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A GENERAL FIXED POINT THEOREM
FOR PAIRS OF MAPPINGS IN ORBITALLY
0 - COMPLETE PARTIAL METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

ABSTRACT. The purpose of this paper is to prove a general fixed point theorem
for two pairs of mappings satisfying implicit relations in orbitally 0 - complete
partial metric space, which include also a result of Hardy - Rogers type.

1. Introduction

In 1974, Ciri¢ [7] has first introduced orbitally complete metric spaces and
orbitally continuous function. Let f be a self mapping of a metric spaces (X, d).
If 29 € X, every Cauchy sequence of the orbit O, (f) = {0, fzo, f2x0,...} is
convergent to a point y € X, then X is said to be orbitally complete in zq. If f is
orbitally complete at each x € X, then X is said to be f - orbitally complete. Every
complete metric space is f - orbitally complete for every function f. An orbitally
complete metric space may not be a complete metric space ([21], Example 4.5).

Some fixed point results for mappings in orbitally complete metric spaces are
obtained in [2], [8], [15], [16] and in other papers.

In 1994, Matthews [13] introduced the concept of partial metric space as a part
of the study of denotional semantics of dataflow networks and proved the Banach
contraction principle in such spaces. Recently, in [1], [4], [5], [11], [12] and in other
papers, some fixed point theorems under various contractive conditions are proved.

Romaguera [20] introduced the notion of 0 - Cauchy sequence, 0 - complete
partial metric space and proved some characterizations of partial metric spaces in
terms of completeness and 0 - completeness.

Some fixed point theorems for mappings in 0 - complete partial metric spaces
are proved in [3], [14], [22].
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Several classical fixed point theorems and common fixed point theorems have
been unified considering a general condition by an implicit relation in [16], [17].

Some fixed point results for mappings satisfying implicit relations in partial
metric spaces are obtained in [9], [10], [22] and [6].

The purpose of this paper is to prove a general fixed point theorem for two
pairs of mappings satisfying implicit relations in 0 - complete partial metric spaces,
which include also a result of Hardy - Rogers type.

2. Preliminaries

DEFINITION 2.1 ([13]). Let X be a nonempty set. A function p: X x X — Ry
is said to be a partial metric on X if for any z,y,2z € X, the following conditions
hold:

(Py) :p(z,x) = p(y,y) = p(z,y) if and ounly if x =y,
(PQ) : p(x,x) < p(xa y)v

(Ps) : p(z,y) = p(y, @),

(Pa) : p(x,2) < p(x,y) + (Y, 2) — p(Y, Y)-

The pair (X, p) is called a partial metric space.

If p(z,y) = 0 then by (P;) and (P), = y, but the converse does not always
hold.

Each partial metric p on X generates a Tj - topology 7, which has as base the
family of open p - balls {B,(x,¢) : € X, ¢ > 0}, where By(z,e) = {y € X :
p(z,y) < p(x,x) + ¢ for all z € X and € > 0}.

If p is a p - metric on X, then the function d,(x,y) = 2p(z,y) — p(z, x) —p(y, y)
is a metric on X.

A sequence {z,} in a partial metric space (X,p) converges to a point z € X
(xn, = x) with respect to 7, if and only if lim,_,oc p (zp, ) = p (z, ).

LEMMA 2.1 ([1], [12]). Let (X,p) be a partial metric space and {x,} a sequence
in X such that x, — z as n — oo, where p(z,z) = 0. Then, lim, oo p (Tp,y) =
p(z,y) for everyy € X.

DEFINITION 2.2 ([13], [19]). a) A sequence {z,} in a partial metric space
(X, p) is called Cauchy if lim,, ,— 0 P(Tn, T exists and is finite.

b) (X, p) is said to be complete if every Cauchy sequence {x,} in X converges
with respect to 7, to a point z € X.

c) A sequence {z,} in (X,p) is called 0 - Cauchy if lim,, ;00 P(Zn, Tm) = 0.

d) (X,p) is called 0 - complete if every 0 - Cauchy sequence in X converges
with respect to 7, to a point x such that p(z,z) = 0.

LEMMA 2.2 ([13], [19], [20]). Let (X,p) be a partial metric space and {x,} is
a sequence in X.

a) {x,} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in metric space (X,dy).
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b) (X,p) is complete if and only if (X,d,) is complete. Furthermore,
lim,, 00 dp (1, ) = 0 if and only if
p(z,x) = lim p(z,,) = n,}%rﬁoop (T, T -
c) Ewvery 0 - Cauchy sequence in (X, p) is Cauchy in (X,dp).
d) If (X,p) os complete, then is 0 - complete.

