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ON SOME MAPPINGS BETWEEN
CO-QUASIORDERED RELATIONAL SYSTEMS

Daniel Abraham Romano

ABSTRACT. The setting of this article is Bishop’s constructive mathematics.
The connections between the strong mappings, U-mappings and L-mappings of
co-quasiorder relational systems we analyzed. The relations between the strong
mappings of co-quasiorder relational systems defined by Novotny and other
mappings are also analysed. Finally, a new mapping between two relational
systems is introduced. Some properties of these mappings and connection of
these mappings to the other known mappings are investigated.

1. Introduction

The constructivemathematics of Erret Bishop, i.e. BISH, forms the framework
for the work in this paper. BISH originates in [1], in which a large part of modern
analysis with constructive background was developed ([3]). Since then, a steady
stream of publications have contributed to Bishops work (see [2, 3, 4]). [4] is the
result of ten years of systematic research on topological space based on sets with
apartness within the domain of BISH. Modern algebra, contrary to Bishops expec-
tations, also proved amenable to natural, thoroughgoing, constructive treatment
([13]). Constructive algebra is more complicated than its classical counterpart in
various ways. For example, algebraic structures as a rule do not carry decidable
equality relations, and there is sometimes an abundance of substructures of many
types that can prove awkward to work with.

In this paper, the basic structure will be relational systems with apartness. The
study of algebraic structures in an intuitionistic setting was undertaken by Arend
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Heyting. Heyting considered structures equipped with an apartness relation in full
generality. (See, for example [9] or [20]).

The main objective of this paper is to outline some of the basic concepts of
mapping between relational systems with apartness.

The main objective of this paper is to outline some of the basic concepts of
mapping between relational systems with apartness.

More background on the Constructive mathematics can be found in [1, 4, 13]
and [20]. The standard reference for constructive algebra is [18] and [13]. Some
basic information about relational systems with apartness reader can be found in
[10] and [16].

Bishop’s constructive mathematics was developed on intuitionistic logic ([9],
[18] and [20]), that is, logic without the law of excluded middle P vV —P. Note
that in the intuitionistic logic the double negation law P <= ——P also does not
hold, but the following implication P = ——=P holds even in minimal logic. Since
intuitionistic logic is a part of classical logic, the results from constructive math-
ematics are compatible with suitable results in classical mathematics. Recall that
the following deduction principle A V B, - B F A is acceptable in the intuitionistic
logic.

What is special about the work presented in this paper? In the first place, it
is the application of intuitionistic logic instead of classical logic. In mathematics
based on intuitionistic logic, there is a need to determine so-called negative concepts
through a positive approach. This aspect fragments classical concepts into a number
of different concepts that are mutually inequivalent within mathematics founded
on intuitionistic logic. For example, the classical concept of equality relation e C
A x A on a set A in constructive mathematics is divided into the associated pair
of concepts: equality e and coequality ¢ C A x A relations. The concepts e and ¢
are said be associated if eogq C ¢ holds. (In this way, the equality relation '=" and
a diversity relation ’#’ often occur in a set.)

Of course, there is a need to understand their mutual connections, i.e. for a
given equivalence relation e is there (the maximal) coequality relation ¢ associated
with e? Other interesting questions that naturally occur include what kind of
structure is built by new relations, and what kind of connections occur between
the structures that are generated by the associated pair of an equality e and a
coequality q.

This article aims to present answers to some of these questions in connection
with the concept of a special class of relations: the co-quasiorder relation (formore
on this concept, see [6, 7, 15, 17].) Thus, this article does not intend to reiterate
constructive mathematics tools and techniques, but rather to focus on some specific
functions between such relational systems. This matter is deemed interesting and
important because mathematicians need to investigate all the logical possibilities
that appear in any structures, since mathematics can be viewed as a science of
structures.
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Several new results are presented in the theorems in this paper. All the results
obtained are related to a certain notion of the isotones and reverse isotones of
mappings between co-quasiordered relational systems.

