Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

Z_k -Magic Labeling of Open Star of Graphs

P. Jevanthi and K. Jeva Daisv

ABSTRACT. For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \to A - \{0\}$ such that, the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z_k -magic graph if the group A is Z_k , the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as open star of shell, flower, double wheel, cylinder, wheel, generalised Petersen, lotus inside a circle and closed helm are Z_k -magic graphs. Also we prove that super subdivision of any graph is Z_k -magic.

1. Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A detailed survey is maintained by Gallian [8]. The concept of an A-magic graph was introduced by Sedlacek [14] as follows: A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all the vertices. Stanley [16,17] noted that Z-magic graphs can be viewed in the more general context of linear homogeneous diophantine equations. Doop [1,2,3] studied the generalization of magic graphs and characterization of regular magic graphs. Lee et al. [10,11,12,18] studied the construction of magic graphs, V_4 -group magic graphs, group magic graphs and group magic Eulerian graphs. For four classical products Low and Lee [13] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu et al. [15] proved that the product and composition of A-magic graphs were also A-magic. For any nontrivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \to A - \{0\}$ such that, the vertex labeling f^+ defined

²⁰¹⁰ Mathematics Subject Classification. 05C78.

as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. An Amagic graph G is said to be Z_k -magic graph if the group A is Z_k , the group of integers modulo k and these graphs are referred as k-magic graphs. Motivated by the concept of A-magic graph in [14] and the results in [13,15] Jeyanthi and Jeya Daisy [4,5,6,7] proved that the square graph, splitting graph, middle graph, $m\Delta_n$ -snake graph, some standard subdivision graphs, cycle of some standard graphs and various families of graphs admit Z_k -magic labeling. In this paper we show that some open star of graphs admit Z_k -magic labeling. We use the following definitions in the subsequent sequel.

DEFINITION 1.1. [9] Let G be a graph with a vertex u. The graph obtained from a star $K_{1,n}$ and $n(\geq 2)$ copies of G by identifying the i^{th} end vertex of $K_{1,n}$ to vertex u of the i^{th} copy of G is known as an open star of G, denoted by OS(n.G).

DEFINITION 1.2. A shell graph S_n is obtained by taking n-3 concurrent chords in a cycle C_n . The vertex at which all the chords are concurrent is called an apex.

DEFINITION 1.3. The flower graph Fl_n is obtained from a helm H_n by joining each pendent vertex to the central vertex of the helm.

DEFINITION 1.4. A double wheel graph DW_n of size n can be composed of $2C_n + K_1$, that is, it consists of two cycles of size n, where the vertices of the two cycles are all connected to a common hub.

DEFINITION 1.5. The graph $(C_n \times P_2)$ is called cylinder graph.

DEFINITION 1.6. The wheel graph W_n is obtained by joining the vertices $v_1, v_2, \ldots v_n$ of a cycle C_n to an extra vertex v called the centre.

DEFINITION 1.7. A generalised Petersen graph P(n,m), $n \ge 3, 1 \le m < \frac{n}{2}$ is a 3 regular graph with 2n vertices $\{u_1, u_2, \dots u_n, v_1, v_2 \dots v_n\}$ and edges $(u_i v_i)$, $(u_i u_{i+1}), (v_i v_{i+m})$ for all $1 \le i \le n$, where the subscripts are taken modulo n.

DEFINITION 1.8. The lotus inside a circle graph LC_n is obtained from the cycle $C_n: u_1, u_2, \ldots u_n, u_1$ and a star $K_{1,n}$ with the central vertex v_0 and the end vertices v_1, v_2, \ldots, v_n by joining each u_i and $u_{i+1} \pmod{n}$.

DEFINITION 1.9. The closed helm graph CH_n is obtained from a helm H_n by joining each pendent vertex to form a cycle.

DEFINITION 1.10. The super subdivision graph $S^*(G)$ is obtained from G by replacing every edge e of G by a complete bipartite graph $K_{2,m}(m \ge 2)$ in such a way that the ends of e are merged with the two vertices of the 2-vertices part of $K_{2,m}$ after removing the edge e from G.

2. Main Results

In this section we prove that the graphs such as open star of shell, flower, double wheel, cylinder, wheel, generalised Petersen, lotus inside a circle and closed helm are Z_k -magic graphs. Also we prove that super subdivision of any graph is Z_k -magic.

THEOREM 2.1. An open star of shell graph $OS(n.S_r)$ is Z_k -magic for positive integer a and k > (n-1)(r-2)2a if n is odd and for k > (r-2)2a if n is even.

