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DECOMPOSITION OF A C-ALGEBRA

THROUGH PARTIAL ORDERINGS

P. Sundarayya, Ramesh Sirisetti, and V. Sriramani

Abstract. In this paper, we recall two partial orderings on a C-algebra. Two

types of decompositions are derived by using these partial orderings, which are
not dual to each other. Two sufficient conditions for a C-algebra to become a
Boolean algebra in terms of C-algebras La, Ra are obtained.

1. Introduction

In [2], Guzman and Squier introduced the variety of C-algebra as the variety
generated by the three element algebra C = {T, F, U} with the operations ∧,∨
and ′ of type (2, 2, 1), which is the algebraic form of the three valued conditional
logic. They proved that the two element Boolean algebra B and C are the only
subdirectly irreducible C-algebras and that the variety of C-algebras is a minimal
cover of the variety of Boolean algebras. These C-algebras are of interest to logic
and theoretical computer science.

In [3, 5], Rao and Sundarayya introduced two partial orderings on a C-algebra
and derived a number of equivalent conditions for a C-algebra to become a Boolean
algebra in terms of these partial orderings. In [6], Swamy, Rao and Ravi kumar
introduced the centre of C-algebra and proved that it is a Boolean algebra.

In this paper, we recall two partial orderings 6l and 6r on a C-algebra. We
obtain two C-algebraic structures on subsets of a C-algebra A (with T ), which are
not subalgebras of A. It is well known that if B is a Boolean algebra and a ∈ B,
then B is isomorphic to B � a × B � a′ (see [1]). We obtain a version of this
decomposition for a C-algebra corresponding to these partial orderings. They are
not symmetric to each other because C-algebras have no commutative property.
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2. Preliminaries

In this section, we collect some necessary definitions, examples and results of
C-algebras from [3, 5, 6].

Definition 2.1. ([2]) By a C-algebra we mean algebra (A,∧,∨,′ ) of type
(2, 2, 1) satisfies the following identities;

(a) x′′ = x
(b) (x ∧ y)′ = x′ ∨ y′

(c) x ∧ (y ∧ z) = (x ∧ y) ∧ z
(d) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(e) (x ∨ y) ∧ z = (x ∧ z) ∨ (x′ ∧ y ∧ z)
(f) x ∨ (x ∧ y) = x
(g) (x ∧ y) ∨ (y ∧ x) = (y ∧ x) ∨ (x ∧ y)

for all x, y, z ∈ A.

Example 2.1. ([2]) The three element set {T, F, U} with operations ∧,∨
and ′ given by

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

x x′

T F
F T
U U

is a C-algebra . We denote this C-algebra by C and the two element C-algebra
{T, F} by B.

Example 2.2. ([3]) Let G = {g1, g2, g3, g4, g5} where g1 = (T,U), g2 = (F,U),
g3 = (U,F ), g4 = (U, T ), g5 = (U,U). Then G is a C-algebra with respect to the
pointwise operations given in the following;

∧ g1 g2 g3 g4 g5
g1 g1 g2 g5 g5 g5
g2 g2 g2 g2 g2 g2
g3 g5 g5 g3 g4 g5
g4 g4 g4 g4 g4 g4
g5 g5 g5 g5 g5 g5

∨ g1 g2 g3 g4 g5
g1 g1 g1 g1 g1 g1
g2 g1 g2 g5 g5 g5
g3 g3 g3 g3 g3 g3
g4 g5 g5 g3 g4 g5
g5 g5 g5 g5 g5 g5

x x′

g1 g2
g2 g1
g3 g4
g4 g3
g5 g5

Example 2.3. ([3]) Let C × C = {f1, f2, f3, f4, f5, f6, f7, f8, f9} where f1 =
(T,U), f2 = (F,U), f3 = (U, T ), f4 = (U,F ), f5 = (U,U), f6 = (T, T ), f7 =
(F, F ), f8 = (T, F ), f9 = (F, T ). Then C × C is a C-algebra with respect to the
pointwise operations.