2. Preliminaries

Let (A,=,+#) be a set in the sense of [1, 4, 13] and [20], where #C A x A is
a binary relation on A which satisfies the following properties:

“(z#2), vFEFYy=y#r, sFYNYy=2=1#=2
called diversity relation. In addition, if for diversity relation # the following impli-
cation

rFz=x#FYyVvVy#£z

holds, it is called apartness ([9]). Let us note that an apartness is not tight in
general case. (For an apartness # we say that it is tight if ~(z £ y) = z =y
holds.) Hereafter, the relational structure (A, =, #) is denoted simply with A. Let
Y be a subset of A. The subset Y of A is a strongly extensional subset in A if and
onlyif Ve A)(yeY = (y#x vV zeY)) ([1], [13]).

Let A, B and C be sets and a C A x B and 8 C B x C' be relations. The filled
product ([15]) of relations o and S is the relation

Bxa={(a,c)c AxC:(¥Ybe B)((a,b) € a V (b,c) € B)}.
As in [6] and [7] a relation 7 C A X A is a co-quasiorder on A if and only if
TCH#, TCTRT.

Note that in the earlier papers on this work, the term quasi-antiorder relation is used
([15, 10, 16] and [17]). In the present paper, (A, o) is termed a ’co-quasiordered
system’. Tt is easy to see that classes ar and 7b (a,b € A) of a co-quasiorder T is
strongly extensional subsets of A.

A relation o on A is an co-order relation ([6] and [7], [17]) on A if and only if

aC# aCaxa, #CaUa™l.

Note that in the earlier papers on this work, the term anti-order relation was used
([15, 10, 16] and [17]. In the present paper, (A, @) is termed a ’co-ordered system’.

ExAMPLE 2.1. (1) Let X = {a,b,c,d,e} be a set. The relation @« C X x X,
defined by

a = {(a,b),(a,c),(a,e),b,a),d,c),b,d),0b,e),(ca)lcb),(cd),(d a)(db),

(d’ C)?(d’ e)’(e’ a)7(67 b)’(e’ C)? (67 d)}

is a co-order relation on set X.

(2) Let 0 = {(¢,a),(c,b),(d, a),(d, b),(d, c),(e,a),(e,b),(e,c)} and

7 ={(a,b).(a; ¢),(a, d),(a, €),(b, a),(b; ¢),(b, d),(b, €),(c, d),(c, €),(d, €),(e;d) }
be relations on the set X = {a,b,c,d,e}. Then o and 7 are co-quasiorders on
X such that cNo™t =0, cUo™! C#, rn7 ! = {(ba),(a,b),(ed),(d,e)},
TUT ' =#, cUTr =# and o N7 = (. So, the relations o and 7 are co-quasirders
on X.
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(3) Let > be a relation between an element € A and a subset Y defined by
x>Y <= (VyeY)(r#y).
A subset Y of a set A is detachable in A if (Vz € A)(z €Y V 2> Y). ([7], Lemma
1) Let T be a detachable subset of a set with apartness A. Then the relation 7 on
A, defined by (a,b) € 7<= ar>T A b€ T, is a co-quasiorder on A. ¢

Let ¢ : (A,=,#) — (B,=,#) be a mapping. We say that:
(a) ¢ is strongly extensional if and only if (Va,b € A)(p(a) # o(b) = a # b);
(b) ¢ is an embedding if and only if (Va,b € A)(a # b = p(a) # ¢(b)).

Let ¢ : (A,a) — (B, 8) be a mapping of relational systems. As in the classical
case, the mapping ¢ is called isotone if and only if

(V,y € A)((z,y) € a = (p(2), v(y)) € B);
the mapping ¢ is called reverse isotone if and only if

(Va,y € A)((p(x), 0(y) € B = (z,y) € a).
Therefore, if a mapping ¢ : (A,=,#) — (B,=,#) is an embedding, then ¢
is an isotone, and if ¢ is strongly extensional, then ¢ is a reverse isotone mapping
with respect to apartness relations.

