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PRESIC TYPE FIXED POINT THEOREM
FOR SIX MAPS IN D*- METRIC SPACES

K.P.R. Rao and Sk. Sadik

ABSTRACT. In this paper, we obtain a Presic type fixed point theorem for
three pairs of jointly 3k-weakly compatible maps in D*-metric spaces.We also
present an example to illustrate our main theorem. We also obtain four corol-
laries for four maps, three maps,two maps and a single map. We also give
some probable modifications of Theorems of [5, 12, 13| in G-metric spaces.

1. Introduction and Preliminaries

In 1922, Banach [6] proved a theorem which is known as Banach contraction
principle. This theorem provides a technique for solving a variety of applied prob-
lems in mathematical science and engineering. Later many authors have extended,
generalized and improved Banach’s fixed point theorem in different ways. In 1992,
Dhage [1] introduced generalized metric space or D-metric space and proved several
results.

Naidu et al [9], [10], [11] observed that almost all fixed point theorems in D-
metric spaces are not valid or of doubtful validity and modified some fixed point
theorems in D- metric spaces. As a probable modification of D- metric spaces,
Sedghi et al. [8] introduced D*- metric spaces and Mustafa et al. [14] introduced
G-metric spaces.

On the other hand, amongst the various generalizations of Banach contraction
principle, Presi¢ [7] gave a contractive condition and proved a Banach type fixed
point theorem which was useful to solve certain difference equations.Throughout
this paper N denotes the set of all positive integers.

Actually Presié [7] proved the following.
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268 K.P.R.RAO AND SK. SADIK

THEOREM 1.1. ([7]) Let (X, d) be a complete metric space, k a positive integer
and f: X* — X. Suppose that

k
d(f(z1, 22, 2r), f(r2, 23, , 2pq1)) < D qid(2i, Tig1)
=1

k
holds for all x1,22, -+ 2k, xk+1 € X, where ¢; > 0 and > ¢; € [0,1). Then f

i=1
has a unique fized point x*. Moreover, for any arbitrary points x1,To, - ,Tpy1 in
X, the sequence {x,} defined by Tpix = f(Tn, Tnit, s Tnik—1), for alln € N

converges to x*.

Later Ciri¢ and Presi¢ [4] generalized the above theorem as follows.

THEOREM 1.2 ([4]). Let (X, d) be a complete metric space, k a positive integer
and f: X* — X. Suppose that

d(f(xlax% o 5xk)a f(LUQ,’Ig, to 5xk+1)) < )‘max{d(xiaxﬂ-l) HE AN k}
holds for all x1,xo, -+ ok, xr11 0 X, where A € [0,1). Then f has a fized point
x* € X. Moreover, for any arbitrary points x1,Ta,--- ,Tr+1 n X, the sequence
{z,} defined by vpir = f(@n, Tna1, > Tnik—1), for alln € N converges to z*.
Moreover, if d(f(u,u, - ,u), f(v,v,--+,v)) < d(u,v) holds for all u,v € X with
u # v, then x* is the unique fized point of f.

Recently Rao et al. [2], [3] obtained some Presi¢ type theorems for two and
three maps in metric spaces. Now we give the following definition of [2], [3].

DEFINITION 1.1. Let X be a non empty set and T : X** — X and f : X —
X. The pair (f,T) is said to be 2k-weakly compatible if f(T(z,z,...,xz,x)) =
T(fx, fx,..., fx, fx) whenever x € X such that fx =T(x,x,...,x,x).