It can be observe that the identities (a), (b) imply that the variety of all C-
algebras satisfies the dual statements (b) to (g). In general ∧ and ∨ are not com-
mutative in C and the ordinary right distributivity of ∧ over ∨ fails in C.

Lemma 2.1. ([2, 6]) If A is a C-algebra, then for any x, y ∈ A,

(i) x ∧ x = x
(ii) x ∧ (x′ ∨ y) = (x′ ∨ y) ∧ x = x ∧ (y ∨ x′) = x ∧ y
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(iii) x ∨ (x′ ∧ x) = (x′ ∧ x) ∨ x = x
(iv) (x ∨ x′) ∧ y = (x ∧ y) ∨ (x′ ∧ y)
(v) x ∨ x′ = x′ ∨ x
(vi) x ∨ y ∨ x = x ∨ y
(vii) x ∧ x′ ∧ y = x ∧ x′.

If A has an identity for ∧, then it is unique and denoted by T (that is x∧ T =
T ∧ x = x for all x ∈ A). In this case, we say that A is a C-algebra with T . If
we write F for T ′, then F is the identity for ∨ (that is x ∨ F = F ∨ x = x for all
x ∈ A). Now, we have the following;

Lemma 2.2. ([2]) If A is a C-algebra with T , then for any x ∈ A,

(i) T ∨ x = x and F ∧ x = F
(ii) x ∨ T = x ∨ x′ and x ∧ F = x ∧ x′.

If there exists an element x ∈ A such that x′ = x, then it is unique and we
denoted it by U (U is called the uncertain element of A).

Definition 2.2. ([6]) An element x of a C-algebra A with T is called a central
element of A if x ∨ x′ = T .

If A is a C-algebra with T , then the set {x ∈ A | x∨x′ = T} of central elements
of A is called the centre of A and denoted by B(A) [6]. It can be observed that
B(A) is a Boolean algebra with induced operations on A.

3. The partial orderings 6l and 6r

In this section, we recall two partial orderings 6l and 6r, and present that
two C-algebra structures corresponding to 6l and 6r in a C-algebra which are not
sub C-algebras of A. Some of the properties of these C-algebras are given in the
following.

Lemma 3.1. ([5]) A relation 6l on a C-algebra A defined by x 6l y if x∧y = x
and x ∨ y = y, is a partial ordering on A.

Example 3.1. ([5]) The Hasse diagrams of (C,6l), (G,6l) are given in the
following figure 1.

Figure 1

Lemma 3.2. ([5]) A relation 6r on a C-algebra A defined by x 6r y if x∧y = x
and y ∨ x = y, is a partial ordering on A.



46 PERUMALI, SIRISETTI, AND VEERAPANENI

Example 3.2. ([5]) The Hasse diagrams of (C,6r), (G,6r) are given in the
following figure 2.

Figure 2

Remark 3.1. “ 6r ” and “ 6l ” are not dual to each other, for example, in
G(see Example 2.2), we have g3 6r g1 but g1 �l g3 and g2 6l g4 but g4 �r g2

Now, we prove the following.

Lemma 3.3. If A is a C-algebra with T , then, for any x, y ∈ A, x 6l y implies
y ∨ x = x ∨ y = y.

Proof. Let x, y ∈ A such that x 6l y. Then x ∧ y = x and x ∨ y = y. Now,

y ∨ x = (x ∨ y) ∨ (x ∧ y)
= (x ∨ y ∨ x) ∧ (x ∨ y ∨ y) (by the dual of Def. 2.1(d))
= (x ∨ y) ∧ (x ∨ y) (by Lemma 2.1(vi))
= x ∨ y
= y

Therefore y ∨ x = x ∨ y = y. �

In the following, it is defined that a C-algebra corresponding to the partial
ordering 6l

Theorem 3.1. If A is a C-algebra with T and a ∈ A, then the set

La = {x ∈ A | a 6l x}
is a C-algebra with the induced operations ∧, ∨ and the complementation ∗ is defined
by x∗ = a ∨ x′, for any x ∈ La.

