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Abstract— In this paper, a literature overview of propagation models based on the application of deep learning is presented. Given the 

shortcomings of traditional empirical and deterministic models, papers dealing with the formation of propagation models are 

increasingly turning to modern solutions such as deep learning. This paper discusses the classification of propagation models based on 

deep learning techniques based on their ability to make predictions independently or in combination with a traditional model. Different 

architectures of deep learning models that are most commonly used in the creation of propagation models are analyzed, such as deep 

feedforward neural networks, convolutional neural networks and generative adversarial networks. The basic differences arising from 

different deep learning models and types of input data are analyzed, as well as their impact on the need for expert knowledge in the 

selection of data that appear as elements in the vector representing input. 

Keywords - deep learning, propagation models, radio propagation 

I.  INTRODUCTION  

The need for the propagation models is as old as the first 
radio communication systems. Without them, modern planning 
and efficient management of wireless communication systems is 
not possible [1]. Therefore, creating a model that can perform 
the most accurate prediction, while maintaining numerical 
efficiency, is a challenge for decades among experts dealing 
with the propagation of radio signals. The importance of 
propagation models is mostly reflected in the prediction of 
propagation loss, which is one of the basic characteristics of 
radio channels, coverage analysis, determining the received 
signal strength, link budget, signal-to-noise ratio, … [2], [3]. 
Accurate estimation of propagation loss forms the basis for good 
base station site selection and appropriate frequency planning, 
which is the first step in the development of a radio system [2]. 
In the literature, propagation models are mainly classified into 
deterministic and empirical models. Empirical models are based 
on extensive measurements performed in different environments 
and different frequency bands [4]. Their advantage is that they 
implicitly take into account the influence of the environment on 
signal propagation. Usually, the disadvantage is insufficient 
efficiency, which depends on the accuracy of the measurements 
based on which the model was built, but also on the similarities 
between the analyzed environment and the environment in 
which the measurement was performed [5]. Moreover, the lack 
of empirical models accuracy is influenced by the fact that they 
use a very limited number of parameters to describe the 

environment [6]. On the other side, deterministic models are 
based on the laws of physics and are generally characterized by 
greater precision than empirical models. Unlike empirical 
models, they require more detailed information about the 
environment [6]. Their disadvantage is reflected in their poor 
numerical efficiency and the fact that they require an extensive 
environmental database, which sometimes cannot be provided. 
They are mainly used for predictions in microcells and indoor 
environments [5]. Given the shortcomings of traditional 
empirical and deterministic models, numerous solutions based 
on the application of modern machine learning and artificial 
intelligence techniques have been proposed in the literature. The 
reason for the popularity of applying the aforementioned 
techniques in building propagation models is their ability to 
efficiently approximate an arbitrary function that cannot be 
explicitly described by a formula and depends on several input 
parameters, which corresponds to the problem of predicting 
propagation loss. There is a relatively large number of solutions 
for building propagation models based on artificial intelligence 
techniques. In this paper, we present an overview of propagation 
models based on deep learning, a special form of machine 
learning [7]. To the best of the author's knowledge, such models 
are mostly based on supervised learning and regression, except 
when the goal is to classify the obtained value into one of the 
categories indicating the level of the received signal, as shown 
in [8]. 

II. APPLICATION OF ARTIFICIAL INTELLIGENCE IN PROPAGATION 

MODELS 

Most of the propagation models presented in this paper are 
based on deep feedforward networks and convolutional neural 
networks or some of their combined architectures. Deep 
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feedforward networks are also known as feedforward neural 
networks (FNN) or multilayer perceptron (MLP) and represent 
one of the deep learning models [7]. The architecture of a single 
feedforward neural network consists of an input, an output, and 
several hidden layers. Hidden layers can be considered as a set 
of units that operate in parallel and represent a function that 
performs vector-to-scalar mapping [7]. Each unit can be viewed 
as a neuron that receives information from multiple neurons in 
the previous layer and computes its output based on this 
information [7]. The value of the obtained output depends 
largely on the choice of the activation function, which is 
necessary for approximation of complex nonlinear functions. 
Without its application, the output signal would be just a simple 
linear function [9]. The neuron's activation function maps any 
input value to the corresponding output from the defined 
domain. Examples of activation functions are tanh, sigmoid, 
softsign, softplus, softmax, ReLU (Rectified Linear Unit) [9]. 
The application of ReLU activation function is very common 
due to its advantage reflected in its simplicity and the fact that 
its choice eliminates the vanishing gradient problem [10], Fig. 1. 