PROOF. Let $OS(n.S_r)$ be an open star of shell graph. Let $V(OS(n.S_r)) =$ $\{u, u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\}$ and $E(OS(n.S_r)) = \{uu_1^j : 1 \leqslant j \leqslant n\} \cup \{u_i^j u_{i+1}^j : 1 \leqslant j \leqslant n\}$ $1 \leqslant i \leqslant r - 1, 1 \leqslant j \leqslant n \} \cup \{u_r^j u_1^j : 1 \leqslant j \leqslant n\} \cup \{u_1^j u_{i+2}^j : 1 \leqslant i \leqslant r - 3, 1 \leqslant j \leqslant n \}.$ We consider the following two cases.

Case(i): n is odd.

Define the edge labeling $f: E(OS(n.S_r)) \to Z_k - \{0\}$ as follows:

$$f(uu_1^j) = k - (r - 2)2a \text{ for } 1 \leqslant j \leqslant n - 1,$$

$$f(uu_1^n) = (n - 1)(r - 2)2a,$$

$$f(u_1^j u_2^j) = f(u_r^j u_1^j) = a \text{ for } 1 \leqslant j \leqslant n - 1,$$

$$f(u_i^j u_{i+1}^j) = k - a \text{ for } 2 \leqslant i \leqslant r - 1, 1 \leqslant j \leqslant n - 1,$$

$$f(u_1^j u_{i+2}^j) = 2a \text{ for } 1 \leqslant i \leqslant r - 3, 1 \leqslant j \leqslant n - 1,$$

$$f(u_1^n u_{i+2}^n) = k - (n - 1)2a \text{ for } 1 \leqslant i \leqslant r - 3,$$

$$f(u_i^n u_{i+1}^n) = \begin{cases} k - (n - 1)a, & \text{if } i = 1, r, \\ (n - 1)a, & \text{if } 2 \leqslant i \leqslant r - 1. \end{cases}$$

Then the induced vertex labeling $f^+: V(OS(n.S_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(OS(n.S_r))$.

Case(ii): n is even.

Case(ii):
$$n$$
 is even.
$$f(uu_1^j) = \begin{cases} k - (r - 2)2a, & \text{if } j \text{ is odd,} \\ (r - 2)2a, & \text{if } j \text{ is even,} \end{cases}$$

$$f(u_1^j u_2^j) = f(u_r^j u_1^j) = \begin{cases} k - a, & \text{if } j \text{ is odd,} \\ a, & \text{if } j \text{ is even,} \end{cases}$$

$$f(u_1^j u_{i+1}^j) = \begin{cases} a, & \text{if } i \text{ is odd, } 2 \leqslant i \leqslant r - 1, \\ k - a, & \text{if } i \text{ is even, } 2 \leqslant i \leqslant r - 1, \end{cases}$$

$$f(u_1^j u_{i+2}^j) = \begin{cases} 2a, & \text{if } j \text{ is odd, } 2 \leqslant i \leqslant r - 3, \\ k - 2a, & \text{if } j \text{ is even, } 2 \leqslant i \leqslant r - 3. \end{cases}$$
Then the induced vertex labeling $f^+: V(OS(n, S))$

Then the induced vertex labeling $f^+: V(OS(n.S_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(OS(n.S_r))$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence $OS(n.S_r)$ admits Z_k -magic labeling.

Example 2.1. Z_{25} -magic labeling of $OS(3.S_5)$ is shown in Figure 1.

Figure 1: Z_{25} -magic labeling of $OS(3.S_5)$

THEOREM 2.2. An open star of flower graph $OS(n.Fl_r)$ is Z_k -magic for positive integer a and k > (n-1)a if n is odd and for k > 2a if n is even.

PROOF. Let $OS(n.Fl_r)$ be an open star of flower graph. Let $V(OS(n.Fl_r)) =$ $\{u, w_j, v_i^j, u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\}$ and $E(OS(n.Fl_r)) = \{uv_1^j : 1 \leqslant j \leqslant n\}$ $n\} \cup \{v_i^j v_{i+1}^j : 1 \leqslant i \leqslant r-1, 1 \leqslant j \leqslant n\} \cup \{v_r^j v_1^j : 1 \leqslant j \leqslant n\} \cup \{w_j v_i^j : 1 \leqslant i \leqslant n\} \cup \{v_r^j v$ $r, 1 \le j \le n$ $\} \cup \{v_i^j u_i^j : 1 \le i \le r, 1 \le j \le n \} \cup \{w_i u_i^j : 1 \le i \le r, 1 \le j \le n \}.$ We consider the following two cases.

Case(i): n is odd.