Proof. Let x, y ∈ La. Then a 6l x, y. That is a ∧ x = a ∧ y = a, a ∨ x =
x ∨ a = x and a ∨ y = y ∨ a = a (see Lemma 3.3). Now,

a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y) (by Def. 2.1(d))
= a ∨ a
= a

a ∨ (x ∨ y) = a ∨ x ∨ a ∨ y (by Lemma 2.1(vi))
= x ∨ y
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Therefore a 6l x ∨ y and hence x ∨ y ∈ La. Similarly,

a ∧ (x ∧ y) = a ∧ x ∧ a ∧ y (by the dual of Lemma 2.1(vi))
= a ∧ a
= a

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) (by the dual of Def. 2.1(d))
= x ∧ y

Therefore a 6l x ∧ y and hence x ∧ y ∈ La. Now, a ∧ x∗ = a ∧ (a ∨ x′) = a (by the
dual of Def. 2.1(f)) and a∨ x∗ = a ∨ (a∨ x′) = a ∨ x′ = x∗. Therefore a 6l x

∗ and
hence x∗ ∈ La. Thus La is closed under ∧, ∨ and ∗. Now,
for x ∈ La,

x∗∗ = (x∗)∗

= (a ∨ x′)∗

= a ∨ (a ∨ x′)′

= a ∨ (a′ ∧ x) (by the dual of Def 2.1(a, b))
= a ∨ x (by Lemma 2.1(ii))
= x.

For x, y ∈ La,

(x ∧ y)∗ = a ∨ (x ∧ y)′

= a ∨ (x′ ∨ y′) (by Def. 2.1(b))
= (a ∨ x′) ∨ (a ∨ y′) (by Lemma 2.1(vi))
= x∗ ∨ y∗.

For x, y, z ∈ La,

(x ∨ y) ∧ z = a ∨ ((x ∨ y) ∧ z) (since a 6l (x ∨ y) ∧ z)
= a ∨ ((x ∧ z) ∨ (x′ ∧ y ∧ z)) (by Def. 2.1(e))
= (x ∧ z) ∨ a ∨ (x′ ∧ y ∧ z) (since a 6l x ∧ z)
= (x ∧ z) ∨ ((a ∨ x′) ∧ (a ∨ y) ∧ (a ∨ z)) (by Def. 2.1(d))
= (x ∧ z) ∨ (x∗ ∧ y ∧ z) (since a 6l y, z)

The remaining identities hold in La, since they hold in A. Thus (La,∧,∨, ∗) is a
C-algebra. �

We observe that La is itself a C-algebra but not a sub C-algebra of A, since
the unary operation ∗ is not the restriction of ′ to La. It can be easily prove that
a is the join identity in La.

Lemma 3.4. Let A be a C-algebra with T . If x ∈ A and a ∈ B(A), then x 6r a
implies x ∧ a = a ∧ x = x.
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Proof. Let x ∈ A, a ∈ B(A) such that x 6r a. Then x∧a = x and a∨x = a.
Now,

a ∧ x = (a ∨ x) ∧ x (since a ∨ x = a)
= (a ∧ x) ∨ (a′ ∧ x ∧ x) (by Def. 2.1(e))
= (a ∧ x) ∨ (a′ ∧ x)
= (a ∨ a′) ∧ x (by Lemma 2.1(iv))
= T ∧ x (since a ∈ B(A))
= x.

Therefore x ∧ a = a ∧ x = x. �

In the following, it is defined that a C-algebra corresponding to the partial
ordering 6r

Theorem 3.2. If A is a C-algebra with T and a ∈ B(A), then the set

Ra = {x ∈ A | x 6r a}

is a C-algebra with the induced operations ∧, ∨ and the complementation ∗ is defined
by x∗ = a ∧ x′, for any x ∈ Ra

In the above lemma, if a /∈ B(A), then a ∧ x need not be equal to x. For
example, in C × C (see Example 2.3), we have f7 6r f3 but f4 = f3 ∧ f7 ̸= f7,
where f3 /∈ B(C × C).