 

Figure 1. ReLU activation function [9] 

The number of hidden layers in the architecture of an MLP 
network indicates its depth, and the number of units in the 
hidden layers indicates its width [7]. When the number of 
hidden layers is small, we speak of shallow neural networks. 
Each of these architectures has advantages for a particular type 
of problem [11]. When it comes to building propagation 
models, most models use an architecture with several hidden 
layers, i.e., deep feedforward networks. Feedforward in the 
name means that such networks have no feedback in the 
architecture, but the information flows in one direction, Fig.2. 

 

Figure 2. Example of feedforward neural network 

If there is feedback, then we are talking about recurrent 
neural networks, which are not considered in this review. In 

propagation models based on MLP networks, the inputs are 
vectors of data that arise as a result of the selection of experts 
that form the model, on which the performance of such models 
largely depends. Therefore, it is important to make the right 
choice, taking into account the dimensionality of the input 
vector and the possible correlation between input vector 
elements, which are known as features.  

Unlike feedforward networks, convolutional networks are a 
special type of neural networks for data that have a grid-like 
topology [7]. Most often, and this is the main topic of this paper, 
this data is in the form of an image, i.e., a matrix with pixels. 
The architecture of any convolutional neural network consists 
of several layers that have different functions, such as 
convolutional layers, pooling layers, and fully connected layers, 
Fig. 3. 

 

Figure 3. Example of convolutional neural network 

A key difference between such networks and the previously 
mentioned feedforward networks is, among other things, the 
ability to independently determine from the image the features 
that are important for solving the task at hand through various 
layers. These tasks are mostly in the domain of image 
classification, although there are also examples where 
convolutional neural networks are used for image-driven 
regression [12], such as in the creation of propagation models 
that aim to make the most accurate prediction possible based on 
images containing propagation-related information. 

Some authors in their work compare the performance of a 
propagation model based on artificial neural network with the 
performance of a traditional model. The authors in [13] 
presented the improvement in root mean square error (RMSE) 
obtained with their solution compared to ITU 452 [14] and the 
Cost-Hata model [15], which is about 7 dB and 9 dB, 
respectively, while compared to the ray-tracing modeling 
approach, the prediction time was reduced even 12 times. Better 
performance was also observed in comparison with the CI PL 
[4] and A-B PL [4] models presented in [4]. A comparison with 
the ray-tracing and urban macro (UMa) 38.901 [16] models at 
811 MHz and 2630 MHz is presented in [17]. Here, the 
improvement of the presented model based on deep learning is 
up to 4.7 dB compared to the previously mentioned traditional 
models. In [5], several solutions for propagation loss prediction 
based on deep learning networks are presented, and the best 
results show an improvement over the traditional COST-
Walfisch-Ikegami (CWI) [18] model of about 3 dB. 

III. ARTIFICIAL NEURAL NETWORKS BASED PROPAGATION 

MODELS 

As mentioned in the previous chapter, most propagation 
models can be classified by the choice of applied neural network 
type and input data into models such as those based on: 
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• MLP networks [2] - [4], [13], [19], [20], where the input 
is a vector of features, selected by the experts building 
the model,  

• models that use images as input data, as is the case with 
convolutional networks [6], [12], [21] - [25], [26], or  

• models that use raw measurement data, as is the case 
with GAN (Generative Adversarial Networks) networks 
[27], [28]. 