Define the edge labeling $f: E(OS(n.Fl_r)) \to Z_k - \{0\}$ as follows:

$$f(w_j v_1^j) = f(v_1^j u_1^j) = 2a \text{ for } 1 \le j \le n-1,$$

$$f(w_j u_1^j) = k - 2a \text{ for } 1 \le j \le n - 1,$$

$$f(w_i v_i^j) = f(v_i^j u_i^j) = a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n,$$

$$f(w_i u_i^j) = k - a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n$$

$$f(w_j u_i^j) = k - a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n,$$

$$f(u_i^j u_{i+1}^j) = k - a \text{ for } 1 \leqslant i \leqslant r - 1, 1 \leqslant j \leqslant n,$$

$$f(u_r^j u_1^j) = k - a \text{ for } 1 \leqslant j \leqslant n,$$

$$f(uv_1^j) = k - 2a \text{ for } 1 \leqslant j \leqslant n - 1,$$

$$f(uv_1^n) = (n-1)2a,$$

$$f(w_n v_1^n) = f(v_1^n u_1^n) = k - (n-2)a,$$

$$f(u_1^n w_n) = (n-2)a.$$

Then the induced vertex labeling $f^+: V(OS(n.Fl_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(OS(n.Fl_r))$.

Case(ii): n is even.

Define the edge labeling $f: E(OS(n.Fl_r)) \to Z_k - \{0\}$ as follows:

$$f(w_{j}v_{1}^{j}) = f(v_{1}^{j}u_{1}^{j}) = \begin{cases} 2a, & \text{if } j \text{ is odd,} \\ k - 2a, & \text{if } j \text{ is even,} \end{cases}$$

$$f(w_{j}u_{1}^{j}) = \begin{cases} k - 2a, & \text{if } j \text{ is odd,} \\ 2a, & \text{if } j \text{ is even,} \end{cases}$$

$$f(w_j u_1^j) = \begin{cases} k - 2a, & \text{if } j \text{ is odd,} \\ 2a, & \text{if } j \text{ is even,} \end{cases}$$

$$f(w_{j}v_{i}^{j}) = f(v_{i}^{j}u_{i}^{j}) = \begin{cases} a, & \text{if } j \text{ is odd, } 2 \leqslant i \leqslant r, \\ k-a, & \text{if } j \text{ is even, } 2 \leqslant i \leqslant r, \end{cases}$$

$$f(w_{j}u_{i}^{j}) = \begin{cases} k-a, & \text{if } j \text{ is odd, } 2 \leqslant i \leqslant r, \\ a, & \text{if } j \text{ is even, } 2 \leqslant i \leqslant r, \end{cases}$$

$$f(u_{i}^{j}u_{i+1}^{j}) = \begin{cases} k-a, & \text{if } j \text{ is odd,} \\ a, & \text{if } j \text{ is even,} \end{cases}$$

$$f(uv_{1}^{j}) = \begin{cases} k-2a, & \text{if } j \text{ is odd,} \\ 2a, & \text{if } j \text{ is even.} \end{cases}$$
Then the induced vertex labeling $f^{+}: V(OS(n.Fl_{r})) \to Z_{k}$ is $f^{+}(v) \equiv 0 \pmod{k}$ for all $v \in V(OS(n.Fl_{r}))$. Thus f^{+} is constant and it is equal to $0 \pmod{k}$. Hence

for all $v \in V(OS(n.Fl_r))$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence $OS(n.Fl_r)$ admits Z_k -magic labeling.

Example 2.2. Z_5 -magic labeling of $OS(3.Fl_6)$ is shown in Figure 2.

Figure 2: Z_5 -magic labeling of $OS(3.Fl_6)$

THEOREM 2.3. An open star of double wheel graph $OS(n.DW_r)$ is Z_k -magic for positive integer a and k > (n-1)4a if r is odd.

```
PROOF. Let OS(n.DW_r) be an open star of double wheel graph. Let
 V(OS(n.DW_r)) = \{u, w_j, v_i^j, u_i^j : 1 \le i \le r, 1 \le j \le n\} \text{ and } E(OS(n.DW_r)) = \{u, w_j, v_i^j, u_i^j : 1 \le i \le r, 1 \le j \le n\}
 \{uu_1^j: 1\leqslant j\leqslant n\} \cup \{v_i^jv_{i+1}^j, u_i^ju_{i+1}^j: 1\leqslant i\leqslant r-1, 1\leqslant j\leqslant n\} \cup \{v_r^jv_1^j, u_r^ju_1^j: 1\leqslant r-1, 1\leqslant j\leqslant n\} \cup \{v_r^jv_1^j: 1\leqslant r-1, 1\leqslant r
j \leq n} \cup \{w_j w_i^j : 1 \leq i \leq r, 1 \leq j \leq n\} \cup \{w_j w_i^j : 1 \leq i \leq r, 1 \leq j \leq n\}. Define the edge labeling f : E(OS(n.DW_r)) \to Z_k - \{0\} as follows:
 f(w_j v_i^j) = 2a \text{ for } 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n-1,
 f(w_n v_i^n) = k - 2a \text{ for } 1 \leqslant i \leqslant r,
 f(w_j u_i^j) = k - 2a \text{ for } 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n - 1,
f(w_n u_i^n) = 2a \text{ for } 1 \leqslant i \leqslant r,
f(v_i^j v_{i+1}^j) = k - a \text{ for } 1 \leqslant i \leqslant r - 1, 1 \leqslant j \leqslant n - 1,
```