Using this definition, Rao et al. [2] proved the following

THEOREM 1.3 ([2]). Let (X,d) be a metric space, k a positive integer and
S,T:X%* = X, f: X — X be mappings satisfying
S(.’IJ]_,fQ,"' ax2k); .
< ; ; 1< <
(1.3.1) d < T(ws a9, wopp1) ) S Amax{d(fz;, friy1) 1 1 <i <2k}
fOT' all L1,T2, " T2k, L2k+1 m X7

T(y17y27"' ay2k)a .
(a2) gl ) < i) 1 <0< 20)

for all y1,y2, -+, Yok, Yok+1 0 X, where 0 < A < 1
(1.3.3)  d(S(u,---,u),T(v,---,v)) < d(fu, fv), for all u,v € X with u # v
(1.3.4)  Suppose that f(X) is complete and either (f,S) or (f,T) is a 2k— weakly
compatible pair.
Then there exists a unique point p € X such that fp = p = S(p,--+,p) =
T(p, - ,p).

In this paper we obtain a Presi¢ type common fixed point theorem for six map-
pings in D*-metric spaces and present an example to illustrate our main theorem.
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Now we give some known definitions and lemmas which are useful for further
discussion.

DEFINITION 1.2 ([14]). Let X be a non-empty set and let G : X3 — R* be a
function satisfying the following properties :
(Gh): G(z,y,2) =0idf and only if x =y = 2,
(G2): 0 < G(z,x,y) for all x,y € X with x # vy,
(G3): G(z,z,y) < G(x,y,2) for all z,y,z € X withy # z,
(Gq): G(z,y,2) = G(z,2,y) = Gy, z,x) = ..., symmetry in all three variables,
(Gs): G(z,y,2) < G(x,a,a) + G(a,y, z) for all z,y,z,a € X.
Then the function G is called a generalized metric or a G-metric on X and the pair

(X, Q) is called a G-metric space.

Recently Dhasmana [5] and Gairola et al. [12], [13] proved Presi¢ type fixed
and common fixed point theorems in G-metric spaces. They are the following
theorems

THEOREM 1.4 (Theorem 2.1, [5]). Let (X, G) be a complete G-metric space, k
a positive integer and T : X* — X a mapping satisfying the following contractive
type condition

T($1,SL’2, T 7xk),
(14.1) G| T(x2,x3,  yxkt1), | < Amax{G(z;, xiy1,Ti42) : 1 < i <k}
T(xg, T4, 733k+2)
where XA € (0, 1) is constant and x1,xo,- - , T2 are arbitrary elements in X. Then
there exists a point x in X such that x =T (z,x, - ,x).

Moreover, if x1,Ta,- - , Tk are arbitrary points in X and forn € N, T,yp =
T(TpnyTpi1, s Tntk—1) then the sequence {x,}52 is convergent and limz, =
T(lim xp,, lim x,, - - -, limz,).

If, in addition we suppose that on diagonal A C z¥,

T(u,u, -+ ,u),
G| T,v,--,v), < G(u,v,w)
T(w,w,- - ,w)

holds for all u,v,w € X with u # v # w, then x is unique point in X with
T(x,z, - ,x) =x.

THEOREM 1.5 (Theorem 3.1, [12]). Let (X,G) be a G-metric space, k a pos-
itive integer and T : X* — X, f : X — X be mappings satisfying the following
conditions
(1.5.1) T(X*) C f(X),

T(x1,xa, - ,xk),

(1.5.2) G T(I2,$3, e ,Ik+1), < Amax {G(fa:l, fl’i+1,fl’i+2)/1 < 7 < k‘}
T(x3,$4, to axk-i-?)

forall x1,29, -+ ;T4 € X, where 0 < A < 1;

(1.5.3)  d(T(u,---,u),T(v, -+ ,0), T(w, - ,w)) < G(fu, fu, fw),
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for all u,v,w € X with u # v # w,

(1.5.4)  f(X) is G-complete and if the pair (f,T) is coincidently commuting.

