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Akram Alqesmah, Anwar Alwardi and R. Rangarajan

Abstract. Let G = (V,E) be a connected graph. A subset S of V is called

injective dominating set (Inj-dominating set) if for every vertex v ∈ V −S there
exists a vertex u ∈ S such that |Γ(u, v)| > 1, where |Γ(u, v)| is the number
of common neighbors between the vertices u and v. In this research work,

we introduce the connected injective domination of graphs. Exact values for
some families of graphs, relations with the other domination parameters are
obtained. Bounds and some interesting results are established.

1. Introduction

All graphs considered here are finite, undirected without loops and multiple
edges. For a graph G, let V (G) and E(G) denote the set of all vertices and edges
of G, respectively. we use ⟨X⟩ to denote the subgraph of G induced by the set of
vertices X. The open neighborhood and the closed neighborhood of v are denoted
by N(v) = {u ∈ V (G) : uv ∈ E} and N [v] = N(v) ∪ {v}, respectively. The
distance between two vertices u and v in G is the number of edges in a shortest
path connecting them, this is also known as the geodesic distance. The eccentricity
of a vertex v is the greatest geodesic distance between v and any other vertex and
denoted by e(v). For more terminologies and notations about graph we refer the
reader to [4, 5].

A subset D of V (G) is called dominating set if for every v ∈ V −D, there
exists a vertex u ∈ D such that v is adjacent to u. The minimum cardinality of a
minimal dominating set in G is called the domination number of G and is denoted
by γ(G). A dominating set D of G is called connected dominating set if the induced
subgraph ⟨D⟩ is connected. The connected domination number of G, denoted by
γc(G), is the minimum cardinality of a connected dominating set. For more details
about domination number and connected domination number, we refer to [6], [8],
[10] and [9].
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The common neighborhood graph (congraph) of G, denoted by con(G), is the graph
with the vertex set V (G), in which two vertices are adjacent if and only if they have
at least one common neighbor in the graph G. The common neighborhood (CN-
neighborhood) of a vertex u ∈ V (G) denoted by Ncn(u) is defined as Ncn(u) =
{v ∈ V (G) : uv ∈ E(G) and |Γ(u, v)| > 1}, where |Γ(u, v)| is the number of
common neighborhood between the vertices u and v, [3].

The concept of Injective domination in graph has introduced in [1]. For a
graph G, a subset S of V (G) is called injective dominating set (Inj-dominating set)
if for every vertex v ∈ V − S there exists a vertex u ∈ S such that |Γ(u, v)| > 1.
The minimum cardinality of such dominating set denoted by γin(G) and is called
injective domination number (Inj-domination number) of G. The Inj-neighborhood
of a vertex u ∈ V (G) denoted by Nin(u) is defined as Nin(u) = {v ∈ V (G) :
|Γ(u, v)| > 1}. The cardinality of Nin(u) is called injective degree of the vertex
u and denoted by degin(u) in G, and Nin[u] = Nin(u) ∪ {u}. The maximum and
minimum injective degree of a vertex in G are denoted respectively by ∆in(G)
and δin(G). That is ∆in(G) = maxu∈V |Nin(u)|, δin(G) = minu∈V |Nin(u)|. The

injective complement of G denoted by G
inj

is the graph with same vertex set V (G)

and any two vertices u and v in G
inj

are adjacent if and only if they are not
Inj-adjacent in G. A subset S of V is called an injective independent set (Inj-
independent set), if for every u ∈ S, v /∈ Nin(u) for all v ∈ S − {u}. An injective
independent set S is called maximal if any vertex set properly containing S is not
Inj-independent set, the maximum cardinality of Inj-independent set is denoted by
βin, and the lower Inj-independence number iin is the minimum cardinality of the
Inj-maximal independent set.

Proposition 1.1 ([1]). Let G be a graph with p vertices. Then γin(G) = p if
and only if G is a forest with ∆(G) 6 1.

Proposition 1.2 ([1]). Let G be a nontrivial connected graph. Then γin(G) =
1 if and only if there exists a vertex v ∈ V (G) such that N(v) = Ncn(v) and
e(v) 6 2.

Theorem 1.1 ([1]). For any graph G with p vertices, ⌈ p
1+∆in(G)⌉ 6 γin(G).