$$\begin{split} &f(v_i^n v_{i+1}^n) = a \text{ for } 1 \leqslant i \leqslant r-1, \\ &f(v_r^j v_1^j) = k-a \text{ for } 1 \leqslant j \leqslant n-1, \\ &f(v_r^n v_1^n) = a, \\ &f(u_i^j u_{i+1}^j) = \begin{cases} k-a, & \text{if } i \text{ is odd, } 1 \leqslant j \leqslant n-1, \\ 3a, & \text{if } i \text{ is even, } 1 \leqslant j \leqslant n-1, \end{cases} \\ &f(u_i^n u_{i+1}^n) = \begin{cases} (2n-3)a, & \text{if } i \text{ is odd, } \\ k-(2n-1)a, & \text{if } i \text{ is even, } \end{cases} \\ &f(uu_1^j) = 4a \text{ for } 1 \leqslant j \leqslant n-1, \\ &f(uu_1^n) = k-(n-1)4a. \end{split}$$
 Then the induced vertex labeling $f^+: V(OS(n.DW_r)) \to Z_k \text{ is } f^+(v) \equiv 0 \pmod k$ for all $v \in V(OS(n.DW_r))$. Thus f^+ is constant and it is equal to $0 \pmod k$. Hence $OS(n.DW_r)$ admits Z_k -magic labeling.

EXAMPLE 2.3. Z_9 -magic labeling of $OS(3.DW_5)$ is shown in Figure 3.

Figure 3: \mathbb{Z}_9 -magic labeling of $OS(3.DW_5)$

THEOREM 2.4. An open star of cyclinder graph $OS(n.C_r \times P_2)$ is Z_k -magic for positive integer a and k > (n-1)4a if r is odd.

```
PROOF. Let OS(n.C_r \times P_2) be an open star of cyclinder graph. Let V(OS(n.C_r \times P_2)) = \{u, v_i^j, u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\} and E(OS(n.C_r \times P_2)) = \{uu_1^j : 1 \leqslant j \leqslant n\} \cup \{v_r^j v_{i+1}^j, u_i^j u_{i+1}^j : 1 \leqslant i \leqslant r-1, 1 \leqslant j \leqslant n\} \cup \{v_r^j v_1^j, u_r^j u_1^j : 1 \leqslant j \leqslant n\} \cup \{u_i^j v_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\}. Define the edge labeling f : E(OS(n.C_r \times P_2)) \to Z_k - \{0\} as follows: f(uu_1^j) = 4a for 1 \leqslant j \leqslant n-1, f(v_r^j v_{i+1}^j) = a for 1 \leqslant i \leqslant r-1, 1 \leqslant j \leqslant n, f(v_r^j v_1^j) = a for 1 \leqslant j \leqslant n-1, f(v_r^j u_i^j) = k-2a for 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n,
```

$$f(u_i^j u_{i+1}^j) = \begin{cases} k-a, & \text{if } i \text{ is odd, } 1 \leqslant j \leqslant n-1, \\ 3a, & \text{if } i \text{ is even, } 1 \leqslant j \leqslant n-1, \end{cases}$$

$$f(u_i^n u_{i+1}^n) = \begin{cases} (2n-1)a, & \text{if } i \text{ is odd,} \\ k-(2n-3)a & \text{if } i \text{ is even,} \end{cases}$$

$$f(uu_1^n) = k-(n-1)4a.$$
 Then the induced vertex labeling $f^+: V(OS(n.C_r \times P_2)) \to Z_k \text{ is } f^+(v) \equiv 0 (mod \ k)$ for all $v \in V(OS(n.C_r \times P_2))$. Thus f^+ is constant and it is equal to $0 (mod \ k)$. Hence $OS(n.C_r \times P_2)$ admits Z_k -magic labeling.

EXAMPLE 2.4. Z_{17} -magic labeling of $OS(4.C_5 \times P_2)$ is shown in Figure 4.