EXAMPLE 2.2. (1) Let X = {a,b,c}, Y = {u,v,w} be sets and let o =
{(b,a), (c,a), (¢,b)} and 7 = {(u,v), (v,u), (w,u), (w,v)} be relations on X and
Y respectively. Then (X,o0) and (Y, 7) are co-quasiorder relational systems. The
mapping ¢, defined by p(a) = u ¢(b) = v and ¢(¢) = w is an isotone mapping
between relational sistems, but it is not strong because for (a,b) € ¢ ~1(7) there do
no exist elements x,y of X such that p(a) = ¢(x), p(y) = ¢(b) and (z,y) € o.

(2) If o = {(a,b),(a,c),(a,d),(b,a),(b, ¢),(b,d),(c,a),(c,b),(c,d)} on set X =
{a,b,¢,d} and 7 = {(u,v), (u,w), (u, z), (v,u), (v,w),(v,2), (w,2)} on set ¥ =
{u,v,w, z}, then (X, 0) and (Y, 7) are co-quasiorder relational systems. The map-
ping ¢, defined by ¢(a) = u, p(b) = v, p(c) = w and p(d) = z, is a reverse isotone
mapping, but it is not strong. ©

Let us note that if p : ((A,=,#),0) — ((B,=,#), 7) is a strongly extensional
mapping of co-quasiordered systems, then the relation ¢=(7) = {(z,y) € A x A :
(p(z),9(y)) € T} is a co-quasiorder too. It is easy to verify the following:

(2.1) @ is isotone if o C o (1),
and
(2.2) @ is reverse isotone if (1) C 0.

For these mappings we have the following implications:

LEMMA 2.1. Let (A,a) and (B, ) be relational systems and let o : A — B
be a mapping. Then:

(2.3) aCpHB) = poaCBop.
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PROOF. (i) Suppose a C ¢~1(3). Let (a,b’) be an arbitrary element of ¢ o a.
Then, there exists an element a’ € A with (a,a’) € a and (a’,b") € ¢. Thus,
(p(a),p(a’)) € B because ¢ is an isotone mapping. Now, out of (a,p(a)) € ¢ and
(p(a),b") € 8 we have (a,b') € 8o .

(ii) In fact, for (a,d’) € a (a,a’ € A) we have
(a,d') € o = (a,d') € a A (d/,0(a")) € ¢
— (a,¢(a")) € poa CPoyp
= (a,9(a)) € ¢ A (p(a),p(d')) € B
= (a,d') € o7 1(B). O

LEMMA 2.2. Let (A,a) and (B, ) be relational systems and let ¢ : A — B
be a surjective mapping. Then:

(2.4) e B Ca=BopCyoa.

PROOF. Suppose ¢~ (8) C a. If (a,b’) € B o ¢, then there exists an element
b € B such that (a,b) € ¢ and (b,0’) € 8. Since ¢ is a surjective mapping, there
exists an element o’ of A with (a/,d’) € ¢. Hence, from (¢(a),p(a’)) € 8 we
conclude that (a,a’) € a because @ is a reverse isotone mapping. Thus, finally,
from (a,a’) € a A (a/,V) € ¢ we have (a,b') € poa. O

The notion of a mapping between ordered sets is one of the fundamental notions
in the study of the structure of ordered sets. In literature, for example, in [5], [8],
[11], [14] and [19] there are several definitions of (isotone) mappings on ordered
sets. Following [5] and [8] there are:
(i) isotone mappings;
(ii) strong isotone mappings;
(iii) U -mappings and L-mappings;
and following [11], [14] and [19]
(iv) strong mappings in Novotny sense.

This paper presents a new approach to mappings between co-quasiordered re-
lational systems in the constructive setting.

3. The Main results

3.1. Strong mappings. Halas and Hort ([8]) observed that there are several
different definitions of mappings on partially ordered sets. Following ideas exposed
in articles [10, 16], we describe some mappings between co-quasiordered relational
systems. First, we modify the notion of a strong mapping in Chajda and Hoskova
sense ([5]), as in unpublished article [16].

Let ((A,=,#),0) and ((B,=, #),7) be co-quasiordered relational systems and
let ¢ : A — B be a strongly extensional mapping. We will use the kernel of the
mapping ¢ defined by Keryp = {(a,b) € A x A: p(a) = ¢(b)}. We define:

— Isotone mapping ¢ is called an isotone strong mapping ([16]) from A to B if the
following holds:

(3.1) o C o 1) C KerpoooKerg.
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— A reverse isotone mapping ¢ is called a reverse isotone strong mapping from A
to B if the following holds

(3.2) 0 (1) Co C Kerpop (7)o Kerg.