Further, the equality hold if and only if for every minimum Inj-dominating set D
in G the following conditions are satisfied:

(1) for any vertex v in D, degin(v) = ∆in(G).
(2) D is Inj-independent set in G.
(3) every vertex in V −D has common neighborhood with exactly one vertex

in D.

Throughout this paper, we denote |V (G)| = p, |E(G)| = q. Also, Pp, Cp,Kp

and Sp are the path, cycle, complete and star graphs, respectively. Kr,m is the
complete bipartite graph on r+m vertices and G+H, G�H, G ·H and G ◦H are
the Join, Cartesian product, Composition and Corona product graph of any two
graphs G and H, respectively.
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In this paper, we introduce the connected injective domination in graph. Exact
values for some families of graphs, relations with the other domination parameters
are obtained. Bounds and some interesting results are established.

2. Connected Injective Domination of Graphs

Definition 2.1. Let G be a connected graph. A subset S ⊆ V (G) is called a
connected injective dominating set (CInj-dominating set) of G if S is an injective
dominating set and the induced subgraph ⟨S⟩ is connected. The minimum cardi-
nality of such injective dominating set is called the connected injective domination
number (CInj-domination number) of G and denoted by γcin(G).

Since any CInj-dominating set is also an Inj-dominating set, then it is easy to
check the following propositions.

Proposition 2.1. For any connected graph G, γin(G) 6 γcin(G).

Proposition 2.2. Let G be a connected graph and H be any connected spanning
subgraph of G. Then γcin(G) 6 γcin(H).

Proposition 2.3. For any connected graph G, γcin(G) = 1 if and only if
γin(G) = 1.

Theorem 2.1. Let G be a connected C7-free graph with diameter two or three
and γin(G) ̸= 1. Then γin(G) = γcin(G) = 2.

Proof. We have two cases:
Case 1. Suppose diam(G) = 2. Since γin(G) ̸= 1, then by Proposition 1.2, G

is a triangle-free graph. Choose any edge uv in G, then all the other vertices of G
are injective dominated by u or v. Hence, γcin(G) = 2.

Case 2. Suppose diam(G) = 3 and G does not contain an induced subgraph
isomorphic to C7. Then there exist at least one edge uv in G such that all the other
vertices of G have distance less than or equal two from u or v. Thus γcin(G) 6 2.
But γin(G) ̸= 1. Hence, γcin(G) = 2. �

Proposition 2.4. For any connected graph G without Inj-isolated vertices,
γcin(G) 6 γc(G).

Proof. Since G is a connected graph without Inj-isolated vertices, then G
does not contain a vertex of full degree without a triangle. Suppose G contains a
vertex of full degree and a triangle. Then γcin(G) = γc(G) = 1.

Suppose now ∆(G) 6 p − 2. Let S be a γc-set of G, we have to prove that S
is a CInj-dominating set of G. Suppose that u ∈ V − S is arbitrary. Then there
exists at least a vertex v ∈ S such that uv ∈ E(G). Since ⟨S⟩ is connected, then u
is Inj-adjacent to a vertex in S. Thus S is a connected injective dominating set of
G and hence, γcin(G) 6 γc(G). �

Remark 2.1. If G is a connected graph with Inj-isolated vertices (Inj-isolated
vertex here means that a vertex with a full degree in a triangle-free graph) or by
more accurately, with an Inj-isolated vertex (since G is connected, then it must
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contain at most one vertex of full degree as well as it is a triangle-free graph), then
G is a star. Hence, γcin(G) = 2.

As we well know, a leaf of a tree T is a vertex of degree one and a support
vertex of T is a vertex adjacent to a leaf. The support vertices in any tree can be
divided to two types:

• Isolator support vertex: is a support vertex whose removal results a graph
with at most one non-trivial connected component and isolated vertices.

• Semi-isolator support vertex: is a support vertex whose removal results a
graph with at least two non-trivial connected components and isolated
vertices.

Proposition 2.5. Let T be a tree on p vertices with diameter greater than or
equal six. Then γcin(T ) = p− t1 − t2, where t1 and t2 are the number of leafs and
isolator support vertices of T , respectively.

