BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 103-116

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

A STUDY OF *n*-ARY SUBGROUPS WITH RESPECT TO *t*-CONORM

D.R. Prince Williams

ABSTRACT. In this paper, we introduce a notion of fuzzy n-ary subgroups with respect to t-conorm(s-fuzzy n-ary subgroups) in an n-ary groups (G,f) and have studied their related properties. The main contribution of this paper are studying the properties of s-fuzzy n-ary subgroups over s-level n-ary subgroup of (G,f), n-ary homomorphism and $ret_a(G,f)$. Moreover some results of the s-product of s-fuzzy n-ary relations in an s-ary groups s-ary are also obtained.

1. Introduction

The theory of fuzzy set was first developed by Zadeh [29] and has been applied to many branches in mathematics. Later fuzzification of the "group" concept into "fuzzy subgroup" was made by Rosenfeld [28]. This work was the first fuzzification of any algebraic structure and thus opened a new direction, new exploration, new path of thinking to mathematicians, engineers, computer scientists and many others in various tests. The study of n-ary systems was initiated by Kasner [26] in 1904, but the important study on n-ary groups was done by Dörnte [3]. The theory of nary systems have many applications. For example, in the theory of automata [23], n-ary semigroup and n-ary groups are used. The n-ary groupoids are applied in the theory of quantum groups [27]. Also the ternary structures in physics are described by Kerner in [25]. The n-ary system dealt in detail [4-9,11,12,14-22]. The first fuzzification of n-ary system was introduced by Dudek [10]. Moreover Davvaz et. al [2] have studied fuzzy n-ary groups as a generalization of Rosenfeld's fuzzy groups and have investigated their related properties. The notion of intuitionistic fuzzy sets, as a generalization of the notion of fuzzy set. Dudek [13] has introduced intuitionistic fuzzy sets idea's in n-ary systems and has discussed in detail. Triangular norm(t-norm) and triangular conorm(t-conorm) are the most general

²⁰¹⁰ Mathematics Subject Classification. 04A72,08A72, 03E72,20N25.

 $[\]label{eq:keywords} \textit{Key words and phrases.} \text{ fuzzy subgroup, anti-level set, } \textit{s-fuzzy } \textit{n-} \text{ary subgroup, } \textit{s-fuzzy } \textit{n-} \text{ary relation.}$

families of binary operations that satisfy the requirement of the conjunction and disjunction operators, respectively. Thus, the t-norm generalizes the conjunctive (AND) operator and the t-conorm generalizes the disjunctive (OR) operator. In application, t-norm T and t-conorm S are two functions that map the unit square into the unit interval. To study more about t-conorm see [24]. In this paper,we introduce the notion of fuzzy n-ary subgroups with respect to t-conorm (s-fuzzy n-ary subgroup) in n-ary group (G, f) and have investigated their related properties.

2. Preliminaries

A non-empty set G together with one n-ary operation $f: G^n \to G$, where $n \ge 2$, is called an n-ary groupoid and is denoted by (G, f). According to the general convention used in the theory of n-ary groupoids the sequence of elements $x_i, x_{i+1}, ..., x_j$ is denoted by x_i^j . In the case j < i, it denoted the empty symbol.

If $x_{i+1} = x_{i+2} = \dots = x_{i+t} = x$, then instead of x_{i+1}^{i+t} and we write $x^{(t)}$. In this convention

$$f(x_1, ..., x_n) = f(x_1^n)$$

and

$$f(x_1,...,x_i,\underbrace{x,...,x}_t,x_{i+t+1},...,x_n) = f(x_1^i, \overset{(t)}{x},x_{i+t+1}^n).$$

An n-ary groupoid (G, f) is called an (i, j)-associative if

$$f\left(x_1^{i-1},f(x_i^{n+i-1}),x_{n+i}^{2n-1}\right)=f\left(x_1^{j-1},f(x_j^{n+j-1}),x_{n+j}^{2n-1}\right)$$

hold for all $x_1, ..., x_{2n-1} \in G$. If this identity holds for all $1 \leq i \leq j \leq n$, then we say that the operation f is associative and (G, f) is called an n-ary semigroup. It is clear that an n-ary groupoid is associative if and only if it is (1, j)-associative for all j = 2, ..., n. In the binary case (i.e. n=2)it is usual semigroup. If for all $x_0, x_1, ..., x_n \in G$ and fixed $i \in \{1, ..., n\}$ there exists an element $z \in G$ such that

$$f\left(x_1^{i-1}, z, x_{i+1}^n\right) = x_0 \tag{1}$$

then we say that this equation is *i-solvable* or *solvable at the place i*. If the solution is unique, then we say that (1) is *uniquely i-solvable*. An *n*-ary groupoid (G, f) uniquely solvable for all i = 1, ..., n is called an *n-ary quasigroup*. An associative *n*-ary quasigroup is called an *n-ary group*.