DEFINITION 2.3 ([14]). Let S and T be two self mappings on a partial metric
space (X, p).
1) If for a point z € X, a sequence {x,} in X such that

Tont+1 = STan,
Tont2 = T$2n+17 n= Oa ]-7 27 ey
then the set Oy, (S,T) = {z, : n=0,1,2,...} is called the orbit of (S,T') in zo.
2) The space (X, p) is said to be (S,T') - orbitally 0 - complete at zg if every 0
- Cauchy sequence in Oy, (S,T') converges to a point z € X such that p(z,z) = 0.

3. Implicit relations

DEFINITION 3.1. Let Fgo be the set of all continuous functions F(t1,...,%s) :
Ri — R satisfying:

(F1) : F is nonincreasing in variables ¢5 and tg,

(Fy) : (F2q) : There exists hy € [0, 1) such that for all u,v > 0 and F'(u,v,v,u,
u+ v,v) < 0 implies u < hyv;

(Fyp) : There exists hg € [0,1) such that for all u,v > 0 and
F (u,v,u,v,v,u+ v) < 0 implies u < hav,

(F3) : F (t,t,0,0,t,t) > 0, Vt > 0.

In the following examples the property (F}) is obviously.

EXAMPLE 3.1. F (t1,...,t5) = t1 —aty—bts—cty—dts —etg, where a, b, c,d,e > 0
and a+b+c+2d+2e < 1.
(Fy) : Let u,v > 0 be such that F (u,v,v,u,u~+v,v) = u—av —bv — cu —

b+d
d(u+v)—ev<0. Then u < hyv, where 0 < hy :% <1.
Similarly, u,v > 0 and F (u,v,u,v,v,u +v) < 0 implies u < hov, where 0 <
by — a+c+d+e <
2T dl—(b+e)

(F3): F (t,t,0,0,t,t) = t[l — (a + b+ d+e)] >0, Vt > 0.

ExaAMPLE 3.2. F(tl, ...,tﬁ) =11 — kmax{tg,t37t4, ...7t6}, where k € [O, %)

(Fy) : Let u,v > 0 be such that F' (u,v,v,u,u +v,v) = u—k (u+ v) < 0 which
implies u© < hiv, where 0 < hy = T—% < 1.

Similarly, u,v > 0 and F (u,v,u,v,v,u+v) < 0 implies u < hov, where 0 <
ho = hy < 1.

(F3): F (£,£,0,0,¢,t) =t (1 —k) >0, Vt > 0.
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EXAMPLE 3.3. F (t1,...,.ts) = t1 — max{cta,cts,cty,ats + btg}, where ¢ €
(0,1),a,b >0 and 2a + 2b < 1.

(Fy) : Let u,v > 0 be such that F' (u, v, v,u,u 4+ v,v) = u—max{cu, cv,a (u + v)
+bv} <0. Ifu > v, then u[l —max{c, 2a+b}] < 0, a contradiction. Hence u < hyv,
where 0 < h; = max{c,2a + b} < 1.

Similarly, u,v > 0 and F (u,v,u,v,v,u+v) < 0 implies u < hov, where 0 <
he = max{c,a + 2b} < 1.

(F3) : F (t,t,0,0,t,t) =t (1 — max{c,a + b}) > 0, V¢ > 0.

EXAMPLE 3.4. F (t1,...,t6) = t} — amax {t3,¢3,t3} — btsts, where a,b > 0 and
a+2b< 1.

(Fy) : Let w,v > 0 be such that F (u,v,v,u,u +v,v) = u? — amax{u?,v?} —
bv(u+v) < 0. If u > v, then u?[1 — (a + 2b)] < 0, a contradiction. Hence u < v
which implies u < hyv, where 0 < hy = va +2b < 1.

Similarly, u,v > 0 and F (u,v,u,v,v,u+v) < 0 implies u < hov, where 0 <
ho = hy < 1.

(F3) : F(t,t,0,0,t,t) = t3[1 — (a + b)] > 0, Vt > 0.

EXAMPLE 3.5. F (t1,...,t5) = t3 — ataotsty — btststs — ctytsts, where a,b,c > 0
and a 4+ 2b + 2c¢ < 1.

(F) : Let u,v > 0 be such that F (u,v,v,u,u + v,v) = u3—auv? —buv (u + v)—
cuv (u+v) < 0. If u > v, then u3[1 — (a + 2b+ 2¢)] < 0, a contradiction. Hence
u < v which implies u < h1v, where 0 < hy = /a + 2b+ 2¢c < 1.