Then there exist a unique point p € X such that fp=p=T(p,p, -+ ,Dp).
THEOREM 1.6 (Theorem 3.1, [13]). Let (X, G) be a G-metric space, k a positive

integer and S,T,R : X* — X, f : X — X be mappings satisfying the following
conditions

(1.6.1) S(X*)UT(X*)UR(X*) C f(X
S(x1, 2, ,xk),
(1.62) G| T(xa,as,- ans1), | S Amax{G(fzi, fir, frize), 1 <i <k}
R(x3, x4, ,Thy2)
forall zy, 22, -+ ,xp42 € X,

(1.63) G| R(yz,y3 ", Ynt1), Amax {G(fyi, fyi+1, fyir2), 1 <i <k}
S(Y3,Ya, 5 Yk+2)

for all y1,ys, -+ ,yp42 € X,
R(z1,22, ", 2k),

(1.6.4) G| S(z,23,- -, 2641),
T(z3,24, "+ ,2k+2)

forall z1,2z0,- -+ ,zK42 € X,

(1.6.5) d(S(u,---,u),T(v, -+ ,v), R(w, - ,w)) < G(fu, fu, fw),

for all u,v,w € X with u # v # w.

Suppose that f(X) is complete and one of (f,S), (f,T) or (f,R) is coincidentally

commuting pair. Then there exists a unique point p € X such that fp = p =

S(p7p7 ap> :T(p7p7 710) :R(pap7 ap)

We observed that in these theorems the authors [5, 12, 13] wrongly used the
condition (G3) in proving Cauchy sequences.

< Amax {G(fzi, fzit1, fziy2), 1 <@ < k}

C
T(y1,y2, s Yk), )

We also observed the following;:
(i) In Theorem 2.1 of [5], the condition (2.1.2) is also wrongly used. In Page 13
line 21 from below y # x # z,--- , which is a contradiction. From this we can not
conclude y = & = z only. There are some more possibilities namely x =y or y = 2
or x = z.

(#4) In Theorem 3.1 of [12], the condition (3.3) is wrongly used two times. In Page
199, line 5 from above and line 10 from above.

(#4) In Theorem 3.1 of [13], the condition (5) is wrongly used two times. In line 3
from below of Page 403 and line 4 from above of Page 404.

DEFINITION 1.3 ([8]). Let X be a non-empty set and D* : X3 — RT be a
function satisfying :
(1.3.1): D*(x,y,2) =0 if and only if v =y = z,
(1.3.2): D*(x,y,2) = D*(p{x,y, z}), where p is a permutation function,
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(1.3.3): D*(x,y,2) < D*(x,y,a) + D*(a, 2z, 2)
Then the function D* is called a D*- metric and the pair (X, D*) is called a D*-
metric space.

REMARK 1.1 ([8]). In a D*-metric space, we have D*(x,x,y) = D*(z,y,y) for
all xz,y € X.

DEFINITION 1.4 ([8]). Let (X, D*) be a D*-metric space. Forr >0, define
Bp«(z,r) ={y € X : D*(z,y,y) <r}

DEFINITION 1.5 ([8]). Let (X, D*) be a D*-metric space.
(i) If for every x € A C X, there exists v > 0 such that Bp~(z,r) C A, then A is
called an open subset of X.

(i1) A sequence {x,} in X is said to be convergent to x € X if and only if

lim D*(z,,z,,2z) = 0.
n— o0

(#i1) A sequence {x,} in X is called a Cauchy sequence if and only if

lim D*(z,,Tn,zm) = 0.
n,m— 00

(i) (X, D*) is said to be complete if every cauchy sequence is convergent in X.

LEMMA 1.1 ([8]). Let (X, D*) be a D*-metric space. Then D* is continuous
in all its three variables.

LEMMA 1.2 ([8]). If a sequence {x,} in (X, D*) converges to x € X then x is
unique. Also {x,} is a Cauchy sequence in X.

DEFINITION 1.6 ([8]). Let (X, D*) be a D*-metric space. Then D* is called of
first type if D*(z,x,y) < D*(x,y, 2) for all x,y,z € X.

Now we give the following definition.

DEFINITION 1.7. The pairs (S, f), (T,g), (R, h) are jointly 3k-weakly compat-
ible if

f(5($7$7 7$)) = S(f.’)f7f$7 7fm)7 g(T($,$7 a$)> = T(gl’,gl‘, 7937)

and h(R(z,z, -+ ,x)) = R(hx, hx,--- ,hx) whenever there exists x € X such that
fr=S8(z, 2, ,z), gv =T(z,2, -+ ,x) and hr = R(x,,x,- - ,z).

