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Abstract— In this paper we deal with the Weighted Orthogonal Art Gallery Problem. The task is to place guards on some vertices of an 

orthogonal polygon P, such that the total sum of prices assigned to the chosen vertices is minimal and all points from the polygon P are 

covered. The problem has applications in practice, for example, in installing cameras at the corners of a building such that all interior 

space is covered by at least one of the cameras but the price of installation is the smallest possible. To solve the problem, the regular 

grid discretization of the area of polygon is applied. We propose a novel greedy approach which is based on balancing the tradeoff 

between the total sum of guards' costs and the total number of not yet covered points from the discretization. This new approach and 

an existing greedy algorithm are further hybridized with the Integer Linear programming, which is originally formulated for the well-

known Minimum Set Cover problem. Our experimental results are conducted on two sets of polygons from the literature: one with 

small area and the other one with large area. They proved that the proposed greedy methods can achieve the optimal solutions in most 

cases for the class of large-area polygons, while in case of the small area polygons, they achieve solutions of reasonable quality within 

lower runtime than the exact algorithms. 

Keywords-component; art gallery problems; greedy heuristics; hybrid; integer linear programming. 

I.  INTRODUCTION 

Given a polygon P, the Art Gallery Problem (AGP) asks for 
a set of points G of minimal cardinality, such that for each point 
y ∈ P there is 𝑥 ∈ 𝐺 such that 𝑥𝑦 ⊂ 𝑃. We say that the point y is 
covered by the point x, or y is visible from x. Set G is called 
guard set of P and the points from G are called guards. In the 
Orthogonal Art Gallery Problem (OAGP) we suppose that edges 
of the polygon are only horizontal and vertical w.r.t. the axes, 
i.e. the angles allowed between adjacent edges are 90º or 270º. 
The original AGP was initially stated by Victor Klee in 1973. 
[1]. The problem is motivated by installing the cameras inside a 
building (or gallery) such that the whole area of the building is 
covered. Orthogonality constraint naturally comes out from the 
orthogonality of the walls in buildings. Kahn et al. [2] 

formulated and proved that ⌊
𝑛

4
⌋ guards are sufficient to cover an 

orthogonal polygon with n vertices. In this study, we are 
interested in the variant of the OAGP which allows only that 
guards are positioned at the vertices of polygon P. This restricted 
problem is known to be NP–hard [3, 4]. When it comes to real 
situations (like installing the cameras in a building), it is justified 
to assume that the prices of cameras are not equal and may 
depend on several factors, like the quality of a camera 

(respecting its range of spectrum of view) or installation price at 
some specific parts of the building (like corners or tight places). 
In the Weighted Orthogonal Art Gallery Problem (WOAGP) the 
task is to place guards on some vertices of orthogonal polygon 
P which cover all points from P, such that the total sum of prices 
assigned to the chosen vertices is minimal. In this paper we 
consider WOAGP problem under the regular grid discretization 
of P, described in Section 1.B. 

It is well known that AGP can be reduced to the Minimum 
Set Cover Problem (MSCP) by a discretization of the set of all 
points of polygon P [5]. Let us with D(P) denote a discretized 
set of points of the polygon P. The appropriate discretization 
should be performed in such a way that if each point from D(P) 
is covered, then the whole polygon P is covered. After the 
discretization is made, for each vertex of polygon P, a set of 
visible points from D(P) is determined. In that way, the problem 
of determining the minimum number of guards covering the 
entire polygon is reduced to determining the minimum number 
of subsets of points, such that each point from D(P) is included 
in at least one of the chosen subsets, which is MSCP. 
Analogously, WOAGP can be reduced to the Minimum 
Weighted Set Cover Problem (MWSCP).  



 

Milan Predojevic et al. 
 

78 
 

It is well known that AGP has been intensively studied in last 
decades. For a systematic insight into the main results in this 
area, we refer to a survey papers [6], where the authors reviewed 
the literature regarding the AGP, also providing a timeline of 
series of works on solving the AGP using the algorithmic 
methodology. Two notable research groups from the Institute of 
Computing at the University of Campinas, Brazil, and the 
Algorithms Group at TU Braunschweig, Germany are focused 
on solving the AGP, substantially improving the solutions 
obtained on different kinds of problem instances. Also, one of 
the main conclusions of the review paper [6] is that  these 
approaches are mainly based on reducing the AGP to the MSCP, 
which is, as it is mentioned, also the case with WOAGP. 

In [7], greedy algorithms for solving AGP are considered by 
using different strategies, evaluated through experimentation.  
After the algorithm constructs a set of guard candidates, the 
algorithm pick guards, by using a priority function, until the 
whole gallery is covered. The authors present even 13 different 
strategies for selecting the next guard candidate. 