We observe that Ra is itself a C-algebra but not a sub C-algebra of A, since
the unary operation ∗ is not the restriction of ′ to Ra. It can be easily prove that
a is the meet identity in Ra. Moreover, if a is not a central element, then the set
Ra need not be a C-algebra. For example, in C × C(see Example 2.3), f9 ∈ Rf3 ,
f9 ̸= f∗∗

9 where f3 is not a central element. Thus to become Ra is a C-algebra, it
is necessary that a must be a central element.

4. Decompositions through 6l, and 6r

In this section, we obtain decompositions of a C-algebra with T corresponding
to the partial orderings 6l and 6r and any decompositions of A is in the same
form. We derive some sufficient conditions for a C-algebra to become a Boolean
algebra.

Definition 4.1. Let a ∈ A. Define the mapping αa : A → La is defined by
αa(x) = a ∨ x, for all x ∈ A.

For any a ∈ A, the set φa = {(x, y) ∈ A×A | αa(x) = αa(y)} is a congruences
relation on A. Now, we have the following.

Theorem 4.1. Let A be a C-algebra with T and a ∈ A. Then αa is a homo-

morphism from A onto La with kernel φa and hence
A

φa

∼= La.
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Proof. Let x, y ∈ A. Then

αa(x ∧ y) = a ∨ (x ∧ y)
= (a ∨ x) ∧ (a ∨ y) (by the dual of Def. 2.1(d))
= αa(x) ∧ αa(y)

αa(x ∨ y) = a ∨ (x ∨ y)
= (a ∨ x) ∨ (a ∨ y) (by Lemma 2.1(vi))
= αa(x) ∨ αa(y).

and αa(x
′) = a ∨ x′ = x∗. Therefore αa is a homomorphism from A onto La. �

Lemma 4.1. Let A be a C-algebra with T and a ∈ B(A). Then, for x, y ∈ A,
αa(x) = αa(y) and αa′(x) = αa′(y) if and only if x = y.

Proof. (i) Suppose that αa(x) = αa(y) and αa′(x) = αa′(y). Then a ∨ x =
a ∨ y and a′ ∨ x = a′ ∨ y. Now,

x = F ∨ x (since F is the join identity)
= (a ∧ a′) ∨ x (since a ∈ B(A))
= (a ∨ x) ∧ (a′ ∨ x) (by the dual of Lemma 2.1(iv))
= (a ∨ y) ∨ (a′ ∨ y)
= (a ∧ a′) ∨ y (by the dual of Lemma 2.1(iv))
= F ∨ y (since a ∈ B(A))
= y (since F is the join identity)

Therefore x = y. Other hand is trivial. �

Theorem 4.2. Let A be a C-algebra with T and a ∈ B(A). Then A ∼= La×La′

Proof. Define α : A → La × La′ by α(x) = (αa(x), αa′(x)) for all x ∈ A.
Then α is well-defined and homomorphism (See Theorems 4.1). By Lemma 4.1, α
is one to one. Now, we will prove α is onto. For, let (x, y) ∈ La ×La′ . Then a 6l x
and a′ 6l y. Therefore a∧x = a, a′∧y = a′, a∨x = x∨a = x and a′∨y = y∨a′ = y
(See Lemma 3.3). Now, for this x ∧ y ∈ A,

α(x ∧ y) = (αa(x ∧ y), αa′(x ∧ y))
= (a ∨ (x ∧ y), a′ ∨ (x ∧ y))
= ((a ∨ x) ∧ (a ∨ y), (a′ ∨ x) ∧ (a′ ∨ y)) (by dual of 2.1(d))
= (x ∧ (a ∨ a′ ∨ y), (a′ ∨ a ∨ x) ∧ y)
= (x ∧ (T ∨ y), (T ∨ x) ∧ y) (since a ∈ B(A))
= ((x ∧ T ) ∨ (x ∧ y), (T ∧ y) ∨ (F ∧ x ∧ y)) (by Def. 2.1(d, e))
= (x ∨ (x ∧ y), y ∨ F ) (by Lemma 2.2(i))
= (x, y) (by Def. 2.1(f))

Therefore α is onto and hence α is an isomorphism from A onto La × La′ . �

Theorem 4.3. Let A,A1, A2 be three C-algebras with T such that A ∼= A1×A2.
Then there exists a ∈ B(A) such that A1

∼= La and A2
∼= La′ .