Figure 4: Z_{17} -magic labeling of $OS(4.C_5 \times P_2)$

THEOREM 2.5. An open star of wheel graph $OS(n.W_r)$ is Z_k -magic for positive integer a and k > (n-1)(r-3)a if r is odd and for k > (n-1)(r-1)a if r is even.

PROOF. Let $OS(n.W_r)$ be an open star of wheel graph. Let $V(OS(n.W_r)) = \{u, w_j, u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\}$ and $E(OS(n.W_r)) = \{uu_1^j : 1 \leqslant j \leqslant n\} \cup \{u_i^j u_{i+1}^j : 1 \leqslant i \leqslant r-1, 1 \leqslant j \leqslant n\} \cup \{u_r^j u_1^j : 1 \leqslant j \leqslant n\} \cup \{w_j u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\}.$ We consider the following two cases.

Case(i): r is odd.

Define the edge labeling $f: E(OS(n.W_r)) \to Z_k - \{0\}$ as follows: $f(w_j u_1^j) = k - (r - 1)a$ for $1 \le j \le n - 1$, $f(w_j u_i^j) = a$ for $2 \le i \le r, 1 \le j \le n - 1$, $f(u_i^j u_{i+1}^j) = \begin{cases} a, & \text{if } i \text{ is odd, } 1 \le j \le n - 1, \\ k - 2a, & \text{if } i \text{ is even, } 1 \le j \le n - 1, \end{cases}$ $f(uu_1^j) = (r - 3)a$ for $1 \le j \le n - 1$, $f(uu_1^n) = k - (n - 1)(r - 3)a$, $f(w_n u_i^n) = a$ for $2 \le i \le r$, $f(w_n u_1^n) = k - (r - 1)a$,

$$f(u_i^n u_{i+1}^n) = \begin{cases} \frac{(n-1)(r-3)a + (r-1)a}{2}, & \text{if } i \text{ is odd}, \\ k - \frac{(n-1)(r-3)a + (r-1)a}{2} - a, & \text{if } i \text{ is even}. \end{cases}$$

Then the induced vertex labeling $f^+: V(OS(n.W_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(OS(n.W_r))$.

Case(ii): r is even.

Define the edge labeling $f: E(OS(n.W_r)) \to Z_k - \{0\}$ as follows:

$$f(w_j u_1^j) = k - (r - 1)a \text{ for } 1 \le j \le n - 1,$$

$$f(w_i u_i^j) = a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n-1,$$

$$f(w_j u_i^j) = k - (r - 1)a \text{ for } 1 \leqslant j \leqslant n - 1,$$

$$f(w_j u_i^j) = a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n - 1,$$

$$f(u_i^j u_{i+1}^j) = \begin{cases} a, & \text{if } i \text{ is odd, } 1 \leqslant j \leqslant n - 1, \\ k - 2a, & \text{if } i \text{ is even, } 1 \leqslant j \leqslant n - 1, \end{cases}$$

$$f(uu_1^j) = ra$$
, for $1 \le j \le n-1$,

$$f(uu_1^n) = k - (n-1)ra,$$

$$f(w_n u_1^n) = (r-1)(n-1)a,$$

$$f(w_n u_i^n) = k - (n-1)a$$
 for $2 \le i \le r$,

$$f(u_i^n u_{i+1}^n) = \begin{cases} na, & \text{if } i \text{ is odd,} \\ k-a, & \text{if } i \text{ is even.} \end{cases}$$

 $f(u_i^n u_{i+1}^n) = \begin{cases} na, & \text{if } i \text{ is odd,} \\ k - a, & \text{if } i \text{ is even.} \end{cases}$ Then the induced vertex labeling $f^+: V(OS(n.W_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(OS(n.W_r))$. Thus f^+ is constant and it is equal to $0 \pmod{k}$. Hence $OS(n.W_r)$ admits Z_k -magic labeling.

Example 2.5. Z_{30} -magic labeling of $OS(5.W_9)$ is shown in Figure 5.

Figure 5: Z_{30} -magic labeling of $OS(5.W_9)$

Theorem 2.6. An open star of generalised Petersen graph OS(n.P(r,m)) is Z_k -magic for positive integer a and k > (n-1)4a if r is odd and $1 \le m \le \lceil \frac{r}{2} \rceil$.