Similarly, u,v > 0 and F (u,v,u,v,v,u+v) < 0 implies u < hav, where 0 <
ho = hy < 1.

(F3) : F(t,t,0,0,t,t) =t> >0, Vt > 0.

ty

EXAMPLE 3.6. F (t1,...,tg) = t2
( 1, ) 6) 1+ t5 +t6

anda+b+c<1.
(Fy) : Let u,v > 0 be such that F (u,v,v,u,u + v,v) = u? +

— (at3 + bt3 + ct3), where a,b,c > 0

u~+ 2v
((w2 + 2+ cu2) < 0, which implies u? — (av2 + bv? + cu2) < 0. If u> v, then
u?[1 = (a + b+ ¢)] <0, a contradiction. Hence u < v which implies u < hqv, where

0<h1=\/(l+b+€<1.

Similarly, u,v > 0 and F (u,v,u,v,v,u+v) < 0 implies u < hav, where 0 <
hQ = hl < 1.

1 1
(F3): F (t,t,0,0,t,t) :t2—|—§ — at? =t2(1—a)+5 >0, Vt > 0.

4. Main results
THEOREM 4.1. Let (X,p) be a partial metric space and T, S : X — X be two
mappings satisfying inequality
(4.1) F(p(Tz,Sy),p(z,y),p(z,Tz),p(y,S),p(x,5),p(y, Tz)) <0,

for all x,y € Oy, (S,T) for some xg € X and F € Fpro. If (X,p) is (S,T) -
orbitally 0 - complete at xq, then T and S have a common fized point z such that
p(z,2) =p(2,Tz) =p(z,5z) =0.
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If moreover, each common fized point z of S and T in O, (S,T) satisfies
p(z,z) =0, then the common fized point of S and T in Oy, (S,T) is unique.

PRrooF. First we prove that if z = Sz and p(z,2) = 0, then z is a common
fixed point of S and T
By (4.1) we obtain

F(p(Tz,52),p(2,2),p(2.T2),p(2,52) ,p(2,52) ,p(2,Tz)) <0,
F(p(Tz,2),0,p(2,T2),0,0,p(2,Tz)) <0.

By (F3q) we obtain p(z,T%) = 0 which implies z = Tz and z is a common
fixed point of S and T
We define a sequence {z,} in X as follows

(42) Toan4+1 = SIQn and Toan+2 = T$2n+1, for n = O, 1, 2,

If there exists ng € N such that p (zny, S2n,) =0 or p(zpn,, Txy,) = 0 for ng €
N, then S and T have a common fixed point. We suppose that p (2, x,11) # 0,
for n € N.

By (4.1) and (4.2) for = x9,41 and y = x2, we obtain

F(p(Txont1,S%2n), P (Tant1, T2n) , P (T2nt1, TZont1) ,
D (xan, STan), P (Tan+1,S%2n) , D (Ton, T2ny1)) < 0,

43 F(p(z2n+2, Tant1), P (Tant1, Tan) , P (T2nt1, T2nt2) 5
49 2,
p (332117 $2n+1) » D ($2n+17 $2n+1) » D ($2n, $2n+2)) s U
By (P2>7
D (Zont1; Tant1) < P (Tant1, Tan)
and by (Py)

D (T2n, Tony2) < P (Ton, Toant1) + D (T2nt1, Ton) -
By (F1) and (4.3) we obtain

F(p(z2n+2, T2n41), P (T2n+1, T2n) , P (T2n41, T2n42) 5
P (T2n, T2n11) , P (T2n, Tant1) , P (T2nt1, Tans2)) < 0.
By (F4p) we obtain
P (Tont2, Tant1) < hp (Tant1,T2n), where h = max{hy, ha}.
By (4.1) and (4.2) for = x9,—1 and y = za,, for n = 1,2, ... we obtain

F(p(Tzon—1,5%2n), D (®2n—1,T2n) s P (T2n—1, TT2n—1),
P (220, ST2p) , P (T2n—1,5%2n) , P (Ton, T2n—1)) <0,

F(p(z2n, Tont1), P (T2n—1, Ton) , P (T2n—1, T2n) ,
(4.4)
P (T2n, Tant1) P (T2n—1, Tans1) , P (T2n, T2n)) < 0.
By (P»)
P (T2n, Ton) < P (T2n—1,T2n)
and by (Py)

P (T2n—1,Tant1) < D (Tan—1,T2n) + P (T2n, Tont1) -
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By (F1) and (4.4) we obtain