A. Propagation models based on feedforward neural 

networks 

A variety of propagation models based on MLP neural 
networks have been proposed in the literature, taking into 
account different influences on propagation through the choice 
of features. Given the importance of the environment for signal 
propagation, it is very important to consider its influence when 
building a propagation model. When describing the propagation 
environment in an urban setting, the influence of buildings and 
roads on the propagation can be very large. Thus, in [2], the 
number and percentage of buildings in the signal direction were 
considered, as well as information about the main and cross 
roads. The information can also refer to the influence of 
buildings by considering the number of buildings that the signal 
passes through on the direct path between the transmitter and 
the receiver in each of the clusters, where the different clusters 
can be different types of buildings [13]. In [20], the influence 
of buildings is analyzed by dividing the path between the 
transmitter and receiver into an arbitrary number of intervals, 
within each of which the building with the highest height above 
the direct optical line of sight is determined and described by 
parameters such as height above the direct optical line of sight, 
distance from the transmitter, and width. The authors in [19] 
consider the influence of buildings and roads by dividing the 
area of interest into a network of N × N cells, with the center of 
each cell located on the building or road, depending on the 
distribution of buildings and roads, where buildings are 
described by width, height, and length, and roads are described 
by width.  

When describing the influence of the propagation 
environment, in the absence of information about its geometry 
and materials, the types of the environment (green areas, 
forests, tall buildings, sea, wet land ...) can be used as 
information [4]. It has been shown that the consideration of 
environmental information in the construction of a propagation 
model contributes to the accuracy of the prediction [4], [8]. 
Considering the mentioned information, in the works [4], [8] 
the replacement of complex 3D modeling was achieved by 
forming a vector whose dimensions correspond to the number 
of considered environmental types. Each element of the vector 
corresponds to the length of the line in the LoS (Line of Sight) 
direction passing through the corresponding type of 
environment. The elements of the vector describing the 
environment can be the number of occurrences of each type of 
environment within rectangular area with the transmitter and 
receiver located diagonally in its vertices [4]. There are 
examples where terrain use and vegetation density are taken 
into account [29].  

  Important information also includes the system parameters 
in terms of frequency, information about the antennas, the 
positions of the transmitter and receiver, which can be 
represented by both latitude and longitude [30], the distance 

between the transmitter and receiver, and information about 
whether the conditions for direct optical visibility are met [13]. 
As mentioned earlier, the formation of the input vector can be 
very challenging. Features must be considered that best describe 
the influence of the propagation environment and system 
parameters on the prediction and provide good generalization 
properties. Consideration must be given to the dimensions of the 
vector and the correlation that may exist between features. To 
reduce the dimensions of the input vector while retaining 
important information, the principal component analysis (PCA) 
technique is used. By reducing the dimensions of PCA, it also 
helps to increase the speed of network training and improve the 
generalization properties of the model [3]. It has been applied in 
the works [4], [8] to reduce the linear correlation between 
different types of environments. The analysis in [20] showed 
that better results are obtained when PCA is applied to the input 
vector. 

B. Propagation models based on convolutional neural 

networks 

Propagation models based on the application of 
convolutional neural networks require the use of images as 
input data. The outputs of such prediction models may be scalar 
values representing the propagation loss (or other relevant 
parameter) at a location of interest. The outputs may also be 
images representing a map of propagation loss values (or other 
relevant parameter) for the area of interest. This corresponds to 
image-to-image regression characterized by the use of UNet 
networks [31]. The application of UNet networks for the 
creation of propagation models is presented in the works [6], 
[26]. In the work [26], several solutions for the formation of a 
propagation model based on the application of UNet networks 
were proposed. One of the solutions contains as inputs 
morphological images of city and car maps on the road and a 
morphological image of the transmitter position, while the 
output are images with corresponding propagation loss values, 
where each pixel represents a propagation loss corresponding 
to the location represented by that pixel. In the same work, the 
application of transfer learning [32] was also considered in the 
construction of the model. The idea is that based on coarse 
simulations, the model learns the "bigger picture" and then 
based on a smaller data set representing simulations with higher 
accuracy, the model is better adapted to the real field scenario. 