An iterative primal-dual relaxation approach proposed in [8] 
is used to solve AGP to optimality. 

The problem of locating visual sensors can be modelled by 
AGP. In [9], the authors uses their previously developed Edge 
Covering algorithm and adapted it to solve the so called Interior 
covering problem, which is in fact a variant of AGP. 

Concerning the exact and heuristic techniques to solve 
OAGP, Couto et al. [10] presented an exact and efficient 
algorithm for the OAGP based on preprocessing and refinement 
phases of the discretized instance. In [11] an approximate 
solution of the minimum vertex guard problem, which can be 
computed in O(n4) time and this solution is at most O(log n) 
times the optimal one. After that, on these constructed sets 
Johnson’s approximation algorithm [12] for the MSCP is 
applied. An anytime algorithm which computes successively 
better approximations of the optimum for Minimum Vertex 
Guard is proposed in [13]. A major idea of this approach is 
exploring dominance of visibility regions to first detect pieces of 
the polygon that are more difficult to guard. The same problem 
is solved in [14] by applying successive approximations from 
[13]. Tozoni et al. [15, 16] presented an exact Integer Linear 
Programming (ILP)-based algorithm, which iteratively 
generates upper and lower bounds through the resolution of 
discretized space of the AGP. Although many variants AGP are 
present in literature, WOAGP has not been so intensively 
studied, which motivated us to consider this problem. A 
comprehensive analysis of various greedy-like heuristics for the 
MWSCP was presented in [17]. More detailed overview of the 
extensive literature regarding MSCP and AGP is out of the scope 
of this paper and for further reading we suggest review papers 
[18, 19, 20].  

A. Main contributions 

The main contributions of this paper are: 

• We developed a novel greedy approach which is based 
on balancing the tradeoff between the total sum of 
guards’ costs and the total number of not yet covered 
points from the discretization. 

• The greedy algorithm from [21] and the novel greedy 
algorithm are hybridized with the ILP. 

• We considered different types of weights for our 
benchmarks, based on an approximation of the costs in 
real situations. 

• In comprehensive computational experiments, we 
tested, analyzed and checked the efficiency of the 
developed algorithms. The methods are then compared 
to the exact approaches ILP and Constraint 
Programming (CP) w.r.t. the quality of obtained 
heuristic solutions as well as runtimes. 

It should be noticed that the aim of this paper is not to propose a 
new state-of-the-art method for solving discrete AGP, but a fast 
and simple greedy approach which could be used in practical 
situations. This greedy approach is based on  balancing the 
tradeoff between the total sum of guards’  costs and the total 
number of not yet covered points from the discretization. In 
addition, it considers different types of weights assigned to 
polygon nodes, based on an approximation of the costs in real 
situations. 

B. The Regular Grid Discretization of Polygon 

Building of the regular grid discretization D(P) of the 
polygon P is shown in Algorithm 1. At the beginning, the 
minimum bounding rectangle (usually called bounding box) of 
P is created. Then, the regular grid, with resolution Δx × Δy and 
starting at the lower left corner of the bounding box of polygon 
P, is defined as follows: 

𝛥𝑥 = min{|𝑢𝑥 − 𝑣𝑥||𝑢𝑥 ≠ 𝑣𝑥}   
 (1) 

𝛥𝑦 = min {|𝑢𝑦 − 𝑣𝑦|| 𝑢𝑦 ≠ 𝑣𝑦} 

where (ux, uy), (vx, vy) are adjacent vertices of polygon P. 

The algorithm further forms the whole regular grid of the 
bounding box (line 5 of the pseudocode) and finally, all points 
of the regular grid that belong to interior of P and all vertices of 
P are added into the discrete set D(P).  

It should be noted that the optimal solution of WOAGP on 
D(P) (i.e. an optimal covering of D(P)) is not necessarily an 
optimal covering of P. In the simple example shown in Fig. 1, 
one can see that the guards placed on top left and top right 
vertices (shown in red color) cover all points from D(P) (Fig. 1 
(a)), but not the whole polygon, since the gray triangle is not 
visible from any of these two vertices. The optimal solution 
value in this case is 1.2. Two red vertices in Fig. 1 (b) optimally 
cover the whole polygon, but this covering is not optimal w.r.t. 
discrete set D(P), since the total sum of weights is larger (1.6). 