Results in the following lemma are very important in our understanding of
these notions:

LEMMA 3.1. Let ((A,=,#),0) and ((B,=,#),7) be co-quasiordered relational
systems and let ¢ : A — B be a strongly extensional mapping. Then:

(i) 0 Co 1) C KerpoooKerp <= ¢ (1) = KerpoooKerp.
(i) o Y1) C o C Kerpop Y1)o Kerp <= o= Kerpop (7)o Kerg.

PROOF. (i) Let 0 C ¢~ Y(7) C Kergpooo Kery and (a,b) € Kerpoo o Kerp.
Then, there exist elements z, y of A such that ¢(a) = ¢(z), (z,y) € 0 C = 1(7)
and ¢(y) = (b). Since ¢~!(7) is a co-quasiorder relation on A we have (z,a) €
1 (7) C or (a,b) € (7). or (by) € ¢ }(r) C£. Thus, (a,b) € ¢ (r), and,
finally we have that ¢~ !(7) = Keryp oo o Kerp. Let us note that the opposite
implication is clear.

(ii) Since the implication
o=Kerpop '(1)o Kerp = ¢ (1) C Kerpop (1) o Ker¢p C o

is obvious, let us prove the opposite implication. If (a,b) € Kergpop~1(7)o Keryp,
then there exist elements z, y of A such that p(a) = ¢(z) and (z,y) € ¢~ (1)
and p(y) = p(b). Out of (z,y) € ¢~ !(7) we conclude (z,a) € ¢~ 1(1) C# or
(a,b) € p~(1) Co or (by) € p (1) C# . Thus, (a,b) € 0. O

3.2. U - mappings. The notion of a relational system was introduced by
Maltsev in 1954 ([12]). This system was investigated by many (as for example, by
Vagner ([21])) and also by Chajda in several of his articles. Chajda and Hoskova
investigated U-mappings in the article [5]. The concepts of relational systems with
co-order and co-quasiorder relations were analyzed in article [15] and [17].

Following ideas in the articles [10] and [16] we describe U-mappings between
co-quasiorder relational systems in this section.

Let (A, «) and (B, ) be relational systems. For a binary relation « on A and
a € A denote U,(a) = {t € A: (a,t) € a}. The set U,(a) (the left class of «
generated by a) is called the upper class generated by a. A mapping ¢ : A — B
is called U-mapping if

p(Uqa(a)) =Us(p(a)) for each a € A.

REMARK 3.1. (1). If p is a strongly extensional and reverse isotone surjective
mapping, then Ug(p(x)) C ¢(Uqs(z)). Indeed, let z € Ug(p(x)), i.e. let (p(z),2) €
(. Since ¢ is a surjective mapping, then there exists an element ¢ of A such that
z = @(t) and (p(z),¢(t)) € . Since ¢ is a reverse isotone mapping, we have
(x,t) € a. Thus, t € Uy(z) and z = ¢(t) € p(Uq(2)).

(2). If ¢ is a strongly extensional and isotone surjective mapping, then Ug(p(z)) 2
©(Uy(x)). Indeed, let z € o(Uy(x)). Then there exists an element ¢ of A such that
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z = p(t) and (x,t) € a. Since @ is an isotone mapping, we have (p(x), p(t)) € B.
Thus, z = ¢(t) € Ug(p(z)).

In the following theorem we prove that every strongly extensional reverse iso-
tone strong mapping between two co-quasiorder relational systems is a U-mapping.

THEOREM 3.1. Let ((A,=,#),0) and ((B,=,#),7T) be co-quasiordered rela-
tional systems and let p : A —> B be a strongly extensional reverse isotone sur-
jective strong mapping. Then, the mapping ¢ is an tsotone and reverse isotone
U-mapping.