Proof. Since T is a tree with diam(T ) > 6, then T has no Inj-isolated vertices,
so by Proposition 2.4, γcin(T ) 6 γc(T ) = p− t1. But the γc(T )-set is not minimal
CInj-dominating set because the γc(T )-set contains all the support vertices of T
which some of them can be connected injective dominated by other vertices of it
(those vertices are the isolator vertices of T ). Thus γcin(T ) 6 p− t1 − t2. Since T
has only one minimal CInj-dominating set, then γcin(T ) = p− t1 − t2. �

Proposition 2.6. For any connected graph G with diameter greater than or
equal six, γcin(G) 6 p− 4.

Proof. Since G is a connected graph, then G contains a spanning tree say H,
then by Proposition 2.2 and Proposition 2.5, γcin(G) 6 p− t1 − t2, where t1 and t2
are the leafs and the isolator support vertices of H, respectively. Since each of t1
and t2 at least equals to two, then the result. �

Let m(t1)T and m(t2)T be the maximum number of leafs and isolator support
vertices of a spanning tree T of a connected graph G, respectively. In the following
Theorem we determine the connected injective domination number of a graph G in
terms of m(t1)T and m(t2)T .

Theorem 2.2. Let G be a connected graph which does not contain a spanning
tree T of diameter less than five (diam(T ) > 5). Then γcin(G) = p − m(t1)T −
m(t2)T .

Proof. Let T be a spanning tree of G with m(t1)T leafs and m(t2)T isolator
support vertices. Then by Proposition 2.5 and Proposition 2.2, γcin(G) 6 γcin(T ) =
p−m(t1)T −m(t2)T .

Conversely, suppose S be a γcin-set of G. Since ⟨S⟩ is connected, then it has
a spanning tree T1. A spanning tree T of G is formed by adding the remaining
p− γcin(G) vertices of V − S to T1 and adding edges of G such that each vertex of
V − S is Inj-adjacent to exactly one vertex in S. Thus T has at least p − γcin(G)
leafs and isolator support vertices. Hence, γcin(G) > p−m(t1)T −m(t2)T .
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Note that if diam(T ) 6 4, then any connected injective dominating set of T
contains at least one isolator support vertex. �

Proposition 2.7. Let G be a connected graph,

(1) If G isomorphic to Pp or Cp with p > 6, then γcin(G) = p− 4.
(2) If G ∼= Kr,m, then γcin(G) = 2.
(3) If G ∼= G1 +G2, where G1 and G2 are any two graphs, then

γcin(G) =

{
2, if G ∼= Kr,m;
1, otherwise.

Proposition 2.8. For any graph G isomorphic to Pm�P2 or Cm�P2,

γcin(G) =

{
2, if m 6 5;
m− 2, otherwise.
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Proof. We have two cases:
Case 1. Suppose m 6 5. Since G is a triangle-free graph, then γcin(G) ̸= 1. So,

if m = 2, then diam(G) = 2, then by Theorem 2.1, γcin(G) = 2. Also, if 3 6 m 6 5,
then by Figures 1 and 2, the set S = {v3, u3} is a connected injective dominating
set of G. Hence, γcin(G) = 2.

Case 2. Suppose now m > 6. From Figures 1 and 2, to obtain a minimal CInj-
dominating set of G we have the following possibilities:
i. The set S1 = {v2, v3, . . . , vm−1} or S1 = {u2, u3, . . . , um−1}, which has cardinal-
ity m− 2.
ii. The set S2 = {u3, v3, v4, . . . , vm−2, um−2} or S2 = {v3, u3, u4, . . . , um−2, vm−2},
which also has cardinality m− 2.

Without loss of generality, we can obtain minimal CInj-dominating sets of G
containing vertices from S1 and S2, but all of them having cardinalities greater
than or equal m− 2. Hence, γcin(G) = m− 2. �

Proposition 2.9. For any graph G ∼= Cn ◦ H, where n > 4 and H is any
graph, γcin(G) = n− 2.

Proof. Consider V (Cn) = {v1, v2, . . . , vn} and V (H) = {u1, u2, . . . , um}.
It is clear that, any minimal CInj-dominating set S of G has the form S =
{vi, vi+1, . . . , vn+i−3} of order n− 2. Hence, γcin(G) = n− 2. �

Proposition 2.10. For any graph G ∼= Kn ◦H, where H is any graph,

γcin(G) =

{
2, if δ(H) = 0;
1, otherwise.