Now we are ready to prove our main theorem.

2. Main Results

THEOREM 2.1. Let (X, D*) be a complete D*-metric space where D* is of first
type, k a positive integer and S, T, R : X** — X and f,g,h : X — X be mappings
satisfying
(2.1.1)  S(XP*) Cg(X), T(X*) C h(X), R(X?) C f(X),
(2.1.2)  D*(S(w1, 22, ,238), T(y1, 92, -+, Ysk), R(21, 22, -+, 238))

D*(g.’Ifl, hyh le)u D*(h$27 fy27 922)7
< Amax D*(fx?ngy?n h23)7 T D*(g$3k—2a hy3k—27 fz3k—2);
D*(haak—1, fysk—1,923k-1), D*(fT3x, gysk, hzar)
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fO’I” a‘lll‘laan"' y L3k, Y1, Y2, s Y3k, 21,22, " , 23k €EX and 0 <A< 1,

(2.1.3) The pairs (S, f), (T, g) and (R, h) are jointly 3k-weakly compatible pairs.

(2.1.4) Suppose z = fu = gu = hu for some u € X whenever there erists a
sequence {yskin oy in X such that ysp4n — 2 € X asn — oo.

Then z s the unique point in X such that
fz=g9g2=hz=2=38(2,2,--+,2)=T(2,2,--+ ,2) = R(2,2,- - , 2).
PROOF. Suppose x1, X2, - ,x3, are arbitrary points in X. Define
Ysk+n—2 = S(Tan—2,T3n—1, ", T3k+3n—3) = JT3k+3n—2;
Yskt3n—1 = T(Z3n—1,%3n, "+ , T3k43n-2) = AT3pi3n_1,
Ysk+3n = R(Z3n, T3n41, " » T3k43n—1) = [T3k43n for n=1,2,---

Let
“(9x3n—2, hsn—1, fT3n),

D
D*(hxsn_1, fr3n, 9T3n11),
D*(fxsn, grany1, htsnya), n=1,2,---
and let § = A% and p = max{ %G, 5%, -+, g3} Then § <1 and by the selection
of u, we have
(2.1) a, < pd”, forn=1,2,--- 3k.
Consider
(2.2)
aspy1 = D*(gw3p41, htspra, fr3r43)
= D*(S(x1, 22, ,231), T (w2, 23, -+, T3p41), R(23, 24, , T3k42))
D*(gx1, haa, faz), D*(hxa, frs, gr4),
< Amax D*(fxs, gra, hs), -+, D*(gr3r—2, hrsp—1, frar),
D*(hxsk—1, [k, 93k+1), D* (3K, gT3k+1, hsry2)
= Amax{ay, a2, 03, -, 0342, 3k—1, O3k }
< Amax{p, 6%, p6?, - - - p03 =2, 1uf? =1, 163*y, from (2.1)
=\ = 6%F b
— M93k+1

Qzp—2 =

Q3n—1

a3n

asp2 = D*(hwspi2, fT3rp43, 9T3k44) = D* (903444, hx3kr2, fT3143)
= D*(S(I4,I5, e ,I3k+3),T(I2,l‘37 e ,I3k+1)7R(l’3,IE4, e ,$3k+2))
D*(g$4, hl‘g, fx?))a D*(hl'5, fx?n 91‘4),
< Amax D*(fxe, gxa, hvs), -+, D*(gT3py1, hwsgp—1, f2ar),
D*(haspt2, fr3r, 9T3k+1), D* (fT3k+3, 9T3k+1, hT3k42)
= Amax{ag, a3, 4, a5, -, O3k—1, A3k, O3k41}
< /\maX{/AQQ, /J/Gga ,u947 /’L657 U auegk_17 /’L93ka M93k+1}7 from (21)7 (22)