The chosen resolution 𝛥𝑥 × 𝛥𝑦  is a compromise between the 

algorithm speed and accuracy. More precisely, higher resolution 
increases the accuracy, but also increases the execution time of 
Algorithm 1 and vice versa, lower resolution decreases the 
accuracy, but discretization is generated faster. 

Algorithm 1 Discretization D(P) of polygon P 

1: Input: The set of vertices V of polygon P 

2: Output: The discretization D(P) of polygon P 

3: 𝐵𝐵 ← 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔_𝑏𝑜𝑥(𝑃); 

4: ∆𝑥 , ∆𝑦← 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑃); 

5: 𝐷(𝐵𝐵) ← 𝑟𝑒𝑔𝑢𝑙𝑎𝑟_𝑔𝑟𝑖𝑑(𝐵𝐵, ∆𝑥 , ∆𝑦); 

6: 𝐷(𝑃) ← 𝐷(𝐵𝐵) ∩ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝑃); 

7: 𝐷(𝑃) ← 𝐷(𝑃) ∪ 𝑉; 
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II. EXACT METHODS 

In this section we present the exact ILP, initially developed 
for MWSCP from [22] and CP models for solving discrete 
WOAGP under regular grid discretization, which are used in the 
rest of the paper. 

A. Integer linear programming model 

Let us suppose we are given a polygon P with weights assigned 

to vertices and the discretization D(P) of P. The task we 

consider is covering all points from D(P) by some vertices 𝑉 =
{𝑣1, . . . , 𝑣𝑛}  of P such that the sum of their weights is 

minimized. The problem is related to the known MWSCP as 

follows. Family F of nonempty sets consists of the sets 𝑆𝑖 ∈ 𝐹 

which include points 𝑝 ∈ 𝐷(𝑃) that are visible from guard 𝑣𝑖 ∈
𝑉. For each set 𝑆𝑖, the cost 𝑐(𝑆𝑖)  =  𝑤𝑖  is assigned. This way, 

our starting task is equivalent to finding a covering 𝐶 ⊆
{𝑆1, . . . , 𝑆𝑖} in order to minimize 

 

                                            𝑓(𝐶) = ∑ 𝑐(𝑆)𝑆∈𝐶 , 

such that 

⋃ 𝑆

𝑆∈𝐶

= 𝐷(𝑃). 

The ILP model for the MWSCP [22] is adopted to discrete 

WOAGP as follows: 

                               𝑚𝑖𝑛 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

                                              (2) 

                             𝑠. 𝑡. 

                                ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≥ 1, (∀𝑝𝑖 ∈ 𝐷(𝑃))                       (3) 

                                𝑥𝑗 ∈ {0,1}, 𝑗 ∈ {1,2, … , 𝑛},                           (4) 

 

 

where 𝑎𝑖𝑗 = {
1, 𝑝𝑖 ∈ 𝑆𝑗 ,       

0, otherwise.
 Notice that variable 𝑥𝑗 has value 1 

if guard is placed in vertex 𝑣𝑗, otherwise 0. 

Set 𝑍 = {𝑣𝑗 ∈ 𝑉|𝑥𝑗 = 1}  represents a solution of the 

problem w.r.t. discretization D(P) of polygon P. Constraint (3) 

enforces that any point 𝑝𝑖 ∈ 𝐷(𝑃) is visible from at least one 

guard from Z. 

To solve this model, we apply a general-purpose solver 

CPLEX [23]. 

B. Constraint programming model 

An equivalent CP model was implemented and tested by 

IBM ILOG CP Optimizer [24]. In this case, constraint (3) is 

transformed into 

                        ⋁(𝑎𝑖𝑗 ∧ 𝑥𝑗)

𝑛

𝑗=1

= 1, ∀𝑝𝑖 ∈ 𝐷(𝑃),                         (5) 

 

whereas the other constraints and the objective function are the 

same as in the above ILP model. Note that CP approach works 

in a branch-and-bound manner employing a constraint 

propagation and variable domain filtering [25]. 

III. ALGORITHMIC APPROACHES FOR SOLVING DISCRETE 

WOAGP 

In this section we present the heuristic greedy approaches 

for solving the discrete WOAGP and their hybridization with 

the exact ILP method. 

A. Greedy approaches for solving discrete WOAGP 

Greedy algorithms produce a solution of reasonable quality 

within a short interval of time and are relatively easy to 

implement. Efficiency of such heuristic is related to a greedy 

criterion utilized to expand current (non-complete, i.e., partial) 

solution up to its completion, i.e., until all points from D(P) are 

covered.  