PROOF. Let OS(n.P(r,m)) be an open star of generalised Petersen graph. Let $V(OS(n.P(r,m))) = \{u, v_i^j, u_i^j : 1 \le i \le r, 1 \le j \le n\} \text{ and } E(OS(n.P(r,m))) = \{u, v_i^j, u_i^j : 1 \le i \le r, 1 \le j \le n\}$

$$\{uu_1^j: 1\leqslant j\leqslant n\} \cup \{v_i^jv_{i+m}^j, u_i^ju_{i+1}^j: 1\leqslant i\leqslant r-1, 1\leqslant j\leqslant n\} \cup \{u_r^ju_1^j: 1\leqslant j\leqslant n\} \cup \{u_i^jv_i^j: 1\leqslant i\leqslant r, 1\leqslant j\leqslant n\}.$$
 Define the edge labeling $f: E(OS(n.P(r,m))) \to Z_k - \{0\}$ as follows:
$$f(uu_1^j) = 4a \text{ for } 1\leqslant j\leqslant n-1,$$

$$f(v_i^jv_{i+m}^j) = a \text{ for } 1\leqslant i\leqslant r-1, 1\leqslant j\leqslant n,$$

$$f(v_i^ju_i^j) = k-2a \text{ for } 1\leqslant i\leqslant r, 1\leqslant j\leqslant n,$$

$$f(u_i^ju_{i+1}^j) = \begin{cases} k-a, & \text{if } i \text{ is odd}, 1\leqslant j\leqslant n-1, \\ 3a, & \text{if } i \text{ is even}, 1\leqslant j\leqslant n-1, \end{cases}$$

$$f(u_i^nu_{i+1}^n) = \begin{cases} k-(2n-3)a, & \text{if } i \text{ is odd}, \\ (2n-1)a, & \text{if } i \text{ is even}, \end{cases}$$

$$f(uu_1^n) = k-(n-1)4a.$$
 Then the induced vertex labeling $f^+: V(OS(n.P(r,m))) \to Z_k \text{ is } f^+(v) \equiv 0 \pmod k$ for all $v\in V(OS(n.P(r,m)))$. Thus f^+ is constant and it is equal to $0 \pmod k$. Hence $OS(n.P(r,m))$ admits Z_k -magic labeling.

EXAMPLE 2.6. Z_{15} -magic labeling of OS(4.P(5,2)) is shown in Figure 6.

Figure 6: Z_{15} -magic labeling of OS(4.P(5,2))

THEOREM 2.7. An open star of lotus incide a circle graph $OS(n.LC_r)$ is Z_k -magic for positive integer a and k > (n-1)(r-3)a if r is odd and for k > (n-1)ra if r is even and r > n.

PROOF. Let $OS(n.LC_r)$ be an open star of lotus incide a circle graph. Let $V(OS(n.LC_r)) = \{u, w_j, v_i^j, u_i^j : 1 \le i \le r, 1 \le j \le n\}$ and $E(OS(n.LC_r)) = \{uu_1^j : 1 \le j \le n\} \cup \{w_jv_i^j : 1 \le i \le r, 1 \le j \le n\} \cup \{v_i^ju_i^j : 1 \le i \le r, 1 \le j \le n\} \cup \{v_i^ju_{i+1}^j : 1 \le i \le r-1, 1 \le j \le n\} \cup \{v_r^ju_1^j : 1 \le j \le n\} \cup \{u_i^ju_{i+1}^j : 1 \le i \le r-1, 1 \le j \le n\}$.

We consider the following two cases.