F(p(w2n, T2n41), 0 (T2n—1, T2n) , P (T2n—1, T2n)
P (T2n, T2n11) , P (T2n—1, Tan) + P (T2n, T2n+1) , P (T2n, T2n-1)) < 0.
By (Fs,) we obtain
P (T2n, Tany1) < hp (Tan—1,T2n) -
Hence
(4.5) D (Xny Tpy1) <A (Tn-1,2n) < ... <h"p(z0,21) .
Then for each m > n € N, by (4.5) and (P4) we have

P (Tns Tngm) < P (Tns Tng1) + 0 (Tngts Tng2) + o 0 (Tmo1, )
< W (1+h+..+h" ) p(2o,21)
hn
< 1_hp(3307$1)-

Thus lim,, ;00 P (Zn, Zm) = 0. This implies that {x,} is a 0 - Cauchy sequence
in the partial metric space Oy, (S,T). Since X is (S,T) - orbitally 0 - complete at
Zo, then there exists z € X with lim, . , = z and p(z,2) = 0.

We prove that z is a fixed point for S.

By (4.1) for = 29,41 and y = z we obtain

F(p(Tr2n11,52),p (Tant1,2) P (Tant1, TToni1),
p (Z7 SZ) P ($2n+1, SZ) , P (ZaTzZTH-l)) g Oa

F(p(zany2,52),p (Tant1,2) , P (Tant1, Tant2) ,
p (Z7 SZ) » D (xQn-‘rla SZ) » D (Za x2n+2)) g 0.
Letting n tends to infinity, by Lemma 2.1 and (4.5) we obtain

F(p(z,S5%2),0,0,p(z,52),p(252),0) < 0.

By (F»,) we obtain p (z,Sz) = 0 which implies z = Sz. By the first part of the
proof we have z = Tz and z is a common fixed point of .S and 7.

Now suppose that each common fixed point z of T and S in O,, (S,T) satisfy
p(z,2) = 0. We claim that S and T have a unique common fixed point. Assume
that p (u, Su) = p(u,Tu) = 0 and p (v,Tv) = p(Sv,v) = 0 but u # v. Then, by
(4.1) for x = w and y = v we have

F(p(Tu, Sv),p (u,v),p (u, Tu),
p(v,5v),p(u, Sv),p(v,Tu)) <0,

u
F(p(u,v),p(u,v),0,0,p (u,v),p(u,v)) <0,
a contradiction of (F3). Hence, u = v. O

REMARK 4.1. By Theorem 4.1 and Example 3.1 we obtain a fixed point theorem
of Hardy - Rogers type.

If S =T by Theorem 4.1 we obtain
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THEOREM 4.2. Let (X, p) be a partial metric space such that X is T - orbitally
0 - complete at some xy € X and

F(p(Tz,Ty),p(z,y),p(x,Tx),p(y, Ty) ,p(z,Ty),p(y,Tx)) <0,

for all x,y € Oy, (T) and F satisfies properties (F1), (Faq) and (F3). Then T has
a fized point. If moreover, each fixed point z € X in Oy, (T) satisfies p(z,z) =0,
then the fized point is unique.

EXAMPLE 4.1. Let X = [0,1] be and p(x,y) = maxz{z,y}. Then (X,p) is a
partial metric space. Consider the following mappings: S(z) = -z and T'(z) = £ -a.

I 7 = 1 then O1(S,T) = { ()" ()™ : k,m € N} and 01(5,T) < O4(S, T)U{0}.
1
1) If > y, then p(Sz, Ty) = 3¢ and p(x,y) = z. Hence p(Sz, Ty) < k1 - p(x,y),

11
for k1 € {3, 2), which implies

11
p(z,y) < kimaz {p(z,y), p(Sz, ), p(Ty,y) - p(x, Ty),p(y, Az)} , for ki € [3, 2) .

3 1
2) If sy<e<y then p(Sz,Ty) = 3% and p(z, Sz) = z. Hence p(Sz,Ty) <
k1p(z, Sx), which implies

11
p(Sz, Ty) < kimaz {p(z,y), p(z, S), p(y, Ty). p(ar, Ty)ply, Sz)} , for k1 € [ ) .

372
3 1

3) If z < =Y then p(Sz,Ty) = =Y and p(y,Ty) = y. Hence p(Sz,Ty) <
ko - p(y, Ty), for ko € [%, %), which implies

p(Sz,Ty) < ke max{p(z,y),p(z, Sz) - p(y, Ty),p(x,Ty), p(y, Sz)}.

Hence
p(Sz, Ty) < kmax {p(z,y), p(z, Sz),p(y, Ty), p(x, Ty), p(y, Sx)}
1
here k = ].

where Kk € 35

By Example 3.1 and Theorem 4.1, S and T have a unique common fixed point
z=0and p(z,z) =0.
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