A general pseudocode of Greedy heuristics is given in 

Algorithm 2. Let us with 𝑠𝑝𝑠  denote a partial solution, i.e. a 

solution which can be further extended in a way that a larger 

region of the polygon is covered .The set 𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑝𝑠) includes 

those guards from set 𝑉\𝑠𝑝𝑠 that cover some points from D(P) 

that are not yet covered by 𝑠𝑝𝑠 . Extension 𝑠𝑝𝑠  by a vertex v 

corresponds to adding the guard v into set 𝑠𝑝𝑠. 

1) An existing greedy method 

Concerning the greedy heuristic from the literature for 

solving MWSCP [21, 26], one of the most efficient greedy 

heuristics was based on the following criterion: 

                    𝑔1(𝑠𝑝𝑠, 𝑣𝑖) =
𝑤𝑖

ℎ(𝑠𝑝𝑠 ∪ {𝑣𝑖}) − ℎ(𝑠𝑝𝑠)
,                (6) 

where 

                                    ℎ(𝑠𝑝𝑠) = | ⋃ 𝑆𝑖

𝑣𝑖∈𝑠𝑝𝑠

|.                                 (7) 

This heuristic also ensures an approximation with 𝑂(𝑙𝑜𝑔(𝑛)) 

approximation factor. 

2) A Novel Greedy Heuristic 

In this subsection we present a novel greedy criterion. First, 

we introduce a term “incorrect point”. For a point from D(P) we 

 

(a) Optimal coverage of 
discretization D(P). 

 

(b) Optimal coverage of polygon P. 

Figure 2.  Optimal coverage of discretization D(P) does not imply a 

coverage of polygon P. 
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say that it is incorrect if it is not covered by any guard from the 

current partial solution 𝑠𝑝𝑠. Let us denote by 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑠𝑝𝑠) 

the total number of incorrect points from discretization D(P) 

w.r.t. solution 𝑠𝑝𝑠. Note that 

                 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑠𝑝𝑠) = |𝐷(𝑃)| − ℎ(𝑠𝑝𝑠),               (8) 

 

where ℎ(𝑠𝑝𝑠) is defined in (7) and |𝐷(𝑃)| is the cardinality of 

discretization set. Let 𝑤 be the sum of all weights among all 

vertices. The greedy function w.r.t. partial solution 𝑠𝑝𝑠  and 

candidate guard v is defined as follows. 

  𝑔2(𝑠𝑝𝑠, 𝑣) =
∑ 𝑤𝑖𝑖∈𝑠𝑝𝑠∪{𝑣}

𝑤
+

 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑠𝑝𝑠 ∪ 𝑣)

|𝐷(𝑃)|
,    (9) 

In the Equation (9) both terms are normalized to achieve 

better balance between the total sum of guards’ costs and the 

total number of not yet covered points from the discretization. 

The algorithm does not ultimately prefer any of criteria for 

choosing next vertex. Although it cannot be a rule, it is justified 

to suppose that the second term has a more influence on the 

choice of the next vertex in earlier phases of the algorithm 

execution. At the beginning, more points are uncovered and the 

algorithm chooses such vertices which cover larger area of the 

polygon. At the ending stage of the algorithm’s execution, it 

could be expected that the first term plays more significant role, 

since the total number of uncovered points is small. 

It is possible that ties occur in the search, that is, two or more 

vertices with the best score w.r.t. any of the two greedy criterion 

occur.  Therefore, these ties are broken by using price-per-unit 

heuristic which is stated as follows. For each not yet considered 

vertex 𝑣𝑖, we denote the region of polygon P that is visible from 

𝑣𝑖 by 𝑆𝑢𝑟𝑓(𝑣𝑖). As the next candidate to extend 𝑠𝑝𝑠, we choose 

such a guard, with the smallest ratio between the price and the 

visible surface area. More precisely, this criterion is given as: 

                                𝑔′(𝑠𝑝𝑠, 𝑣𝑖) =
𝑤𝑖

|𝑆𝑢𝑟𝑓(𝑣𝑖)|
,                         (10) 

where |𝑆𝑢𝑟𝑓(𝑣𝑖)| represents the area of surface 𝑆𝑢𝑟𝑓(𝑣𝑖). In 

our experimental studies, we found out that this heuristic does 

not perform well on its own, but it represents a reasonable tie-

breaking mechanism which boosts quality of the greedy 

heuristics. 