In propagation models based on convolutional neural 
networks, the inputs to the network are usually images that 
contain important information about the environment, such as 
aerial photographs [22], [23], which contain information about 
buildings, roads, and vegetation. Aerial photographs as such 
provide important information to study the effects of the 
environment on signal propagation. Therefore, in [22], a 
grayscale image representing an aerial photograph is used, with 
the center at the position of the transmitter or receiver, with 
dimensions 256 × 256, where the value of each pixel 
corresponds to a 1 m × 1 m area. The application of aerial 
images is also found in [33], where semantic segmentation is 
used to divide aerial image into three classes (urban, suburban, 
and rural). This allows the prediction of propagation losses 
specific to each type of environment through which the link 
passes. This can be particularly important when dealing with 
larger geographic areas where different regions through which 
the link passes require different propagation models [33]. In 
addition to aerial photographs, images with information about 
buildings are very often considered, which is typical for 
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predictions in urban environments. In [22], an image with 
building information was created, where the parts representing 
buildings and roads are clearly separated. It has been shown that 
using such images together with images containing information 
about the height of buildings gives a lower error in prediction 
than using just solely aerial image as input. Given the limited 
availability of aerial images containing information about 
buildings within an urban area, [23] improves the model 
presented in [22] for the case where only aerial image is 
available. The presented solution involves creating images of 
interest with information about buildings based on aerial image 
using UNet networks, which are later used as input to the 
model. Consideration of the influence of buildings in [12] 
implies as input to the convolutional network an image with the 
heights of buildings, which is a rectangular area with the 
transmitter and receiver located diagonally in its vertices. 
Depending on the distance between the transmitter and receiver, 
the dimensions of the generated image with the heights of 
buildings in the area of interest also differ. Each image is 
reduced to predefined square dimensions before being brought 
to the input of the convolutional network. By changing the 
dimensions of the image, the distance information contained in 
the image is not lost [12]. 

Most models based on convolutional neural networks 
consider non-image data as input in addition to images, 
indicating information such as distance, system parameters, and 
others. Such additional information can be considered as 
additional inputs in the form of scalars or vectors [17], [21], 
[22], [23] or represented by an image [6], [26]. That is, the pixel 
values of the image used as input to the model can represent any 
information, so they can indicate the heights of the terrain 
profile [24], [25], clusters, tilt antennas, antenna gain, 
frequency [6]. For example, in [26], the transmitter location is 
represented as a morphological image where the pixel at the 
location corresponding to the transmitter position has a value of 
one, while the remaining pixels have a value of zero. In one of 
the solutions for creating a propagation model in [26], in 
addition to the morphological images of the city map and 
vehicle layout and the transmitter location, a grayscale image is 
input to the network. That image represents a partially filled 
map of propagation loss values for that area. Non-zero pixel 
values represent propagation loss at the corresponding location, 
while values from locations where no measurements were taken 
are set to zero. This means that the network learns the estimate 
based on the nominal inputs and the interpolation based on an 
additional input, which is a partially filled map of propagation 
loss values. This can be useful in situations where the nominally 
given inputs do not represent reality accurately enough [26]. 

An investigation of the influence of image dimensions on 
the accuracy of the propagation model based on the application 
of convolutional neural networks is presented in [12], [22]. The 
analysis in [22] showed a 93% reduction in complexity when 
the image dimensions were reduced from 256 × 256 to 64 × 64, 
with an RMSE distortion of 1 dB. Also, in [12], the effect of 
image dimensions on the achieved performance was studied by 
comparing the achieved MAE (Mean Absolute Error) for the 
case where the selected image dimensions of 64 × 64 pixels are 
compared with image dimensions of 16 × 16, 32 × 32, 128 × 
128, and 256 × 256 pixels. It was found that decreasing the 
image dimensions resulted in worse estimation, while 
significantly increasing the image dimensions did not have 
much effect on the improvement. 

C. Propagation models based on GAN neural networks 

Using GAN networks to build propagation models requires 
the use of raw data. In addition to convolutional neural 
networks, GAN networks also allow the creation of models that 
do not require expert knowledge to determine features, as was 
the case with models based on the MLP architecture. In [27], 
the concept of a GAN network that trains raw measurement data 
for a given scenario is used. It consists of two neural networks, 
one of which is a channel data generator and the other a channel 
data discriminator, Fig. 4. 

 

  

Figure 4. The GAN based wireless channel modeling framework [27] 

The generator attempts to produce samples that are as 
realistic as possible, such as those obtained from measurement 
campaigns, and thus directly learns the characteristics of the 
target radio channel. The discriminator is another neural 
network trained with the goal of more efficiently distinguishing 
real samples from fake samples, i.e., those generated by 
generators. Competing these two networks, a channel model is 
created. Training stops when the discriminator is no longer able 
to distinguish fake samples from real ones, and then the 
generator becomes the channel model. The disadvantage of this 
model is the need for sophisticated and extensive measurements 
and possible problems with convergence. The generator can 
find one type of sample with which to fool the discriminator and 
only make variations of that selection without learning to 
generate other samples. Moreover, this model is specific to the 
environment in which the measurement campaign was 
conducted [27]. 

