C. Tozoni, P. J. D. Rezende, and C. C. D. Souza. Algorithm 966: a
practical iterative algorithm for the art gallery problem using integer linear
programming. ACM Transactions on Mathematical Software (TOMS),
43(2):1–27, 2016.

[17] F. J. Vasko, Y. Lu, and K. Zyma. What is the best greedy-like heuristic
for the weighted set covering problem? Operations Research Letters,
44(3):366–369, 2016.

[18] A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering
problem. Annals of Operations Research, 98(1-4):353–371, 2000.

[19] Z.-G. Ren, Z.-R. Feng, L.-J. Ke, and Z.-J. Zhang. New ideas for applying
ant colony optimization to the set covering problem. Computers &
Industrial Engineering, 58(4):774–784, 2010.

[20] S. K. Ghosh. Approximation algorithms for art gallery problems in
polygons and terrains. In Proceedings of WALCOM 2010 – The 4th
International Workshop on Algorithms and Computation, pages 21–34.
Springer, 2010.

International Journal of Electrical Engineering and Computing
Vol. 5, No. 2 (2021)

85

[21] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics
of operations research, 4(3):233–235, 1979.

[22] V. V. Vazirani. Approximation algorithms. Springer Science & Business
Media, 2013.

[23] R. Lima and E. Seminar. IBM ILOG CPLEX – What is inside of the box?
In Proc. of 2010 EWO Seminar, pages 1–72, 2010.

[24] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím. IBM ILOG CP optimizer
for scheduling. Constraints, 23(2):210–250, 2018.

[25] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint
programming. Elsevier, 2006.

[26] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
mathematics, 13(4):383–390, 1975.

[27] A. L. Bajuelos, A. P. Tomás, and F. Marques. Partitioning orthogonal
polygons by extension of all edges incident to reflex vertices: Lower and
upper bounds on the number of pieces. In Procceding of ICCSA 2004 –
Computational Science and Its Applications, pages 127–136, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[28] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial
Board, 5.1 edition, 2020.

[29] Chwa, K., Jo, B., Knauer, C., Moet, E., van Oostrum, R., Shin, C.:
Guarding art galleries by guarding witnesses. Int. J. Comput. Geom. Appl.
16(2–3), 205–226 (2006).

M. Predojević finished his master studies in the
field of Computer Science and Information
Technology at the University of Novi Sad. He is
working as a teaching assistant at the Faculty of
Natural Sciences and Mathematics at the
University of Banja Luka. His field of research
interest include machine learning and
combinatorial optimization.

M. Djukanović is an assistant professor at the
Faculty of Sciences and Mathematics, University

of Banjaluka, B&H. He has received his Ph.D.

in Computer Science (2021) at the TU Wien,

Vienna, Austria. His research interests include

artificial intelligence, combinatorial optimization

and mathematical programming.

M. Grbić received her MSc degree (2016) in
Mathematics and Ph.D in Computer Science
(2020) at the Faculty of Mathematics at the
University of Belgrade, Serbia. Her research
interests include combinatorial optimization
and data mining in bioinformatics.

D. Matić received his PhD degree (2013) in
Mathematics at the Faculty of Mathematics at
the University of Belgrade, Serbia. His
research interests in science include
combinatorial optimization and
metaheuristics, and their application in
various fields of mathematics, computer
science, industry and education