PROOF. Let z be an arbitrary element of ¢(U,(z)). Then there exists an
element ¢ of U, (z) such that z = ¢(¢) and (z,t) € 0. Since p is a strong mapping,
then there exist elements a,b € A such that

pla) = () A (pla),o(b) €T A z=¢(t) = ¢(b).
Thus, out of (¢(a), (b)) € 7 we have: (p(a),p(z)) € T C# or (cp(:c),gp(b)) € T.
So, from that we conclude ¢(b) = ¢(t) = z € {u € B : (p(x),u) € 7} = U (¢(x))
because the first part of the previous disjunction is impossible. Furthermore, let
us assume that elements z,y of A are such that (z,y) € o. Then, y € U,(z)

and ¢(y) € p(Uys(x)) = Ur(¢(x)). Hence, (p(x),p(y)) € 7 and ¢ is an isotone
mapping. O

It is easy to verify that the converse assertion is not valid in general. The
following theorem is the main result of [16]:

THEOREM 3.2. Let (A,0) and (B, T) be co-quasiordered relational systems and
let o : A — B be a strongly extensional surjective mapping. Then:

(3.3) @ is a U —mapping if and only if o C ¢ (1) C Kery oo holds;
(34) pisaU—mapping if and only if o (1) Co C Kerpo o (1) holds.

PRrROOF. (1) (=) Let ¢ be a U-mappings. Then, if (z,y) is an element of
o, ie. if y € Uy(x), then p(x) € o(Uys(z)) = U-(¢(x)). Thus, (¢(z),0(y)) € T
and ¢ is an isotone mapping. Suppose that (z,y) € ¢~!(7), i.e. suppose that
(p(z),0(y)) € 7. Then p(y) € U,((x)) = ¢(Uas(z)). So, there exists an element ¢
of A such that ¢(y) = ¢(t) and (z,t) € 0. Hence, (z,y) is an element of Kerpoo.

(<= ) Assume that ¢ is isotone and suppose that ¢~1(7) C Kergoo holds. Let
a be an arbitrary element of U, (¢(x)). Then, there exists an element ¢ of A such
that a = ¢(t) and (p(z), p(t)) € 7. Thus, for the element ¢ of A we have a = (t)
and (z,t) € p (1) € Kerpoa. So, there exists an element s of A such that
(x,s) € 0 and ¢(s) = p(t) = a. Therefore, we have a = ¢(s) = ¢(t) € p(Us(x)).
Finally, we have U, (p(z)) C ¢(Uy(z)).

(2) (=) Let ¢ be a U-mappings. Then, if (¢(x),p(y)) € 7, i.e. if o(y) €
Ur(p(z)), then ¢(y) € p(Uy(z)) = Ur(p(z)). So, there exists an element ¢ of A
such that ¢(y) = (t) and (x,t) € 0. Hence, from the implication (z,y) € 0 =
(x,y) € o V (y,t) € o we conclude that (z,y) € o, because out (y,t) € o we have
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(p(y),p(t)) € 7 and p(y) # () since ¢ is an isotone mapping. On the other
hand, out of (z,y) € o, i.e. out of y € Uy(x), we have ¢(y) € ¢(Uy(x)). Thus,
there exists an element s of A such that ¢(y) = ¢(s) with (z,s) € o. Since @ is
an isotone mapping, we have (p(x),p(s)) € 7, i.e. we have (z,s) € ¢~ (7). So,
finally, we prove the inclusion o C Kery o o~ (7).

(<= ) Assume that ¢ is a reverse isotone and suppose that o C Kergop~1(r)
holds. Let a be an arbitrary element of ¢(Uy(x)). Then there exists an element
t of A such that a = ¢(t) and (z,t) € 0 C Kerg o ¢~ !(7). Thus, there exists an
element s of A such that (z,s) € p~1(7) and p(s) = ¢(t) = a. Therefore, out of
(p(x),p(s)) € T and @(s) = p(t) = a we have a = o(t) = ¢(s) € U-(p(x)). So, the
inclusion ¢(Uy(x)) C U, (p(z)) is valid. Since the opposite inclusion holds because
¢ is a reverse isotone mapping, finally, we have o(U,(x)) = U, (p(z)). O

Now, in the following theorem we show a necessary condition for a U-mapping
to be a strong mapping:

THEOREM 3.3. Let (A,0) and (B,T) be quasi-antiordered relational systems

and let ¢ : A —> B be a strongly extensional surjective U-mapping and

Kergop (1) C o ' (1) o Keryp
holds. Then, the mapping ¢ is a strongly extensional reverse isotone strong map-
ping.

