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DECOMPOSITION OF A C-ALGEBRA
THROUGH PARTIAL ORDERINGS

P. Sundarayya, Ramesh Sirisetti, and V. Sriramani

ABSTRACT. In this paper, we recall two partial orderings on a C-algebra. Two
types of decompositions are derived by using these partial orderings, which are
not dual to each other. Two sufficient conditions for a C-algebra to become a
Boolean algebra in terms of C-algebras Lq, R, are obtained.

1. Introduction

In [2], Guzman and Squier introduced the variety of C-algebra as the variety
generated by the three element algebra C' = {T, F,U} with the operations A,V
and ’ of type (2,2,1), which is the algebraic form of the three valued conditional
logic. They proved that the two element Boolean algebra B and C' are the only
subdirectly irreducible C-algebras and that the variety of C-algebras is a minimal
cover of the variety of Boolean algebras. These C-algebras are of interest to logic
and theoretical computer science.

In [3, 5], Rao and Sundarayya introduced two partial orderings on a C-algebra
and derived a number of equivalent conditions for a C-algebra to become a Boolean
algebra in terms of these partial orderings. In [6], Swamy, Rao and Ravi kumar
introduced the centre of C-algebra and proved that it is a Boolean algebra.

In this paper, we recall two partial orderings <; and <, on a C-algebra. We
obtain two C-algebraic structures on subsets of a C-algebra A (with T'), which are
not subalgebras of A. It is well known that if B is a Boolean algebra and a € B,
then B is isomorphic to B [ a X B | a’ (see [1]). We obtain a version of this
decomposition for a C-algebra corresponding to these partial orderings. They are
not symmetric to each other because C-algebras have no commutative property.
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2. Preliminaries

In this section, we collect some necessary definitions, examples and results of
C-algebras from [3, 5, 6].

DEFINITION 2.1. ([2]) By a C-algebra we mean algebra (A4, A,V,") of type
(2,2, 1) satisfies the following identities;

(a) 2" ==
(b) (@Ay) =a"Vvy
((c (ynz)=(zAy) Az

for all z,y,z € A.

EXAMPLE 2.1. ([2]) The three element set {7, F, U} with operations A,V
and ’ given by

F x|
T T|F
F F|T
U Uu|U
is a C-algebra . We denote this C-algebra by C and the two element C-algebra

{T,F} by B.

EXAMPLE 2.2. ([3]) Let G = {g1, 92, 93,94, g5} where g1 = (T, U), g2 = (F,U),
93 = (U, F),94 = (U,T),g5 = (U,U). Then G is a C-algebra with respect to the

pointwise operations given in the following;
/

Nl191 92 93 94 95 V191 g2 93 94 G5 r |
g1191 92 95 95 Gs g1 191 91 91 91 N g1 | 92
92192 92 92 92 g2 92191 92 95 G5 G5 g2 | N
93195 95 93 94 G5 93193 93 93 g3 g3 g3 | 94
g4 | 94 G4 g4 9G4 94 ga | 95 95 93 g4 Gs g4 | 93
95|95 95 95 95 G5 gs |95 95 95 95 Gs gs | 95

ExXAMPLE 2.3. ([3]) Let C x C = {fl,fg,fg,f4,f5,f6,f7,f8,f9} where f1 =
(T,U), f2=(FU), f3 =UT), fr=UF), fs =U0U), fo =T.7T), fr =
(EVF), fs=(T,F), fo = (F,T). Then C x C is a C-algebra with respect to the
pointwise operations.

It can be observe that the identities (a), (b) imply that the variety of all C-
algebras satisfies the dual statements (b) to (g). In general A and V are not com-
mutative in C' and the ordinary right distributivity of A over V fails in C.

LEmMA 2.1. ([2, 6]) If A is a C-algebra, then for any z,y € A,
i) zhz=z
(i) zA (@' Vy) =@ VyY)hz=xzA(yVa)=zAy
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zVa =2V

If A has an identity for A, then it is unique and denoted by T (that is t AT =
T Az =z for all z € A). In this case, we say that A is a C-algebra with T If
we write F' for T”, then F is the identity for V (that is x VF = F vV x = z for all
x € A). Now, we have the following;

LEMMA 2.2. ([2]) If A is a C-algebra with T, then for any x € A,
(i) TVe=x and FANx=F
(i) xevVT =aVa ande NF=x Nx'.
If there exists an element z € A such that 2’ = z, then it is unique and we
denoted it by U (U is called the uncertain element of A).

DEFINITION 2.2. ([6]) An element x of a C-algebra A with T is called a central
element of Aifzva' =T.