Proof. Suppose H has no isolated vertices. Then any v ∈ V (Kn) satisfies
N(v) = Ncn(v) and e(v) 6 2. Hence by Proposition 1.2, γcin(G) = 1.

Suppose now δ(H) = 0 (H has at least an isolated vertex). Then any vertex
v ∈ V (Kn) can Inj-dominates all the other vertices of G except the isolated vertices
of the copy of H whose adjacent to v. So we have to choose one more vertex from
the neighborhood of v. Hence, γcin(G) = 2. �

Theorem 2.3. Let T be a tree. Then γcin(T ) = 2 if and only if T has diameter
less than or equal five. Furthermore, in this case γcin(T ) = γin(T ).

Proof. Suppose diam(T ) 6 5. Then there exists at least one edge uv in T
such that all the other vertices of T lie in distance one or two from u or v. Thus
γcin(T ) 6 2, but γcin(T ) > γin(T ) ̸= 1. Hence, γcin(T ) = 2.

Similarly, suppose γcin(T ) = 2. Let S = {u, v} be a minimum CInj-dominating
set of T (uv is an edge in T ). Then the vertices u and v can injective dominate all the
vertices of T until the second neighborhood of each of them. Then T has diameter
at most five. Finally, since γcin(T ) = 2 and γin(T ) ̸= 1, then γcin(T ) = γin(T ). �

Proposition 2.11. For any nontrivial connected graph G on p vertices, γin(G) =
γcin(G) = p if and only if G ∼= K2.

Proof. The proof comes immediately from Proposition 1.1. �
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Proposition 2.12. For any connected graph G on p vertices, γin(G) = γcin(G) =
p− 1 if and only if G ∼= P3.

Proof. Let γcin(G) = p − 1. Suppose p > 4. Since G is connected, then G
contains a spanning tree say T , so by Proposition 2.2, γcin(G) 6 γcin(T ) 6 p − 2.
Suppose now p 6 3. If p = 2, then by Proposition 2.11, γcin(G) = p. Thus p = 3,
which means that, either G ∼= C3 or G ∼= P3. But γcin(C3) = 1 = p − 2. Hence,
G ∼= P3. The converse is obvious. �

Proposition 2.13. For any connected graph G on p vertices, γcin(G) = p− 2
if and only if G isomorphic to one of the following graphs C3, C4, S4 and P4.

Proof. Let γcin(G) = p− 2. Then we have two cases:
Case 1. Suppose G is a tree. Then, if G has Inj-isolated vertex, then by Remark
2.1, G ∼= Sp. But, γcin(G) = p − 2. Hence, G ∼= S4. Also, if G has no Inj-isolated
vertex, then there are two possibilities:

(1) If diam(G) > 6, then by Proposition 2.6, γcin(G) 6 p−4 which contradicts
to the hypothesis.

(2) If diam(G) 6 5, then by Theorem 2.3, γcin(G) = 2. Thus p should be
equal to 4. Hence, G ∼= P4.

Case 2. Suppose G is not a tree. Then G has no Inj-isolated vertex. Since G is
connected, then it contains a spanning tree say T , and hence γcin(G) 6 γcin(T ).
Thus as in Case 1:

(1) If diam(T ) > 6, then γcin(G) 6 γcin(T ) 6 p− 4 which contradicts to the
hypothesis.

(2) If diam(T ) 6 5, then γcin(G) 6 γcin(T ) = 2. So, if γcin(G) = 1, then
p = 3, and hence G ∼= C3. And if γcin(G) = 2, then p = 4. Since G is not
a tree, then diam(G) = 2 and G is a triangle-free graph (Theorem 2.1).
Hence, G ∼= C4.

The converse is obvious. �

Theorem 2.4. Let T be a tree on p vertices. Then γ(T ) = γc(T ) = γcin(T ) =
γin(T ) if and only if γc(T ) = 2.