PROOF. Suppose that ¢ : A — B is a strongly extensional U-mapping of co-
quasiordered relational systems such that Kerpop=1(7) C o~ 1(7) o Kery. Then,
by Theorem 2, we have

¢~H(r) C Kergop™'(n).
In accordance with the hypothesis, out of
o Y1) Co C Kerpop (1) C Kergpo Kergop (1)
we conclude that
o N 1) Co C Kerpop t(1)o Kerg.
So, the mapping ¢ : A — B is a strongly extensional reverse isotone strong
mapping. ]

3.3. L - mappings. At the beginning of this subsection we pose the follow-
ing two questions: What kind of a mapping ¢ : (A,0) — (B, 7) between two
co-quasiordered relational systems is such that:

(a) 7' (1) S o Sy () o Kerp?
(b) o Cp~l(r) CooKerp?

In this section we give a partial answer to the question (a).

Let (A, «) and (B, ) be relational systems. For a binary relation « on A and
a € Aweset Ly(a) = {t € A: (t,a) € a}. The set Ly(a) (the right class of «
generated by a) is called the lower class generated by a. A mapping ¢ : A — B
is called L-mapping if
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w(Ly(a)) = Lg(p(a)) for each a € A.

REMARK 3.2. (1). Let ¢ be a (strongly extensional) reverse isotone surjective
mapping and let z € Lg(p(a)), i.e. let (z,¢(a)) € . Since ¢ is a surjective
mapping, there exists an element ¢ of A such that z = ¢(t) and (p(t), p(a)) € 8.
Since ¢ is a reverse isotone mapping, we have (¢,a) € a. Thus, t € Ly(a) and
z = ¢(t) € p(La(a)). So,

97H(B) € o = Lp(p(a)) € p(La(a)).
(2). If ¢ is a strongly extensional and isotone surjective mapping, then Lg(p(a)) C
¢(Ly(a)). Indeed, let z € o(Ly(x)). Then there exists an element ¢ of A such that
z = ¢(t) and (t,a) € a. Since p is an isotone mapping, we have (p(t), p(a)) € B.
Thus, z = ¢(t) € Lg(v(a)). Therefore, the following implication is valid

a C ¢~ (B) = ¢(Lala)) € La(p(a)).
In the following theorem we give an answer to the question (a):

THEOREM 3.4. Let (A, o), (B,T) be co-quasiordered relational systems and let
p: A — B be a strongly extensional reverse isotone surjective mapping. Then, if
¢ is an L-mapping then the following holds ¢=*(7) C o C ¢~ 1(7) o Kerep.

PROOF. Let ¢ be a reverse isotone L-mapping. Then, if (z,y) is an element
of o, i.e. if x € Uy(y), then ¢(z) € o(Ls(y)) = L (p(y)). Thus, (p(x),e(y)) € T
and it follows that ¢ is an isotone mapping. Further on, if (¢(x),¢(y)) € 7, ie.
if p(z) € L:(p(y)) = ¢(Us,(y)), then there exists an element ¢ of A such that
o(x) = p(t) and (t,y) € o. Hence, out of the implication (t,y) € 0 = (t,x) €
oV (z,y) € o we conclude (z,y) € o, because out (t,x) € o we have (¢(t), p(x)) € T
and ¢(x) # ¢(t) since @ is an isotone mapping. On the other hand, from (z,y) € o,
ie. from z € L,(y), we have ¢(z) € ¢p(Ls(y)). Thus, there exists an element s of
A such that ¢(x) = ¢(s) with (s,y) € 0. Since ¢ is an isotone mapping, we have
(0(s),¢(y)) € 7, i.e. we have (s,y) € ¢~ (7). So, finally, we proved the inclusion
o C o (1) o Kereg. d

3.4. Some special strong mappings. In the article [14], Novotny studied
a strong homomorphism between binary relational structures as a mapping ¢ :
A — B of (A, ) into (B, ) such that ¢ is isotone and ¢ o a = 8 o ¢ holds. By
Lemma 1 in [14], it is equivalent with the following assertion: For any a € A and
any b’ € B the condition (¢(a),b’) € B is equivalent to the existence of a’ € A such
that (a,a’) € o and ¢(a’) = b'. Developing this idea, we can analyze some results
on such mappings in the following assertions.