Case(i): r is odd.

```
Define the edge labeling f: E(OS(n.LC_r)) \to Z_k - \{0\} as follows:
 f(uu_1^j) = k - (r-3)a \text{ for } 1 \le j \le n-1,
 f(uu_1^n) = (n-1)(r-3)a,
 f(w_i v_i^j) = a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n,
 f(w_i v_1^j) = k - (r - 1)a \text{ for } 1 \le j \le n,
 f(u_1^j v_1^j) = (r-2)a \text{ for } 1 \le j \le n,
 f(u_i^j v_i^j) = k - 2a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n,
 f(v_i^j u_{i+1}^j) = a \text{ for } 1 \le i \le r - 1, 1 \le j \le n,
f(v_r^j u_1^j) = a \text{ for } 1 \leqslant j \leqslant n,
f(u_i^j u_{i+1}^j) = \begin{cases} k - a, & \text{if } i \text{ is odd, } 1 \leqslant j \leqslant n - 1, \\ 2a, & \text{if } i \text{ is even, } 1 \leqslant j \leqslant n - 1, \end{cases}
f(u_i^n u_{i+1}^n) = \begin{cases} k - \frac{(n+1)(r-3)a}{2}, & \text{if } i \text{ is odd,} \\ \frac{(n+1)(r-3)a}{2} + a, & \text{if } i \text{ is even.} \end{cases}
 Then the induced vertex labeling f^+: V(OS(n.LC_r)) \to Z_k is f^+(v) \equiv 0 \pmod{k}
 for all v \in V(OS(n.LC_r)).
 Case(ii): r is even and r > n
Define the edge labeling f: E(OS(n.LC_r)) \to Z_k - \{0\} as follows:
 f(uu_1^j) = k - ra for 1 \leq j \leq n - 1,
 f(uu_1^n) = (n-1)ra,
 f(w_j v_i^j) = a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n - 1,
 f(w_j v_1^j) = k - (r - 1)a \text{ for } 1 \le j \le n - 1,
 f(u_1^j v_1^j) = (r-2)a \text{ for } 1 \le j \le n-1,
 f(u_i^j v_i^j) = k - 2a \text{ for } 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n - 1,
 f(v_i^j u_{i+1}^j) = a \text{ for } 1 \le i \le r-1, 1 \le j \le n-1,
f(v_{r}^{j}u_{1}^{j}) = a \text{ for } 1 \leq j \leq n-1,
f(u_{i}^{j}u_{i+1}^{j}) = \begin{cases} k-a, & \text{if } i \text{ is odd, } 1 \leq j \leq n-1, \\ 2a, & \text{if } i \text{ is even, } 1 \leq j \leq n-1, \end{cases}
f(w_{n}v_{i}^{n}) = k - (n-1)a \text{ for } 2 \leq i \leq r,
 f(w_n v_1^n) = (n-1)(r-1)a,
 f(u_1^n v_1^n) = k - [(n-1)(r-1) - 1]a,
 f(u_i^n v_i^n) = na \text{ for } 2 \leqslant i \leqslant r,
f(v_i^n u_{i+1}^n) = k - a \text{ for } 1 \leqslant i \leqslant r - 1,
f(v_i^n u_1^n) = k - a,
f(u_i^n u_{i+1}^n) = \begin{cases} k - ra, & \text{if } i \text{ is odd,} \\ (r - n + 1)a, & \text{if } i \text{ is even.} \end{cases}
 Then the induced vertex labeling f^+: V(OS(n.LC_r)) \to Z_k is f^+(v) \equiv 0 \pmod{k}
 for all v \in V(OS(n.LC_r)). Thus f^+ is constant and it is equal to 0 \pmod{k}. Hence
 OS(n.LC_r) admits Z_k-magic labeling.
                                                                                                                                                    П
```

Example 2.7. Z_{20} -magic labeling of $OS(4.LC_6)$ is shown in Figure 7.

Figure 7: Z_{20} -magic labeling of $OS(4.LC_6)$

THEOREM 2.8. An open star of closed helm graph $OS(n.CH_r)$ is Z_k -magic for positive integer a and k > (n-1)(r-1)a if r is odd.

```
PROOF. Let OS(n.CH_r) be an open star of closed helm graph. Let V(OS(n.CH_r)) = \{u, w_j, v_j^j, u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\} and E(OS(n.CH_r)) = \{uu_1^j : 1 \leqslant j \leqslant n\} \cup \{w_j v_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\} \cup \{v_i^j u_i^j : 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n\} \cup \{v_i^j v_{i+1}^j, u_i^j u_{i+1}^j : 1 \leqslant i \leqslant r - 1, 1 \leqslant j \leqslant n\} \cup \{v_r^j v_j^j, u_r^j u_1^j : 1 \leqslant j \leqslant n\}. Define the edge labeling f : E(OS(n.CH_r)) \to Z_k - \{0\} as follows: f(uu_1^j) = k - (r - 1)a for 1 \leqslant j \leqslant n - 1, f(uu_1^n) = (n - 1)(r - 1)a, f(w_j v_i^j) = a for 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n, f(u_i^j v_i^j) = k - (r - 1)a for 1 \leqslant j \leqslant n, f(u_i^j v_i^j) = k - (r - 1)a for 1 \leqslant j \leqslant n, f(u_i^j v_i^j) = k - a for 2 \leqslant i \leqslant r, 1 \leqslant j \leqslant n, f(v_i^j v_{i+1}^j) = \begin{cases} (r - 1)a, & \text{if } i \text{ is odd, } 1 \leqslant j \leqslant n, \\ k - (r - 1)a, & \text{if } i \text{ is even, } 1 \leqslant j \leqslant n, \end{cases} f(u_i^j u_{i+1}^j) = \begin{cases} (r - 1)a, & \text{if } i \text{ is odd, } 1 \leqslant j \leqslant n - 1, \\ k - (r - 2)a, & \text{if } i \text{ is even, } 1 \leqslant j \leqslant n - 1, \end{cases} f(u_i^n u_{i+1}^n) = \begin{cases} k - \frac{(r - 1)(n - 2)a}{2}, & \text{if } i \text{ is odd, } \\ \frac{(r - 1)(n - 2)a}{2} + a, & \text{if } i \text{ is even.} \end{cases} Then the induced vertex labeling f^+ : V(OS(n.CH_r)) \to Z_k is f^+(v) \equiv 0 \pmod k for all v \in V(OS(n.CH_r)). Thus f^+ is constant and it is equal to 0 \pmod k. Hence OS(n.CH_r) admits Z_k-magic labeling.
```

Example 2.8. Z_{13} -magic labeling of $OS(4.CH_5)$ is shown in Figure 8.