Proof. It is clear that, if γc(T ) = γcin(T ) = 2, then γ(T ) = γin(T ) = 2. Thus,
it is enough if we prove that γc(T ) = γcin(T ) if and only if γc(T ) = 2. Assume
that γc(T ) = γcin(T ). Clearly that γc(T ) ̸= 1, because for any tree T , γcin(T ) ̸= 1.
Suppose γc(T ) > 3. Then, if diam(T ) 6 5, then by Proposition 2.3, γc(T ) ̸=
γcin(T ), and if diam(T ) > 6, then by Proposition 2.5, γcin(T ) = p−t1−t2, where t1
and t2 are the number of leafs and isolator support vertices of T , respectively. Since
for any tree t2 ̸= 0, then again γc(T ) ̸= γcin(T ). Hence, γc(T ) = 2. Conversely,
suppose γc(T ) = 2. This means that there exist two adjacent vertices u, v ∈ V (T )
such that N(u) ∪N(v) = V (T ). Hence, γcin(T ) = 2. �

Proposition 2.14. Let G be a connected graph. Then γ(G) = γc(G) =
γcin(G) = γin(G) = 1 if and only if G contains a full degree vertex and a tri-
angle.
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Actually, the result in Theorem 2.4, can be generalized as following

Theorem 2.5. Let G be a connected graph on p vertices and γc(G) ̸= 1. Then
γ(G) = γc(G) = γcin(G) = γin(G) if and only if γc(G) = 2.

Proof. If G is a tree, then by Theorem 2.4, the result holds. Suppose now
G is not a tree. Then G contains a spanning tree say T (G is connected), so by
Proposition 2.2, γcin(G) 6 γcin(T ). Hence again by Theorem 2.4, the result holds.

�

Theorem 2.6. Let T be a tree with diameter greater than or equal six and let S
be the γcin-set of T . Then γcin(T ) = γin(T ) if and only if the following conditions
are satisfied:

(1) Every vertex in S is adjacent to at least one isolator support vertex in T .
(2) If v ∈ S is not adjacent to an isolator support vertex in T , then v is the

unique vertex in S which is adjacent to a vertex of S satisfies (i).

Proof. Let |S| = γcin(T ) = γin(T ). Suppose conditions (i) and (ii) do not
hold. Then there exist a vertex u ∈ S such that u is not adjacent to an isolator
support vertex in T and it is not the unique vertex in S which is adjacent to
an S-neighbor of an isolator support vertex in T . Thus the set S − {u} is an
injective dominating set of T , which contradicts to the hypothesis. The converse is
obvious. �

Theorem 2.7 ([9]). For any connected (p, q)-graph G with maximum degree
∆, ⌈ p

∆+ 1

⌉
6 γc(G) 6 2q − p.

The lower bound is attained if and only if G has a vertex of full degree, and the
upper bound is attained if and only if G is a path.

As an immediately result from Proposition 2.4 and Theorem 2.7, is the following

Corollary 2.1. For any connected (p, q)-graph G without Inj-isolated vertices,
γcin(G) 6 2q − p.

Theorem 2.8. For any connected graph G with p vertices and maximum Inj-
degree ∆in, ⌈ p

1+∆in(G)⌉ 6 γcin(G) 6 p−∆in(G). Further, the equality of the lower

bound holds if and only if G has a vertex with full Inj-degree (there exists a vertex
v ∈ V (G) such that N(v) = Ncn(v) and e(v) 6 2).

Proof. The proof of the lower bound is straightforward from Proposition
2.1 and Theorem 1.1. Now for the upper bound, suppose v ∈ V (G) such that
degin(v) = ∆in(G). Then a spanning tree T of G can be formed in which v
is Inj-adjacent to each its neighbors in G. Thus, if G is a triangle-free graph,
then ∆in(G) 6 m(t1)T and hence by Theorem 2.2, γcin(G) 6 p − ∆in(G). Also,
if G has triangles, then ∆in(G) 6 m(t1)T + m(t2)T and again by Theorem 2.2,
γcin(G) 6 p−∆in(G). �
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Theorem 2.9. Let G be a connected (p, q)-graph with diameter greater than or
equal six. Then γcin(G) 6 2(q − 1) − p, and the equality is attained if and only if
G is a path.

Proof. To prove this bound we make use Proposition 2.6 and the fact that G
is connected, as follows:

γcin(G) 6 p− 4 = 2(p− 2)− p

6 2(q − 1)− p.