Proof. Let f : A1 × A2 → A be an isomorphism. Take a = f(F1, T2), where
T1 & T2 are the meet identities of A1 & A2 respectively and F1 & F2 are the join
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identities of A1 & A2 respectively. Then f−1(a) ∈ B(A1)×B(A2) = B(A1×A2) =
B(A) [6]. Define γ : A1 → La by γ(x1) = f(x1, T2), for all x1 ∈ A1. Now,

a ∧ f(x1, T2) = f(F1, T2) ∧ f(x1, T2)
= f(F1 ∧ x1, T2 ∧ T2) (since f is homomorphism)
= f(F1, T2)
= a

a ∨ f(x1, T2) = f(F1, T2) ∨ f(x1, T2)
= f(F1 ∨ x1, T2 ∨ T2) (since f is homomorphism)
= f(x1, T2)

Then a 6l f(x1, T2). Therefore f(x1, T2) ∈ La and γ is well-defined. It is easy to
prove that γ preserves ∧,∨ and γ is one to one. Let x1 ∈ A1. Then

γ(x′
1) = f(x′

1, T2)
= f(F1 ∨ x′

1, T2 ∨ T2)
= f(F1, T2) ∨ f(x′

1, F
′
2) (since f is homomorphism)

= a ∨ (f(x1, F2))
′ (since f is homomorphism)

= a ∨ (γ(x1))
′

= (γ(x1))
∗

Therefore γ is a homomorphism. Since f is isomorphism, γ is one to one. Finally
we will prove γ is onto. Let x ∈ La. Then, by Lemma 3.3, a ∨ x = x ∨ a = x and
a ∧ x = a. Since f is onto, there exist x1 ∈ A1, x2 ∈ A2, such that f(x1, x2) = x.
Now,

(x1, x2) = f−1(x) (since f−1 is bijective)
= f−1(a ∨ x)
= f−1(a) ∨ f−1(x) (since f−1 is homomorphism)
= (F1, T2) ∨ (x1, x2)
= (F1 ∨ x1, T2 ∨ x2)
= (x1, T2) (by Lemma 2.2(i))

Therefore x2 = T2 and γ(x1) = f(x1, T2) = f(x1, x2) = x. Hence γ is onto. Thus
γ is isomorphism. Similarly, we can prove A2

∼= La′ . �

From [4], it is observed that for any a ∈ B(A), Ra = Aa where Aa = {a ∧ x |
x ∈ A}. Therefore we restate some results in the following;

Theorem 4.4. Let A be a C-algebra with T and a ∈ B(A). Then βa : A → Ra

defined by βa(x) = a ∧ x for all x ∈ A, is an onto homomorphism with kernel θa,

where θa = {(x, y) ∈ A×A | βa(x) = βa(y)} and hence
A

θa
∼= Ra.

Lemma 4.2. Let A be a C-algebra with T and a ∈ B(A). Then, for any
x, y ∈ A, βa(x) = βa(y) and βa′(x) = βa′(y) if and only if x = y.

Theorem 4.5. Let A be a C-algebra with T and a ∈ B(A). Then A ∼= Ra×Ra′ .

Theorem 4.6. Let A,A1, A2 be three C-algebras with T such that A ∼= A1×A2.
Then there exists a ∈ B(A) such that A1

∼= Ra and A2
∼= Ra′ .
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Now, we prove the following;

Lemma 4.3. Let A be a C-algebra with T . If x, y ∈ A and a ∈ B(A) are such
that a 6l x and a′ 6l y, then x ∧ y = y ∧ x.