Figure 8: Z_{13} -magic labeling of $OS(4.CH_5)$

Theorem 2.9. The super subdivision of any graph G is Z_k -magic for positive integer a and k > (m-1)a.

PROOF. Let G be a graph and $S^*(G)$ be the super subdivision of graph G. If uv be the edge of G then $uu_1^j, u_1^jv: 1 \leq j \leq m$ be the edges of $S^*(G)$ corresponding to uv.

Define the edge labeling $f: E(S^*(G)) \to Z_k - \{0\}$ as follows:

 $f(uu_1^1) = k - (m-1)a$; $f(u_1^1v) = (m-1)a$,

 $f(uu_1^j) = a$, for $2 \leqslant j \leqslant m$,

 $f(u_1^j v) = k - a$, for $2 \le j \le m$.

Then the induced vertex labeling $f^+: V(S^*(G)) \to Z_k$ is $f^+(v) \equiv 0 \pmod k$ for all $v \in V(S^*(G))$. Thus f^+ is constant and it is equal to $0 \pmod k$. Hence $S^*(G)$ admits Z_k -magic labeling.

We conclude this paper with the following open problem for further research. **Open problem.** Determine the Z_k -magic labeling of an open star of regular graphs.

References

[1] M. Doob. On the construction of the magic graphs, In F. Hoffman (Ed.), Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, Boca Raton, February 25-March l, 1974 (pp. 361–374), Florida Atlantic University 1974

- [2] M. Doob. Generalizations of magic graphs, J. Combinatorial Theory, Series B, 17(3)(1974), 205-217.
- [3] M. Doob. Characterizations of regular magic graphs, J. Combinatorial Theory, Series B, **25**(1)(1978), 94–104.
- [4] P. Jeyanthi and K. Jeya Daisy. Certain classes of \mathbb{Z}_k -magic graphs, \mathbb{J} . Graph Labeling, (to appear).
- [5] P. Jeyanthi and K. Jeya Daisy. Z_k-magic labeling of subdivision graphs, Discrete Math. Algorithm. Appl., 8(3)(2016), [19 pages] DOI: 10.1142/S1793830916500464.
- [6] P. Jeyanthi and K. Jeya Daisy. Z_k-magic labeling of cycle of graphs, Journal of Algebra Combinatorics Discrete Structures and Applications, (to appear).
- [7] P. Jeyanthi and K. Jeya Daisy. Z_k -magic labeling of some families of graphs, J. Algorithm. Comput., (to appear).
- [8] J. A. Gallian. A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, (2015), # DS6.
- [9] V.J. Kaneria, M. Meghpara and H.M. Makadia. Graceful labeling for open star of graphs, Inter. J. Math. Stat. Invention, 2(9)(2014), 19–23.
- [10] S.M. Lee, F. Saba, E. Salehi and H. Sun. On the V4- group magic graphs, Cong. Numer., 156(2002), 59-67.
- [11] S.M. Lee, Hugo Sun and Lxin Wen. On group magic graphs, J. Combin. Math. Combin. Comput., 38(2001), 197-207.
- [12] R.M. Low and S.M Lee. On group magic eulerian graphs, J. Combin. Math. Combin. Computing, 50(2004), 141-148.
- [13] R.M. Low and S.M Lee. On the products of group-magic graphs, Australas. J. Combin., $\bf 34 (2006), 41-48.$
- [14] J. Sedlacek. On magic graphs, Math. Slov., 26(4)(1976), 329-335.
- [15] W. C. Shiu, PCB Lam and P.K. Sun. Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167(2004), 97–107.
- [16] R.P. Stanley. Linear homogeneous Diophantine equations and magic labelings of graphs, Duke Math. J., 40(3)(1973), 607–632.
- [17] R.P. Stanley. Magic labelings of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, *Duke Math. J.*, **43**(3)(1976), 511–531.
- [18] G.W. Sun and S.M. Lee. Construction of magic graphs, Cong. Numer., 103(1994), 243–251.

Received by editors 23.11.2016; Revised version 10.12.2016; Available online 19.12.2016.

Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India

 $E\text{-}mail\ address: \verb"jeyajeyanthi@rediffmail.com"}$

Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India $E\text{-}mail\ address:}$ jeyadaisy@yahoo.com