An example of using GAN networks for prediction purposes 

is presented in [28], where the GAN network is trained to 

produce high-resolution received signal strength (RSS) maps 

based on RSS maps produced by low-cost/low-accuracy 

raytracing simulations. In addition, generalization has been 

achieved to allow the model to be adapted to new frequencies 

and receiving points. Based on the lower resolution RSS map, 

the generator creates a higher resolution RSS map that is fed to 

the input of the discriminator along with the original higher 

resolution RSS map. The discriminator's task is to detect 

whether the RSS map is generated or real. With competition 

between the generator to create the most realistic RSS maps as 

possible and the discriminator to distinguish real RSS maps 

from generated ones, both networks learn over time. The 

generator is a network with a UNet architecture that, in addition 

to the lower-resolution RSS map, takes as input the frequency, 

the distance of each receiving point from the transmitter, and 

the number of obstacles between the transmitter and each 

receiving point. The discriminator is a convolutional neural 

network that provides a value between zero and one based on 

the generated RSS map, indicating how real the generated map 

is [28]. 
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IV. PROPAGATION MODELS BASED ON A COMBINATION OF 

TRADITIONAL MODELS AND APPLICATIONS OF ARTIFICIAL 

NEURAL NETWORKS 

In contrast to the models of radio channels presented so far, 
which are based entirely on neural networks, there are also 
those that are combined with some traditional models. Such 
propagation models not only use artificial neural networks to 
determine the connection between the input data and the desired 
output, but also use the assistance of traditional propagation 
models in the prediction. The task of the artificial neural 
networks in such models is mainly to learn the correction that 
exists between the prediction results of the traditional model 
and the measured values, which is why they are also called error 
correction models [5].  

The paper [5] presents a solution for a stand-alone and 
combined propagation model. In the later one, the neural 
network is trained to learn the error that exists between the 
values obtained by prediction using the Cost-Walfisch-Ikegami 
(CWI) model and the measured results. The error obtained in 
the prediction process is added to the value obtained by 
applying the CWI model in order to obtain the final result, Fig. 
5. and Fig.6. The comparison of the statistical parameters 
obtained in the case of the CWI model, the presented error 
correction model and the stand-alone ANN model shows that 
the best values of the statistical parameters are obtained by 
applying the error correction model. 

 

Figure 5. Schematic representation of the error-correction model training 
process [5] 

 

Figure 6. Schematic representation of the propagation loss prediction for the 
error-correction model [5] 

An example of another combined propagation model is 
presented in [17]. The presented model uses the output of the 
so-called Uma_B model [16]. The output of the Uma_B model 

is also fed into the output of the network, Fig. 7. In this way, it 
is achieved that the model learns the correction added to the 
value obtained by applying the traditional model. The 
architecture of the aforementioned model consists of two neural 
and one convolutional network used for satellite image 
processing. The outputs of one neural network and the 
convolutional network are fed into the input of another neural 
network, which is directly connected to the output, Fig. 8. 

 

Figure 7. Scheme of operation of the combined model presented in [17] 

 

Figure 8. Neural network architecture for the propagation model presented in 
[17] 

A similar model architecture is presented in [21], which is an 
extension of the work [17], with differences in input parameters 
and model complexity. The model presented in [21] is combined 
with the 3GPP UMa [34] model and uses OSM (Open Street 
Map) images. The created model shows similar performance to 
[17] with a significant reduction in model complexity. 