If A is a C-algebra with T, then the set {x € A | zVa’ = T} of central elements
of A is called the centre of A and denoted by B(A) [6]. It can be observed that
B(A) is a Boolean algebra with induced operations on A.

3. The partial orderings <; and <,

In this section, we recall two partial orderings <; and <,, and present that
two C-algebra structures corresponding to <; and <, in a C-algebra which are not
sub C-algebras of A. Some of the properties of these C-algebras are given in the
following.

LEMMA 3.1. ([5]) A relation <; on a C-algebra A defined by x <,y ifx Ny =z
and x Vy =1y, is a partial ordering on A.

ExAaMPLE 3.1. ([5]) The Hasse diagrams of (C, <;), (G, <;) are given in the
following figure 1.

T (T, V) u,m
P U V)
F (F, U) (U, F)
FiGURE 1

LEMMA 3.2. ([5]) A relation <, on a C-algebra A defined by x <, y if Ay ==z
and yV x =1y, is a partial ordering on A.
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EXAMPLE 3.2. ([5]) The Hasse diagrams of (C,<,), (G, <,) are given in the
following figure 2.

T T U (U
U, u)
u
U, F)
E (F,U)
FIGURE 2

REMARK 3.1. “ <, ” and “ <; 7 are not dual to each other, for example, in
G(see Example 2.2), we have g3 <, g1 but g1 %; g3 and g2 <; g4 but g4 £, g2

Now, we prove the following.

LEMMA 3.3. If A is a C-algebra with T, then, for any x,y € A, x <; y implies
yVer=xVy=y.

PrOOF. Let z,y € A such that  <;y. Then zx Ay =z and 2V y = y. Now,

yve = (Vy V(zAy)
= (xVyVz)A(xVyVy) (by the dual of Def. 2.1(d))
= (zVy A(xVy) (by Lemma 2.1(vi))
= zVy
=Y
Therefore y Ve =z Vy=uy. O

In the following, it is defined that a C-algebra corresponding to the partial
ordering <;

THEOREM 3.1. If A is a C-algebra with T and a € A, then the set
Lo={ze€A|la< x}

is a C-algebra with the induced operations A, V and the complementation * is defined
by x* =aVva', for any x € L,.

PROOF. Let z, y € Ly,. Thena <; z, y. ThatisaAx=aAy=a,aVzr=
zVa=zand aVy=1yVa=a (see Lemma 3.3). Now,

aN(zVy) = (arnz)V(aAy) (by Def. 2.1(d))
= aVa
aV(xVy) = aVaVaVy (by Lemma 2.1(vi))

= zVy
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Therefore a <; x V y and hence z V y € L,. Similarly,

ANzAy) = anzAaAy (by the dual of Lemma 2.1(vi))
= ala
= a

V(zAy) = (avVa)A(aVy) (by the dual of Def. 2.1(d))
= xAy

Therefore a <; x Ay and hence z Ay € L,. Now, aAz* =a A (aVz')=a (by the
dual of Def. 2.1(f)) and aVa* =aV (a V') = aV a2’ = z*. Therefore a <; z* and
hence x* € L,. Thus L, is closed under A, V and *. Now,

for z € L,

(aVva')*

= aV(ava')

= aV(d Az) (by the dual of Def 2.1(a, b))
aVax (by Lemma 2.1(ii))

=

For x, y € L,,

(xAy) = aV(zAy)

aV(z'Vy') (by Def. 2.1(b))
(ava')V(aVy') (by Lemma 2.1(vi))
= x*Vy*

For z, y, z € L,,

aV ((xVy)Az) (since a <; (x Vy) A 2)
aV((zA2)V (' ANyAz)) (by Def. 2.1(e))

= (zAz)VaV (' AyAz) (since a < T A 2)

(

(

(xVy) Az

(xA2)V((ava')A(aVy)A(aVz)) (by Def. 2.1(d))
= (zA2)V(Z*ANYyAz) since a <y, 2)

The remaining identities hold in L, since they hold in A. Thus (L4, A, V, x) is a
C-algebra. O

We observe that L, is itself a C-algebra but not a sub C-algebra of A, since
the unary operation * is not the restriction of ’ to L,. It can be easily prove that
a is the join identity in L,.