For the equality, if G ∼= Pp with diam(G) > 6, then γcin(G) = 2(p− 2)− p = p− 4.
Conversely, if γcin(G) = 2(q − 1) − p and diam(G) > 6, then by Proposition 2.6,
q 6 p− 1. Since G is connected, then q = p− 1, so G must be a tree. But then by
Proposition 2.5, γcin(G) = p − t1 − t2. If t1 > 2 and t2 > 2 or t1 > 2 and t2 = 2,
then γcin(G) = p− t1− t2 < p−4 = 2(q−1)−p as above, which is a contradiction.
Thus t1 6 2 and t2 6 2. But since G is a tree, then t1 > 2 and t2 > 2. Hence,
t1 = t2 = 2. So G must be a path. �

Theorem 2.10. Let G be a connected graph and its injective complement G
inj

is connected. Then

γcin(G) + γcin(G
inj

) 6 p+ 1.

Proof. Since G and G
inj

are connected, then by Theorem 2.8, γcin(G) 6
p−∆in(G) and γcin(G

inj
) 6 p−∆in(G

inj
). Thus

γcin(G) + γcin(G
inj

) 6 p−∆in(G) + p−∆in(G
inj

)

= 2p− (∆in(G) + ∆in(G
inj

))

= 2p− (∆in(G) + p− 1− δin(G))

= p+ 1 + δin(G)−∆in(G) 6 p+ 1.

�

Theorem 2.11 ([9]). Let G be a connected graph of order p > 4 such that both
G and G are connected. Then

γc(G) + γc(G) 6 p(p− 3).

The bound is attained if and only if G ∼= P4.

Proposition 2.15. Let G be a connected graph without an Inj-isolated vertex
and its complement G is connected. Then G has no Inj-isolated vertex.

Theorem 2.12. Let G be a connected graph without an Inj-isolated vertex and
its complement G is connected. Then

2 6 γcin(G) + γcin(G) 6 p(p− 3).

The lower bound is attained if and only if G has a vertex v satisfies N(v) = Ncn(v)
and e(v) = 2, and the upper bound is attained if and only if G ∼= P4.
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Proof. The proof of the upper bound and its equality is straightforward from
Proposition 2.4 and Theorem 2.11.
The lower bound can be seen in Figure 3, where γcin(G) = γcin(G) = 1. To prove
the equality of the lower bound, if G has a vertex v satisfies N(v) = Ncn(v) and
e(v) = 2, then γcin(G) = 1. Suppose u ∈ V (G) such that u is not adjacent to v in
G. By Proposition 2.15, G and G are connected graphs and each of them has no
a vertex of full degree. Then the vertex u satisfies N(u) = N cn(u) and e(u) = 2,
where N(u), N cn(u) and e(u) are the neighborhood set, the common neighborhood
set and the eccentricity of a vertex u in G, respectively. Hence, γcin(G) = 1.

Conversely, if γcin(G) + γcin(G) = 2, then γcin(G) = 1, so by Proposition 1.2,
there exists a vertex v ∈ V (G) satisfies N(v) = Ncn(v) and e(v) 6 2. Now, if
e(v) = 1, then v has a full degree in G, which a contradiction to the hypothesis.
Hence, e(v) = 2. �

�
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Figure 3. Graph G with γin(G) = γin(G) = 1.

Theorem 2.13 ([4]). If G is a graph of diameter greater than or equal four,
then G of diameter less than or equal two.

Theorem 2.14. Let G be a connected graph with diameter greater than or equal
six and G is connected. Then

γcin(G) + γcin(G) 6 2q − p− 1.

The bound is attained if and only if G is a path.

Proof. By Theorem 2.9, γcin(G) 6 2(q − 1)− p and the bound is attained if
and only if G is a path. By Theorem 2.13, diam(G) 6 2 and then by Proposition
1.2 and Theorem 2.1, γcin(G) 6 2 with the equality if and only if G is a triangle-free
graph (the converse comes immediately from Proposition 1.2). Since diam(G) > 6,
then there exists at least three vertices in G which they are not adjacent one to
each others, so G has a triangle. Thus γcin(G) = 1. Hence the Theorem. �
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