V. CONCLUSION 

In this paper, an overview of some propagation models 
presented in the literature based on the application of deep neural 
networks is given. Solutions based entirely on a deep learning 
architecture are presented, as well as those that combine the 
application of a traditional model with a deep learning solution. 
The different model architectures are analyzed with particular 
attention to the input data used to build the model. The first such 
propagation models were based on MLP networks, which 
depend on the selection of features used for prediction and 
turned out to be a selection of experts that form the model. The 
most recent work is based on the application of convolutional 
neural networks, where the model is fed with important 
information about the environment, system parameters, etc., 
through the input data given in the form of an image. Table I 
gives an overview of the models presented in the literature based 
on the criteria considered in their analysis in this work. When 
analyzing the quality of the created model by considering the 
statistical parameters, it is important to pay attention to the range 
of values (propagation loss, power level, etc.) considered in the 
calculation of the statistical parameters. Therefore, Table I also 
contains information about the range of values used in the model 
evaluation. In the papers where a more detailed analysis is 
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presented, where several solutions are presented based on 
different architectures, data, etc., Table I shows the results that 
the authors of this paper consider the most relevant, obtained for 
an arbitrarily chosen statistical parameter, if there are more. The 
application of deep neural networks aims not only to reduce the 
complexity of the models compared to deterministic models and 
to increase the efficiency compared to empirical models, but also 
to speed up the prediction process, which can be achieved by 
using graphics processors. Most recent work aims to create high-
performance models that rely as little as possible on expert 
knowledge, thus reducing prediction errors that may be due to 
human influence. 
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TABLE I.  COMPARATIVE PRESENTATION OF REVIEWED PAPERS 

Reference 

Neural 

network 

type 

Input data 

Stand-alone/ 

combined 

Operating 

frequency 

[MHz] 

Approximate 

signal dynamics 

[dB] 

Evaluation 

metrics 

Evaluation 

metrics value 

[2] MLP 
Engineered features – information 

about buildings, streets, and 

environment 

Stand-alone 900 80 RMSE 4.85 dB 

[4] MLP 

Engineered features – 
environmental features, information 

about antenna, base station and 

receiver location, distance between 
base station and receiver, frequency, 

transmit power 

Stand-alone 2500 80 MAE < 3.64 dB 

[5] MLP 

Engineered features – information 

about streets, buildings, distance 
between transmitter and receiver 

Combined 1890  RMSE 6.07 

[6] UNet 

Images with clutter, terrain, 

building, azimuth, tilt, antenna 
height, antenna gain and frequency 

information 

Stand-alone / 80 RMSE 7.48 

[12] CNN 

Images of the area contained 

between transmitter and receiver 
with building height information 

Stand-alone 900 90 RMSE 4.42 dB 

[13] MLP 

Engineered features – system 

features (information about antenna, 
transmitter etc.), environment 

features (information about 

LOS/NLOS state, propagation 

distance, clutter type, etc.) 

Stand-alone 2100 / RMSE 6.19 dB 

[17] 

CNN for 

satellite 
images + 

FNN for 

managing 
engineere

d features 

Satellite images and engineered 

features (information about position 

and distance) 

Combined 811, 2630 40 RMSE ≈ 4.5 dB 

[19] MLP 

Engineered features – geometry of 

environment and coordinates of 
receiver 

Stand-alone / 60 MEAN 4.89 dB 

[20] MLP 

Engineered features – information 

on significant buildings and 
distances along the signal path 

Stand-alone 947 80 MSE 51.15 dB2 

[21] 

CNN for 

OSM 

images + 

FNN for 

managing 

engineere
d features 

OSM (OpenStreetMap) images and 

engineered features (information 

about distance, velocity, and 
frequency) 

Combined 811, 2630 60 RMSE 6.3 dB 

[22] CNN 

Image data of building occupancy 

rate and building height data, 
system parameters including base 

station specifications and distance 

between transmitter and receiver 

Stand-alone 2000 70 RMSE ≈ 4 dB 

[23] 

CNN for 

images + 

FNN for 
managing 

engineere

d features 

Estimated building occupancy 
images and system parameters 

(antenna and base station 

information and distance 
information) 

Stand-alone 2100 60 RMSE 7.54 dB 

[24] CNN 
Terrain profile and distance 

between transmitter and receiver 
Stand-alone 1800 80 RMSE 4.9 dB 

[25] CNN Image with terrain profile Stand-alone 900 140 RMSE 6.65 dB 

[28] GAN 
Low resolution RSS (received 

signal strength) maps 
Stand-alone 5250 ≤ f ≤ 5350 20 MAE 2.8 dB 

 

 