— )\,UJQQ — 93kM92
— H93k+2
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(2.4)
aspts = D*(frsiys, 9T3k4a, hxspys) = D*(903k44, hxarys, fraess)
= D*(S(x4, 25, ,x3043), T(T5, 6, -+, T3kya), R(T3, 24, -+, T3p42))

D*(gx4, hxs, fxs), D*(has, fre, g24),
< Amax D*(fxg,gx7,has), -+, D*(gx36+1, hxsgsro, fT3k),
D*(hxsky2, [23k+43, 9T3k+1), D* ([ 23143, 9T3k+4, W3k 42)
= Amax{as, ag, 5, -+, O3k, A3k41, A3k12 )

< Amax{ud?, ub*, p6®, - - ud3* @R+ ue3k+2Y 0 from (2.1),(2.2), (2.3)
— >\,U03 — 93k'u93
— 133,

Continuing in this way, we get

(2.5) apn, < pd" for alln e N.

Consider

D*(Y3k+3n-+15 Y3k+3n+2, Y3k+3n+3)

=D (99€3k+3n+17 ha 3k 3nt2, f$3k+3n+3)

S(Z3n+1, T3nt2, > T3k+3n),
=D* | T(x3n42,T3n4+3:" " > T3k43n+1),
R(23n+43, T3n+4, "+, T3k+3n+2)

D*(g3n41, hspyo, frang3), D" (htsnt2, fT3n+3, 9T3n+4),
D*(f23n43,9%3n+4, hT3ng5), -,
< Amax D*(g3k+3n—2, M3k 4301, fT3k43n),
D*(hasky3n—1, fT3k13n: 9T3k+3n+1)s
D*(fr3x13n, 9T3k43n+1, MT3k43n42)

= )\ maX{O{gn+1, a3n+27 a3n+37 T a3k+3’n—2) a3k+3n—17 a3k}+3’n}
< )\max{uﬂ‘%”“, ‘u93n+27 #03n+3’ . 7‘u03k+3n727 u93k+3n717 M93k+3n}
from (2.5)

— )\,Uﬂ?erl — 93!@M93n+1
— M03k+3n+1

Similarly, we have

k 2
D* (Y3k43n+2+ Ysk+3n+3, Yskt3n+d) < pd3Fr3nt

and

D* (Y3k43n+3> Ysk-+3n+4, Y3kr3nts) < po3ktsnts
Thus
(2.6) D*(Y3k4ns Ysktnt 1, Yskanta) < p0>F " n =12,

Since D* is of first type, we have

2.7) D* (Y3ktn, Ysktn, Ysk+3n+1) < D*(Yktns Y3ktn+1, Ysk+3n+2)
’ <
~

po3Etn n =12, from(2.6).
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Now for m > n, consider

D* (Y3k+n> Y3k+n> Y3k+m)

< D*(Y3ktns Ysk+ns Ysktnt1) + D" (Ysktn+1, Ysktnt1, Ysktni2) + -
+D* (Y3km—1, Y3k+m—1s Y3k+m)
N93k+n 4 u03k+n+1 + ‘u03k+n+2 R ﬂ03k+m71

<
< MG%%, since 0 < 0 <1

— 0 asn — oo, m — 00.

Hence the sequence {ysi+n} is a Cauchy sequence in X . Since X is complete, there
exists z € X such that

(2.8) nh_{rgo Y3ktn = 2.