3) Partial calculation of greedy functions 

In order to enable fast calculation of greedy functions 

described in previous subsections, we noticed that it could be 

useful to allow fast updating of the number of uncovered 

vertices. Therefore, we introduced two useful structures in our 

calculations: 

• structure 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑢𝑎𝑟𝑑𝑠  – which is a map 
structure, where each point from D(P) is mapped to the 
number of guards in solution which cover that point; 

• structure 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠  – as a set structure which 
keeps the points from D(P) that are covered by the 
partial solution; 

 

When adding vertex v into partial solution, we update current 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠 and 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑢𝑎𝑟𝑑𝑠 by considering only 

new points from D(P) covered by v. When v is removed from 

partial solution, we update current 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠  and 

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑢𝑎𝑟𝑑𝑠 by omitting all points which are covered 

only by v. These two functions also allow a fast calculation of 

functions (7) and (8): a candidate vertex v is temporarily added 

to the partial solution, new status is checked and then being 

removed from the solution. 

B. A Hybrid of the GREEDY and CPLEX 

The performance of CPLEX degrades w.r.t. the instance size 

due to the complexity of the problem. On the other hand, in the 

later stage, there is an increased chance for Greedy to worsen 

the obtained greedy solution due to an increased number of 

guards which are similar w.r.t. greedy value. So, it makes sense 

to combine partial solutions generated with a Greedy procedure 

over a few iterations and only then to make use of the CPLEX to 

do the completion of the partial solution. In details, our 

approach consists of the following steps: 

1. Run a Greedy method up to K iterations to obtain a 
partial solution 𝑠𝑝𝑠 , where K is a parameter of the 
algorithm; 

2. Take solution 𝑠𝑝𝑠 and make it complete by solving a 
corresponding sub-model via CPLEX: 

• CPLEX solves corresponding sub-model which is 
formed by adding constraints 𝑥𝑖 = 1, for all 𝑣𝑖 ∈ 𝑠𝑝𝑠 
into the existing ILP model (2)–(4); 

• a complete solution �̅� is obtained; 

3. Return the objective function value 𝑜𝑏𝑗(�̅�) and the total 
number of guards |�̅�|. 

This method is, therefore, called GREEDY+CPLEX. 

IV. COMPUTATIONAL RESULTS 

We used two different kind of benchmark sets from [27, 14]: 

• MinArea instances: include polygons with small areas 
and tiny interior. They present a lower boundary case 
for the cardinality of set D(P) which means that, beside 
the polygon vertices, D(P) contains only a few 
additional points. 

Algorithm 2 Greedy Heuristic 

1: Input: An instance of a problem 

2: Output: A (feasible) non-expandable solution 𝑠𝑝𝑠 (or 

     reporting that no feasible solution exists) 

3: 𝑠𝑝𝑠 ← ()    //partial solution set to empty solution 

4: while 𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑝𝑠) ≠ ∅ do 

5:      Select solution component 𝑒 ∈ 𝐸𝑥𝑡𝑒𝑛𝑑(𝑠𝑝𝑠) w.r.t.      
          some criterion 𝑔 

6:       Extend 𝑠𝑝𝑠 by 𝑒 

7: end while 
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• FAT instances: include polygons of large areas and wide 
interior. In this case, many points of regular grid is 
included into D(P). 

For each benchmark set – MinArea and FAT instances – one 

polygon with n vertices, for each 𝑛 ∈ {8, 10, . . . , 200} has been 

considered and the appropriate discretization is made, which 

makes 97 instances per each benchmark set. In overall, we have 

194 instances. Discretization is performed by using CGAL 

library, version 5.0.2 [28]. 

We included two kinds of weights into each of 194 instances: 

• point-based related weights (W0): For each vertex 𝑣𝑖 , 
the assignment of prices is based on the number of 
points in D(P) that are visible from 𝑣𝑖, as follows: 

               𝑤𝑖 = 𝑛 ∙
|𝑆𝑖|

|𝐷(𝑃)|
, 𝑖 = 1, … , 𝑛.                        (11) 

Introducing these weights can be justified by the 
assumption that cameras which cover larger range of 
points should be of a higher spectrum and quality, and 
thus more expensive. 

• topologically-based related weights (W1): For each 
vertex 𝑣𝑖  of polygon P we denote by 𝑙𝑖  and 𝑙𝑖+1  the 
lengths of two edges that come out of the vertex 𝑣𝑖 (note 
that indices are taken modulo n). Then, we set 

               𝑤𝑖 =
𝑙𝑖 + 𝑙𝑖+1

2
, 𝑖 = 1, … , 𝑛.                         (12) 

Similarly, as in the case of W0, if the arithmetic length of 
both edges that comes out of vertex 𝑣𝑖  is longer, it is 
expected that a guard can see a larger pieces of polygon 
P. This implies that the spectrum of camera installed at 𝑣𝑖 
must be larger, which again implies that it should be of a 
higher quality, i.e., a higher price. 