REMARK 3.3. Let (A4,a), (B, ) be relational systems and let ¢ : A — B be
a (strongly extensional) mapping. Then:
(3.5) Bop Cpoa= ¢ (B)C Kergoa.
If (a,a’) € ™(B), then (p(a), p(d')) € B and (a,p(a)) € . Thus, (a,p(a')) €
Bow C poa. So, by definition of the composition of relations, there exists an

element a” of A such that (a,a”) € a and (a”,p(a')) € ¢, i.e. (a”,a") € Kerep.
Finally, we have (a,a’) € Kerp o a.
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So, from (2.3), (3.3) and (3.5) we conclude:

THEOREM 3.5. Every strongly extensional Novotny strong mapping ¢ : A —>
B between two co-quasiordered relational systems is an isotone U-mapping.

In the following theorem we give the opposite assertion:

THEOREM 3.6. Let (A, «), (B, ) be relational systems and let ¢ : A — B be
a (strongly extensional) surjective mapping. Then:

(3.6) aC o Y (B)C Kerpoa= fop=poa.

PROOF. Let a € A and I/ € B be elements such that (a,b’) € 5o ¢. Thus,
there exists an element b € B with (a,b) € v and (b,0’) € 5. Since ¢ is a surjec-
tive mapping, there exists an element o’ € A such that ¥ = p(a’). So, we have
(¢p(a),p(a’)) € B and out of (a,a’) € = 1(B8) C Kerp o o we conclude that there
exists an element a” € A such that (a,a”) € o and p(a”) = ¢(a’) = b'. Hence,
finally, we have (a,b’) € ¢ oa. Combining this result with (2.3) we have proved the
implication. O

Combining the comment before Theorem 3.2 and the result (3.6) of Theorem
3.6 we have:

COROLLARY 3.1. Let (A,0), (B,T) be co-quasiordered relational systems and
let p: A — B be a strongly extensional surjective mapping. Then ¢ is a Novotny
strong mapping if and only if it is an isotone U-mapping.

Following Novotny definition of strong mappings, let us analyze a new condition
for mapping between binary relational structures: a mapping ¢ of (4, «) into (B, f)
such that
acpl=plop
holds. When ¢ is surjective it is easy to see that the previous condition is equivalent
with the following formula

(Vb € B)(Va' € A)((b,¢(a’)) € B == (¢~ (b),d') € a).
Indeed, for (b,a’) of ¢=! o 3 there exists an element ¥’ € B such that (b,d') € 3
and (V',a’) € ¢!, Thus, (b,¢(a’)) € B. On the other hand, for (b,a’) € a0 p~!

there exists an element a” € A with (a”,a’) € a and (b,a”) € ¢~!. Finally, we

have (¢~1(b),d’) € a.
Conversely, suppose that the above formula is valid. Then, we have
(i) (b,a') € p~toB <+ (T € B)((b,V)€ B A (V,d') € pt)
= (b, (p(a')) € B
= (¢71(b),d') €
= (b,d’) € aopl;
(i) (b,a’) € ao ™t <= (Fa" € A)((b,a") € p=L A (d",d) € )
= (p71(b),d') €a
> (bp(d)) € B
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= (b,a') € p~1op.

Developing this idea, we have the following theorem:

THEOREM 3.7. Let (A, @) and (B, 8) be relational systems and let p : A — B
be a (strongly extensional) mapping. Then

(3.7 e lofCaocp™t = ¢ HB) C aoKery;
and
(3.8) acp Tt Cotof=aC e (B)

PRrROOF. Let (p(z),o(x’)) € B. Then, out of (¢(z), p(z’)) € B and (p(z'),z’) €

o1 we conclude (p(z),2") € o1 o8 C aoypt. Hence, there exists an element

2" of A such that (p(z),2”) € =1 and (z”,2) € a. So, finally, we have (z,2’) €
ao Kergp.