By (2.1.4), there exists u € X such that

(2.9) z= fu=gu=hu
Now consider
S(’U,,U,"' au)7
D* | T(x3p—1,%3n, " »T3k+3n—2),
R(x35, 23011, T3k43n—1)
D*(gua hw3n—17 fx3’n,)a D*(hua fx3na 9373n+1>7
<Amax<  D*(fu,gr3n41, hasniz), -+, D*(gu, hrskqsn—a, [23k43n-3),

D*(hu, fraran—3, 9T3k43n—2), D* (fu, gT3k43n—2, hT3k43n-1)

Letting n — oo and using (2.8), (2.9) we get
D*(S(u,u, -+ ,u,u), fu, fu) < A0)

which in turn yields that

(2.10) S(u,u, -+ ,u) = fu
Similarly we can show that

(2.11) T(u,u, - ,u) = gu
(2.12) R(u,u, -+ ,u) = hu

Since the pairs (S, f), (T, g) and (R, h) are jointly 3k-weakly compatible and from
(2.10),(2.11),(2.12), we have

(213)  fz=f(fu) = F(S(uu, - w) = S(fu fu -~ fu) = S(z. 2, .2)

and

(2.15) hz=R(z,z,--- ,2)
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Now consider

S(Z,Z} : 7Z)a
D*(fz,z,2) =D*| T(u,u,---,u), |, from (2.11),(2.12) and (2.13)
R(u,u, -+ ,u)

D*(gz, hu, fu), D*(hz, fu, gu),
g)\max D*(fzvguahu)v'“ 7D*(gzahuafu)7
D*(hz, fu,gu), D*(fz, gu, hu)
= Amax{D*(gz, 2, z), D*(hz,2,2), D*(fz,2,2)}.

Similarly, we can show that

D*(z2, 92, 2)

< Amax{D*(gz, 2, 2), D*(hz,z,z), D*(fz,2,2)},
D*(z,z,hz) <

A
Amax{D*(gz, z,2), D*(hz,z,2), D*(fz,2,2)}.
Thus
D*(fZ7Z,Z>, D*(fZ,Z7Z),
max{ D*(gz,2,2z), p < Amax{ D*(gz,zz2),
D*(hz,z,z) D*(hz,z, z)
which implies that fz = gz = hz = 2.
Now from (2.13),(2.14) and (2.15) we have

(2.16) fz=gz=hz=2=85(z,2,--+,2)=T(2,2,--- ,2) = R(2,2, -, 2).

Suppose there exists 2’ € X such that
f2=g =h! =2 =52, ,2)=T(, 2, ,2)=R(Z 2, - 7).

Then
D*(Z,Z7Z/) = D*(S(Z,Z, ,Z),T(Z,Z,"' az)aR(zlazl7"' azl))

D*(gz7 hz? le)7 ‘D*(hz7 fz7 92/)7
< Amax D*(fz,gz,h?'), - ,D*(gz, hz, f2'),
D*(hz, fz,92"), D*(fz,9z,hz")
= AD*(z,2,2)

which implies that 2’ = 2.

Thus z is the unique point in X satisfying (2.16). O

Now we give an example to illustrate our main Theorem 2.1.

ExAMPLE 2.1. Let X =[0,1] and D*(z,y,2) = |z —y| + |y — 2| + |z — =] and
k = 1. Define
S(a,y,z) = ERUHE T(a,y,2) = S5 R(a,y, 2) = 2

_ z® _z _ z?
fr="%,gr =% and hx = %
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for all x,y, z,u,v,w,p,q,r € X. Consider
D*(S(z,y,2), T(u,v,w), R(p,q, 7))

_ | 2243y2 4423 3u2+4v3+2w’ 4|3t ow 4p®+2¢+3r?

72 72 72 72
+ 4p3+2q+3r2 2m+3y2+423
72
{|2x—3u2|+|3u —4p3| + |4p® — 22}
<75 | H{]8y% — 403 + [40® — 2¢] + |2 — 3y [}
+{|42 — 2w| + [2w — 3r?| + [3r? — 42°|}
e +]r -5+ |5 -5}
=3 | -]+ [s -+ fi-5)
g ol 4]+ -3

= §[D* (g, hu, fp) + D*(hy, fv,99) + D*(fz, gw, hr)]
< Lmax{D*(gz, hu, fp), D* (hy, fv, 9), D* (2, gu, hr)}.
Thus the condition (2.1.2) of Theorem 2.1 is satisfied. Clearly
fe=S(x,z,-- ,x), gr =T(z,x,--- ,z) and hx = R(z,x,--- ,x)
imply that x = 0 and
f(5(0,0,---,0)) = 5(f0, f0,- -, f0), g(T'(0,0,--- ,0)) = T(g0, 40, -, 40)
and h(R(0,0,---,0)) = R(hO, hO,--- ,h0). Hence the condition (2.1.3) is satisfied.