A. Settings and the choice of the Parameters 

All variants of our algorithms were implemented in C++ 

with g++ 7.4 compiler and the experiments were conducted in 

single-threaded mode on a machine with an Intel Xeon E5-2640 

processor with 2.40 GHz and a memory limit of 8GB. The 

maximum computation time of each of our algorithms was set 

to 5 min. For solving ILP and CP models, CPLEX version 12.7 

was used. 

After conducting preliminary results, for GREEDY+CPLEX 

we decided to set up 𝐾 =  ⌈0.05 ∙ 𝑛⌉  to allow less 

computational time of the hybrid than the average runtime of 

the pure greedy method. 

The benchmark sets and the executable file of our software 

for this project are provided at a public git repository, available 

at https://github.com/milanagrbic/WOAGP. 

B. Results and Discussion 

The following algorithms are included in our computation: 

• two exact approaches: ILP approach, henceforth called 
CPLEX and constrained programming approach, 
henceforth called CP; 

• four heuristic approaches: 

– two pure greedy methods, guided by 𝑔1  and 𝑔2 , 
labeled as GREEDY-1, GREEDY-2, respectively; 

– two GREEDY+CPLEX variants, henceforth labeled by 
GREEDY-1+CPLEX and GREEDY-2+CPLEX. 

Summarized numerical results for each of 6 variants of our 

algorithms are displayed in Tables 1 – 4. For each table, the 

average results are reported for each subset of instances 

grouped w.r.t. a specific kind of instances and a specific weight 

(97 instances per each instance group). Each of the tables list 

the tested algorithms in the first column. Starting with column 

two, each of the lines provide detailed statistics for respective 

algorithm. The statistics report: the average solution quality 

(𝑜𝑏𝑗̅̅̅̅̅), the average time (𝑡̅[𝑠]) in seconds, the average number 

of guards which are included in each of the solutions (|𝑔|̅̅ ̅̅ ), the 

number of solutions which match to the optimum solutions 

 TABLE 1: THE RESULTS ON THE BENCHMARK SET MINAREA FOR THE TYPE OF WEIGHT W0.  

Algorithm 𝑜𝑏𝑗̅̅̅̅̅  𝑡̅[𝑠]  |𝑔|̅̅ ̅̅   #𝑜𝑝𝑡𝐻𝑖𝑡  𝜎(𝑂𝑝𝑡)  #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻  𝜎(𝑀𝑖𝑛𝐻)  

CPLEX *15.93  0.152 18.93 97/97 0.00  N/A N/A 

CP 16.04  98.215 18.96 67/97 0.02 N/A N/A 

GREEDY-1 22.63  0.002 26.28 0/97 0.79 3/97 7.61 

GREEDY-2 19.97  0.002 20.14 0/97 0.44 0/97 0.20 

GREEDY-1+CPLEX 18.49  0.073 21.19 2/97 0.30 57/97 0.06 

GREEDY-2+CPLEX 18.39  0.004 19.59 0/97 0.26 53/97 0.04 

TABLE 2: THE RESULTS ON THE BENCHMARK SET MINAREA FOR THE TYPE OF WEIGHT W1.  

Algorithm 𝑜𝑏𝑗̅̅̅̅̅  𝑡̅[𝑠]  |𝑔|̅̅ ̅̅   #𝑜𝑝𝑡𝐻𝑖𝑡  𝜎(𝑂𝑝𝑡)  #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻  𝜎(𝑀𝑖𝑛𝐻)  

CPLEX *36.03  0.003 18.93 97/97 0.00 N/A N/A 

CP *36.03  18.953 18.93 97/97 0.00 N/A N/A 

GREEDY-1 39.28  0.001 20.15 2/97 0.35 4/97 0.24 

GREEDY-2 40.92  0.001 20.96 0/97 0.51 0/97 0.40 

GREEDY-1+CPLEX 37.78  0.006 19.41 4/97 0.21 19/97 0.08 

GREEDY-2+CPLEX 37.31  0.003 19.58 2/97 0.15 81/97 0.19 
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(#𝑜𝑝𝑡𝐻𝑖𝑡), average standard deviation of the obtained solutions 

w.r.t. optimal solutions (𝜎(𝑂𝑝𝑡)), then the number of minimal 

solutions the algorithm obtained w.r.t. the four heuristics 

achieved by the respective algorithm (#ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻 ) and 

average standard deviation w.r.t. best (minimal) solutions 

achieved by the four heuristic algorithms ( 𝜎(𝑀𝑖𝑛𝐻) ). An 

asterisk in front of a number means that the exact approach 

could prove optimality in all cases. Best values among heuristic 

approaches in each column are bolded. 