Proof. Let x, y ∈ A such that a 6l x, a′ 6l y, where a ∈ B(A). Then
a ∧ x = a, a ∨ x = x, a′ ∧ y = a′ and a′ ∨ y = y. Now,

αa(x ∧ y) = a ∨ (x ∧ y)
= (a ∨ x) ∧ (a ∨ y) (by Def. 2.1(d))
= x ∧ (a ∨ a′ ∨ y)
= x ∧ (T ∨ y) (since a ∈ B(A))
= (x ∧ T ) ∨ (x ∧ y) (by Def. 2.1(d))
= x ∨ (x ∧ y)
= x (by Def. 2.1(f))
= x ∨ F
= (T ∧ x) ∨ (F ∧ y ∧ x)
= (T ∧ x) ∨ (T ′ ∧ y ∧ x)
= (T ∨ y) ∧ x (by Def. 2.1(d))
= (a ∨ a′ ∨ y) ∧ x (since a ∈ B(A))
= (a ∨ y) ∧ x
= (a ∨ y) ∧ (a ∨ x)
= a ∨ (y ∧ x) (by Def. 2.1(d))
= αa(y ∧ x)

Similarly, αa(x ∧ y) = αa′(y ∧ x). Therefore x ∧ y = y ∧ x (see Lemma 4.1). �

Lemma 4.4. Let A be a C-algebra with T . If x, y ∈ A and a ∈ B(A) are such
that x 6r a and y 6r a′, then x ∨ y = y ∨ x.

Proof. Let x, y ∈ A a ∈ B(A) such that x 6r a and y 6r a′. Then a ∨ x =
a, a′ ∨ y = a′, x ∧ a = a ∧ x = x, y ∧ a′ = a′ ∧ y = y (see Lemma 3.6). Now,

βa(x ∨ y) = a ∧ (x ∨ y)
= (a ∧ x) ∨ (a ∧ y) (by Def. 2.1(d))
= x ∨ (a ∧ a′ ∧ y)
= x ∨ (F ∧ y) (since a ∈ B(A))
= x ∨ F
= F ∨ x
= (F ∧ y) ∨ (a ∧ x)
= (a ∧ a′ ∧ y) ∨ (a ∧ x) (since a ∈ B(A))
= (a ∧ y) ∨ (a ∧ x)
= a ∧ (y ∨ x) (by Def. 2.1(d))
= βa(y ∨ x)

Similarly, βa′(x ∨ y) = βa′(y ∨ x). Therefore x ∨ y = y ∨ x (see Lemma 4.2). �

From Theorem 4.6 and Lemma 4.3, we have the following.

Theorem 4.7. Let A be C-algebra with T .
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(i) For any x, y ∈ A, there exists a ∈ B(A) such that a 6l x and a′ 6l y.
(ii) For any x, y ∈ A, there exists a ∈ B(A) such that x 6r a and y 6r a′

(iii) A is a Boolean algebra

Then (i) ⇒ (iii) ⇐ (ii).

References

[1] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer Verlag, New
York, 1981.

[2] F. Guzman and C. Squier, The algebra of conditional logic, Algebra Universalis, 27(1)(1990),

88–110.
[3] G. C. Rao and P. Sundarayya, C-algebra as a poset, Int. J. Math. Sci., 4(2)(2005), 225–236.
[4] G. C. Rao and P. Sundarayya, Decompositions of a C-algebra, Int. J. Math. Math. Sci.,

Volume 2006, Article ID 78981, Pages 18.

[5] G. C. Rao and P. Sundarayya, Two partial orders on a C-algebra, Int. J. Computational
Congnition, 7(3)(2009), 40–43.

[6] U. M. Swamy, G. C. Rao and R. V. G. Ravi kumar, Centre of a C-algebra, Southeast Asian

Bull. Math., 27(2)(2003), 357–368.

Received by editors 24.06.2016; Available online 12.09.2016.

Department of Mathematics, GITAM University, Visakhapatnam, INDIA
E-mail address: psundarayya@yahoo.co.in

Department of Mathematics, GITAM University, Visakhapatnam, INDIA
E-mail address: ramesh.sirisetti@gmail.com - Corresponding author

Department of Mathematics, Vasavi College of Engineering, Hyderabad, INDIA
E-mail address: ramaniv80@gmail.com