(r,2") € a = (¢(x),2) € ™1 A (z,2') €«
= (p(z),2') €aop™ Cp~lop
= (Jy € B)((¢(2),y) € B A (y,2') € p7)
= (p(2),p(z")) € B
= (z,2') € p71(B).

Therefore, we have the following implication:

ploB=aocp = aCp1(B) CaocKerp.

Similar to the case of Novotny strong mapping, we have the following;:

THEOREM 3.8. Let (A, ) and (B, B) be relational systems and let p : A — B
be a (strongly extensional) mapping. Then

(3.9 aCpt(B)=aop !t Cyplog.

PROOF. Let (V',a) be an arbitrary element of B x A such that (b',a) € aop™1.

Thus, there exists an element a’ of A with (V',a’) € ¢! and (a/,a) € a. Since
¢ is an isotone mapping, we have p(a’) =V, (¢(a'),p(a)) € f and (¥, ¢(a)) € B.
Finally, out of (¥, ¢(a)) € 8 and (¢(a),a) € p~* we conclude that (b,a) € ¢~ !o
B. O

Combining the results (2.3), (3.8) and (3.9) we have the equivalences
poaCfope=aly (f)s=aop 1 Cyp lof
THEOREM 3.9. Let (A,0) and (B, T) be co-quasiordered relational systems and

let ¢ : A — B be a strongly extensional surjective mapping. Then:

(3.10) o (1) CooKerp=p lorCoop
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PROOF. If (',a) € ¢! o7 then there exists an element b € B with (V',b) €
7 A (b,a) € o~ and since ¢ is surjective, there exists an element a’ € A such
that (a/,b") € ¢. Thus, we have (¢(a’), p(a)) € 7, i.e. we have (a’,a) € p~1(7) C
o o Kery. Therefore, there exists an element a” € A with (a”,a) € o and ¢(a’)
e(a”) =V, i.e. we have the following conjunction (a”,a) € o A (V/,d") € ¢

-1
This means that (b',a) € oo ¢~ O

Combining formulas (3.7)-(3.10) we have an answer to the question (b):

COROLLARY 3.2. Let (A,0), (B,T) be co-quasiordered relational systems and
@ : A —> B a strongly extensional surjective mapping. Then:

o Cp (1) CooKerp e p! !

oOT =00 .

Let (', a) be an arbitrary element of ¢! o 7. Then, there exists an element b

of B with (V/,b) € 7 and (b,a) € ¢~ *. If the mapping ¢ is a surjective mapping,
then there exists an element o’ of A with (a’,V') € ¢. (a’,a) € o follows from
(p(a'),¢(a)) € T if ¢ is a reverse isotone mapping. This gives (b',a’) € ¢~! and
(a’,a) € o. Finally, we have (b',a) € 0 o ¢~!. Therefore, the following theorem is
obtained:

THEOREM 3.10. Let (A, o) and (B, T) be relational systems and let p : A — B
be a (strongly extensional) mapping. Then
(3.11) e l(r)Co= ¢ torCoop .

Suppose o C ¢~ 1(B) o Keryp. Then ao o™t C o=t o . Indeed, if (V',a) is
an arbitrary element of « o ¢!, then there exists an element a’ of A such that
(b, a') € o=t and (d/,a) € o C ¢ (B) o Kerp. Thus, there exists an element
a” of A with p(a’) = ¢(a”) = b and (b, ¢(a)) € 8. Out of (b',p(a)) € 8 and
(p(a),a) € o=t we have (b',a) € p~1oB. Therefore, we have the following theorem:

THEOREM 3.11. Let (A, &) and (B, ) be relational systems and let p : A — B
be a (strongly extensional) mapping. Then

(3.12) aCot(B)oKerp=aop tCyplop.

Combining (3.11) and (3.12), at the end of this section, for co-quasiordered
relational systems (A, o) and (B, 7) we have the following implication

e NV CoCp Y r)oKerp=0co0p l=plor.
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