From the numerical results, we observe the following 

conclusions concerning exact solvers: 

• CPLEX could solve all solution to optimality within a 
fraction of a second; 

• CP was able to solve all those instances with weight W1 
but with significantly higher execution time than the 
time required for CPLEX; 

• For the subset of instances MinArea which includes 
weight W0, the performance of CP degrades 
significantly, which can be seen by the respective 
average runtime and the number of proven optimal 
solutions found (67/97).  

From the numerical results, we observe the following 

conclusions concerning heuristic solving: 

• In case of the instances that include small–area polygons 
(MinArea) and weight W0 (Table 1): A novel GREEDY-
2 was able to outperform the GREEDY-1 from literature. 
In this case, the best performing heuristic algorithms is 
hybrid GREEDY-2+CPLEX which needs the two order of 
magnitude lower average runtime to finish than the pure 
greedy methods. The average runtimes of all four 
heuristic methods are an order of magnitude lower than 
the average runtime of CPLEX. Pure greedy methods 
deliver solutions of reasonable quality within 20% of the 
quality of optimal solutions but needs the time which is 

7-8 times lower than the average runtime of CPLEX. The 
overall average execution times of all tested algorithms 
are displayed in Fig. 4. Note that vertical axis is scaled 
logarithmically. Although all heuristic methods could 
not achieve optimal solutions (except for the two cases 
of Greedy two cases for GREEDY-1+CPLEX heuristic), 
the average standard deviation w.r.t. optimal solution is 
rather small. From last two columns, it is evident that 
both hybrid variants are more successful, hitting more 
than a half best solution each, with very small average 
standard deviation w.r.t. optimal solutions. 

• In case of the instances that include small-area polygons 
and weight W1 (Table 2): the best heuristic approach is 
GREEDY-2+CPLEX which is able to deliver solutions 
which are within 3% of the optimum ones. Note that in 
81 cases (out of 97) GREEDY-2+CPLEX is able to deliver 
equally good or better results that the other heuristic 
approaches. As it was the case of the weight W0, 
heuristic methods could not achieve many optimal 
solutions, but the obtained average standard deviation 
w.r.t. optimal solutions is rather small. The results of 
pure greedy method GREEDY-1 outperform the results of 
GREEDY-2. These two methods are effective since they 
deliver solutions which are within 10% of the CPLEX 
results but need 3 times lower runtime. The results of 
GREEDY-1 match just in two cases to the optimum. 

• In case of the instances that include large-area polygons 
(FAT) and weight W0 (Table 3): the exact CPLEX 
approach is a clear winner concerning average 
solutions’ quality as well as the average runtimes; the 
best heuristic algorithm w.r.t. solution quality is 
GREEDY-2 +CPLEX. It also matches in more cases (on 6 
instances) to the optimum result then the other heuristic 
approaches. The obtained average results are within 
22% of the average of optimal solutions. The pure 
GREEDY-1 slightly outperforms the pure greedy 
GREEDY-2. It is interesting that GREEDY-1 assigns in 
average a higher number of guards in solutions when 
compared to the average number of guards of GREEDY-

 TABLE 3: THE RESULTS ON THE BENCHMARK SET FAT FOR THE TYPE OF WEIGHT W0.  

Algorithm 𝑜𝑏𝑗̅̅̅̅̅  𝑡̅[𝑠]  |𝑔|̅̅ ̅̅   #𝑜𝑝𝑡𝐻𝑖𝑡  𝜎(𝑂𝑝𝑡)  #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻  𝜎(𝑀𝑖𝑛𝐻)  

CPLEX *2.62 0.02 7.32 97/97 0.00 N/A N/A 

CP *2.62  8.17 7.32 97/97 0.00 N/A N/A 

GREEDY-1 3.39  0.35 7.81 0/97 0.09 23/97 0.05 

GREEDY-2 3.52  0.32 6.61 2/97 0.10 28/97 0.08 

GREEDY-1+CPLEX 3.34  0.35 8.91 4/97 0.08 25/97 0.04 

GREEDY-2+CPLEX 3.32  0.33 6.81 6/97 0.08 25/97 0.04 

TABLE 4: THE RESULTS ON THE BENCHMARK SET FAT FOR THE TYPE OF WEIGHT W1.  