LEMMA 3.4. Let A be a C-algebra with T. If x € A and a € B(A), thenz <, a
implies t Na =aNx = x.
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PROOF. Let x € A, a € B(A) such that z <, a. Then zAa =2 and aVx = a.
Now,

anhz = (aVz)Az (since a V x = a)
= (anz)V (' ANzAzx) (by Def. 2.1(e))
= (aNz)V(d ANx)
= (aVd)Az (by Lemma 2.1(iv))
= TAx (since a € B(A))
= .
Therefore t Aa =a Az =z. O

In the following, it is defined that a C-algebra corresponding to the partial
ordering <,

THEOREM 3.2. If A is a C-algebra with T and a € B(A), then the set
R,={ze€A|zx < a}

is a C-algebra with the induced operations A, V and the complementation * is defined
by x* =aAa', for any x € R,

In the above lemma, if a ¢ B(A), then a A x need not be equal to x. For
example, in C' x C (see Example 2.3), we have fr <, f3 but fs = f3 A fr # fr,
where f3 ¢ B(C x C).

We observe that R, is itself a C-algebra but not a sub C-algebra of A, since
the unary operation * is not the restriction of ’ to R,. It can be easily prove that
a is the meet identity in R,. Moreover, if a is not a central element, then the set
R, need not be a C-algebra. For example, in C' x C(see Example 2.3), fo € Ry,,
fo # f§* where f3 is not a central element. Thus to become R, is a C-algebra, it
is necessary that a must be a central element.

4. Decompositions through <;, and <,

In this section, we obtain decompositions of a C-algebra with T' corresponding
to the partial orderings <; and <, and any decompositions of A is in the same
form. We derive some sufficient conditions for a C-algebra to become a Boolean
algebra.

DEFINITION 4.1. Let a € A. Define the mapping o, : A — L, is defined by
ag(z) =aV ez, for all x € A.

For any a € A, the set ¢, = {(z,y) € A X A | ag(x) = a,(y)} is a congruences
relation on A. Now, we have the following.
THEOREM 4.1. Let A be a C-algebra with T and a € A. Then ay is a homo-

A
morphism from A onto L, with kernel v, and hence — = L.
Pa
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PROOF. Let z,y € A. Then
aa(zAy) = aV(zAy)
= (aVz)A(aVy) (by the dual of Def. 2.1(d))
aa(x) A aa(y)
ag(zVy) = aV(zVy)
= (aVz)V(aVy) (by Lemma 2.1(vi))
= au(x) V a(y).

and a4(2') = a V2’ = a*. Therefore o, is a homomorphism from A onto L,. O

LEMMA 4.1. Let A be a C-algebra with T and o € B(A). Then, for x,y € A,
aq (1) = ag(y) and ay (x) = aw (y) if and only if x = y.

PROOF. (i) Suppose that a,(x) = aq(y) and oy (z) = ag(y). Then a Vo =
aVyanda Vz=adVy. Now,

x = FVvz (since F is the join identity)
(and)Ve (since a € B(A))

(aVz)A(a' V) (bythe dual of Lemma 2.1(iv))
Ea Vy) Vv (a Vy)

= (and)V (by the dual of Lemma 2.1(iv))
= FVy (since a € B(A))
=y (since F' is the join identity)
Therefore x = y. Other hand is trivial. O

THEOREM 4.2. Let A be a C-algebra with T and a € B(A). Then A= L, X Ly

PROOF. Define a : A — L, X Ly by a(z) = (aq(x), a(x)) for all z € A.
Then « is well-defined and homomorphism (See Theorems 4.1). By Lemma 4.1, «
is one to one. Now, we will prove « is onto. For, let (z,y) € Ly X Ly. Then a <; @
and o’ <; y. Therefore aAz = a,a’ Ay =d',aVr =xzVa=zand a’'Vy =yVad' =y
(See Lemma 3.3). Now, for this z Ay € A,

azny) = (a(zAy),aw(zAy))
= (aV(zAy),d V(zAy))
= ((avz)A(aVy),(dVz)A(dVy)) (by dual of 2.1(d))
= (zA(aVva Vy),(dVaVvz)Ay)
= (A (TVy),(TVa)Ay) (since a € B(A))
= (AT)V(zAy),(TANy)V(FAxzAy)) (by Def. 2.1(d, e))
= (zV(zAy),yVF) (by Lemma 2.2(i))
= (z,9) (by Def. 2.1(f))
Therefore « is onto and hence « is an isomorphism from A onto L, X L. O

THEOREM 4.3. Let A, Ay, As be three C-algebras with T such that A = Ay X As.
Then there exists a € B(A) such that Ay = L, and Ay = L,

PrOOF. Let f: A7 x Ay — A be an isomorphism. Take a = f(F1,T5), where
Ty & Ty are the meet identities of A1 & As respectively and F; & F5 are the join
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identities of A; & As respectively. Then f~!(a) € B(A1) x B(As) = B(A1 x Ag) =
B(A) [6]. Define v : Ay — L, by y(z1) = f(21,T3), for all z; € A;. Now,

anflz1,To) = [f(F1L,T2) A fa1,T2)
= f(Fi ANz, ToANTy)  (since f is homomorphism)
= f(FlvTQ)
= a

a\/f(xlaTQ) = f(FlaT2)Vf($l7T2)

f(FAVz,ToVT) (since f is homomorphism)
= f(z1,T»)