One can easily verify (2.1.1) and (2.1.4).
Clearly, 0 is the unique point in X such that

£0=g0=h0=0=5(0,0,...,0,0) = T(0,0, ...,0,0) = R(0,0, ...,0,0).
COROLLARY 2.1. Let (X, D*) be a D*-metric space, where D* is of first type,
k a positive integer and S, T, R : X3* — X and f : X — X be mappings satisfying
(2.1.1)* S(X?*) C f(X), T(X?*) C f(X), R(X®") € f(X),

S(x1,$27" 3k)7
R(21, 22, , 23k)
for all xy,xa, - T3k, Y1,Y2, Y3k, 21,22, -, 23 € X and 0 < A < 1,

(2.1.3)*  One of the pairs (S, f), (T, f) and (R, f) is 3k—weakly compatible,

(2.1.4)* f(X) is a complete subspace of X.

Then there exists a unique z € X such that
fz=2=8(z,2,---,2)=T(z,2,- ,2) = R(z,2,- -, 2).

COROLLARY 2.2. Let (X, D*) be a D*-metric space, where D* is of first type,
k a positive integer and S : X* — X and f : X — X be mappings satisfying

5(1'17.1727"' amk)7
5(2172'2,"' 7Zk)

fO’f‘ all.’)fl,(EQ,"' y Ll Y1, Y2, s Yk, 21,22, 5 2k EX and <A< 1,



PRESIC TYPE FIXED POINT THEOREM FOR SIX MAPS... 277

(2.2.2)  S(XF) C f(X),

(2.2.3)  The pair (S, f) is k—weakly compatible,

(2.24) f(X) is a complete subspace of X.

Then there exists a unique z € X such that fz =2 = 5(z,2,--- , 2).

COROLLARY 2.3. Let (X,D*) be a complete D*-metric space,where D* is of
first type, k a positive integer and S, T, R : X** — X be mappings satisfying

S(xlax%'” ,x3k)7

(231) D* T(yhyg, te ,yg,k)7 g Amax {D*(xz,yz,zz)/l g ) < 3](1}
R(Zl,ZQ,'~- ,ng)

for all xy,ma, - T3k, Y1,Y2, Yk, 21,22, -, 23k € X and 0 < A < 1.

Then there exists a unique point z € X such that
z2=08(z,2,--,2)=T(2,2,--+ ,2) = R(z,2, -, 2).

COROLLARY 2.4. Let (X, D*) be a complete D*-metric space,where D* is of
first type, k a positive integer and S : X3* — X be mappings satisfying

S($1,l‘2,"' ,$3k),
(24.1) D*| S(y1,¥2, ,Y3k), < Amax {D*(z;,y4,2i)/1 <14 < 3k}
S(z1, 22, ,23k)
forall i, zo, -+ | T3k, Y1, Y2, " s Y3k, 21,22, , 23k € X and 0 < A < 1.
Then there exists a unique point z € X such that z = S(z,z,--- , 2).

REMARK 2.1. Now we give probable modifications of Theorems of [5, 12, 13]:

(i) In Theorem 2.1 of [5], Theorem 3.1 of [12], Theorem 3.1 of [13] one has to
assume G(x,x,y) < G(x,y, 2) for all x,y,z € X ,instead of (G3).

(i7) In (2.1.2) of Theorem 2.1 of [5], in (3.3) of Theorem 3.1 of [12] and in (5) of
Theorem 3.1 of [13] one has to assume that any two of u,v,w are different instead

ofuv#w.

Acknowledgement. The authors are thankful to the referees for their valu-
able suggestions.
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