Algorithm 𝑜𝑏𝑗̅̅̅̅̅  𝑡̅[𝑠]  |𝑔|̅̅ ̅̅   #𝑜𝑝𝑡𝐻𝑖𝑡  𝜎(𝑂𝑝𝑡)  #ℎ𝑖𝑡𝑠𝑀𝑖𝑛𝐻  𝜎(𝑀𝑖𝑛𝐻)  

CPLEX *6.72 0.02 6.44 97/97 0.00 N/A N/A 

CP *6.72  0.36 6.44 97/97 0.00 N/A N/A 

GREEDY-1 6.77 0.31 6.49 92/97 0.02 92/97 0.04 

GREEDY-2 6.77 0.31 6.49 92/97 0.02 92/97 0.04 

GREEDY-1+CPLEX 6.73  0.32 6.45 96/97 0.01 96/97 0.03 

GREEDY-2+CPLEX 7.42  0.31 6.46 90/97 0.33 92/97 0.33 
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2. The runtimes of our heuristic approaches are an order 
of magnitude higher than the time of CPLEX approach. 
Reason for that can be seen in the used regular 
discretization of the polygon. For the polygons with a 
larger area, more points are involved in the discrete set 
D(P) and, therefore, iterations of greedy methods take a 
longer time than in case when D(P) is smaller (which 
was the case of MinArea polygons). 

• In case of the instances that include large-area polygons 
(FAT) and weight W1 (Table (4)): the best heuristic 
algorithm w.r.t. solution quality is GREEDY-1+CPLEX 
which is able to match in 96 instances the quality of 
optimal solutions. Slightly worse results are delivered 
by GREEDY-1 and GREEDY-2. The obtained (heuristic) 
solutions of these two approaches are within 1% of 
optimal solutions and they are able to reach the quality 
of the optimal solution for 92 instances. Unfortunately, 

 

Figure 2.   Polygon coverage for the type of weight W0. 

 

Figure 3.  Polygon coverage for the type of weight W1. 

 

Figure 4.  The overall average execution times of all tested algorithms. 
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the runtimes in comparison to the runtimes of CPLEX are 
significantly higher for all of our heuristic approaches. 
However, the average runtime for CP is a bit higher that 
the avg. runtimes of the heuristic approaches. Again, 
average standard deviation for each heuristic method is 
rather small w.r.t. optimal solutions, indicating good 
quality of the proposed algorithms. 

• If we compare the execution times of the algorithms with 
respect to the weight type (W0 and W1), we see that all 
algorithms needs slightly more time to find solution for 
the case of W0 weight type. Although it cannot be 
claimed with certainty, a possible reason could  lie in the 
fact that algorithms for W0 type need more guards to 
construct a complete solution in comparison to the case 
W1, where the corresponding complete solution often has 
smaller cardinality (more guards are necessary up to 
completion), see the column 3 of Table 1 and 2. The latter 
implies that the greedy heuristic in that case needs less 
iterations, so, the execution time is smaller. 

• Concerning the percentage of covering of polygons for 
the best solutions (found by CPLEX) we noticed that FAT 
instances are covered in almost all cases (see Fig. 2 and 3 
and the blue curve). 

• Concerning the MinArea instances, it gets harder to cover 
all polygon and in almost all cases the whole area of 
polygon P cannot be covered. For these instances, we see 
that the solutions cover more regions of small–area 
polygons when weight W1 is considered then when 
considering W0 (≈  93% vs. ≈  85%). From Fig. 2 and 3 
one can conclude that the proposed algorithms are more 
suitable for polygons of large areas and wide interior than 
for the polygons with small areas and tiny interior. 

V. CONCLUSIONS AND FUTURE WORK 

In this work we have considered the Weighted Orthogonal 

Art Gallery Problem under the regular grid discretization. We 

have developed a novel greedy criterion which provide a trade-

off between the number of guards and the cost of guards. 

Moreover, a hybrid of a greedy method and CPLEX was 

proposed to make a maximal completion of the greedy solution 

obtained by the greedy method supplemented by solving 

respective subproblem via CPLEX. The performances of the 

heuristic approaches are compared to the exact ILP and CP 

approaches. From the computational experiments, the heuristic 

approaches were highly efficient in terms of obtaining solutions 

of reasonable quality in an order of magnitude lower runtime 

than the exact approaches for the small-area polygons. For the 

large–area polygons, heuristic approaches were able to reach 

the quality of optimal solutions in almost all cases but in cost of 

larger times than the times of the ILP approach. 

The proposed greedy approach could be used in practical 

situations whenever regular grid discretization could be 

applied; for example to help engineers in their tasks related to 

the problem, such as determining location of cameras in 

buildings in order to minimize the installation costs. 

For the future work, we tend to improve the results of our 

greedy method as well as runtimes on the FAT benchmark sets 

by considering other types of polygon discretization’s, some of 

them are proposed in [1, 29]. 
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