Then a <; f(x1,T2). Therefore f(z1,T2) € L, and v is well-defined. It is easy to
prove that 7 preserves A,V and -y is one to one. Let 1 € A;. Then

V() = [, Te)
= f(Fl \/.T/l,Tg\/Tg)
= f(F,Te)V f(2}, F}) (since f is homomorphism)
= aV (f(z1, F)) (since f is homomorphism)
= aV(y(z1))
= (y(21))"
Therefore v is a homomorphism. Since f is isomorphism, v is one to one. Finally
we will prove v is onto. Let x € L,. Then, by Lemma 3.3, aVz =z V a = x and
a A x = a. Since f is onto, there exist 1 € Ay, 29 € Ay, such that f(x1,z2) = z.
Now,
(r1,22) = f~Y(x) (since f~! is bijective)
= fHava)
= fHa)Vv fl(xz) (since f~!is homomorphism)
= (F1,T) V (z1,22)
= (Fl\/l'hTQ\/.’I?g)
= (z1,T2) (by Lemma 2.2(i))

Therefore o = Ty and v(x1) = f(x1,T2) = f(x1,22) = x. Hence v is onto. Thus

~ is isomorphism. Similarly, we can prove Ay = L. O

From [4], it is observed that for any a € B(A), R, = A, where A, = {a Az |
x € A}. Therefore we restate some results in the following;

THEOREM 4.4. Let A be a C-algebra with T and a € B(A). Then f,: A — R,
defined by B,(x) = a Ax for all x € A, is an onto homomorphism with kernel 0,

A
where 0, = {(x,y) € Ax A | Ba(x) = Ba(y)} and hence o >~ R,.

LEMMA 4.2. Let A be a C-algebra with T and a € B(A). Then, for any
2,y € A, Bo(x) = Baly) and B (x) = B (y) if and only if x = y.
THEOREM 4.5. Let A be a C-algebra with T and a € B(A). Then A= Ry X Ry

THEOREM 4.6. Let A, A1, As be three C-algebras with T such that A = Ay X As.
Then there exists a € B(A) such that Ay =2 R, and As = R .
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Now, we prove the following;

LEMMA 4.3. Let A be a C-algebra with T. If x,y € A and a € B(A) are such
thata <y z and a’ <y, thenx Ay =yAx.

PROOF. Let x,y € A such that a <; z, o/ <; y, where a € B(A).

Then

ahNz=a, aVex=uz, a Ny=a and a’ Vy =y. Now,

ag(zANy) =

aV(xAy)
(avVa)A(aVy)
xA(aVad Vy)

x A (T Vy)
(xANT)V(zAy)
xV(zAy)

xVF
(Thz)V(FAyAx)
TAz)V (T ANy Ax)

(by Def. 2.1(d))

(since a € B(A))
(by Def. 2.1(d))

(by Def. 2.1(f))

(by Def. 2.1(d))
(since a € B(A))

(by Def. 2.1(d))

Similarly, o (x Ay) = ag (y A ). Therefore x Ay =y A x (see Lemma 4.1). O

LEMMA 4.4. Let A be a C-algebra with T. If x,y € A and a € B(A) are such
that * <, a and y <, ', thenxVy=yV z.

PROOF. Let 2,y € A a € B(A) such that <, a and y <, /. Then aV x =
a,  Vy=d, zNa=ahzx=xz, yANa =d Ny =1y (see Lemma 3.6). Now,

ﬁa(x \% y) =

aA(xVy)
(anz)V(aNy)
xV(aAd Ny)
xV (FAy)
TV F

Fvz
(FAy)V(aN)
(and ANy)V (aNzx)
(any)V(aAx)
al(yV )
Ba(y V )

(by Def. 2.1(d))

(since a € B(A))

(since a € B(A))

(by Def. 2.1(d))

Similarly, B/ (z Vy) = Ba(y V ). Therefore z Vy =y V x (see Lemma 4.2). O

From Theorem 4.6 and Lemma 4.3, we have the following.

THEOREM 4.7. Let A be C-algebra with T'.
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(i) For any x,y € A, there exists a € B(A) such that a <; x and ¢’ < y.
(ii) For any xz,y € A, there exists a € B(A) such that x <, a and y <, a
(iii) A is a Boolean algebra

Then (i) = (iii) < (ii).
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