Fixing an n-ary operation f, where $n \ge 3$, the elements a_2^{n-2} we obtain the new binary operation $x \diamond y = f(x, a_2^{n-2}, y)$. If (G, f) is an n-ary group then (G, \diamond) is a group. Choosing different elements a_2^{n-2} we obtain different groups. All these groups are isomorphic[8]. So, we can consider only group of the form

$$ret_a(G, f) = (G, \circ), \text{ where } x \circ y = f(x, \overset{(n-2)}{a}, y).$$

In this group $e = \overline{a}, x^{-1} = f(\overline{a}, \overset{(n-3)}{a}, \overline{x}, \overline{a})$

In the theory of n-ary groups, the following Theorem plays an important role.

THEOREM 2.1. For any n-ary group (G, f) there exist a group (G, \circ) , its automorphism φ and an element $b \in G$ such that

$$f(x_1^n) = x_1 \circ \varphi(x_2) \circ \varphi^2(x_3) \circ \dots \circ \varphi^{n-1}(x_n) \circ b$$
 (2)

holds for all $x_1^n \in G$.

In what follows, G is a non-empty set and (G, f) is an n-ary group unless otherwise specified.

Definition 2.1. By a t-norm , a function $T:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions is meant:

- (T1) T(x,1) = x;
- (T2) $T(x,y) \leqslant T(x,z)$ if $y \leqslant z$;
- (T3) T(x,y) = T(y,x);
- (T4) T(x, T(y, z)) = T(T(x, y), z);

for all $x, y, z \in [0, 1]$.

Definition 2.2. By a t-conorm , a function $S:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions is meant:

- (S1) S(x,0) = x;
- (S2) $S(x,y) \leqslant S(x,z)$ if $y \leqslant z$;
- (S3) S(x,y) = S(y,x);
- (S4) S(x, S(y, z)) = S(S(x, y), z);

for all $x, y, z \in [0, 1]$.

Replacing 0 by 1 in condition (S1), we obtain the concept of t-norm T.

DEFINITION 2.3. Given a t-norm T and a t-conorm S, T and S are dual (with respect to the negation ι) if and only if (T(x,y))' = S(x',y').

Now we generalize the domain of S to $\prod_{i=1}^{n} [0,1]$ as follows:

DEFINITION 2.4. The function $S_n: \prod_{i=1}^n [0,1] \to [0,1]$ is defined by:

$$S_n(\alpha_1^n) = S_n(\alpha_1, \alpha_2, ..., \alpha_n) = S(\alpha_i, S_{n-1}(\alpha_1, ..., \alpha_{i-1}, \alpha_{i+1}, ..., \alpha_n))$$
for all $1 \le i \le n, n \ge 2$.

For a t-conorm S on $\prod_{i=1}^{n} [0,1]$, it is denoted by

$$\Delta_t = \{ \alpha \in [0, 1] \mid S(\alpha, \alpha, ..., \alpha) = \alpha \}.$$

It is clear that every t-conorm has the following property:

$$S(\alpha_1^n) \geqslant \max\{\alpha_1, \alpha_2, ..., \alpha_n\}$$

for all $\alpha_1^n \in [0, 1]$.

3. s-fuzzy n-ary subgroups

DEFINITION 3.1. A fuzzy set μ in G is called a s-fuzzy n-ary subgroup of (G, f) if the following axioms holds:

(SFnS1)
$$(\forall x_1^n \in G), (\mu(f(x_1^n)) \leq S\{\mu(x_1), ..., \mu(x_n)\}),$$

(SFnS2) $(\forall x \in G), (\mu(\overline{x}) \leq \mu(x)).$

EXAMPLE 3.1. Let (\mathbb{Z}_4, f) be a 4-ary subgroup derived from additive group \mathbb{Z}_4 . Define a fuzzy subset μ in \mathbb{Z}_4 as follows:

$$\mu(x) = \begin{cases} 0.1 & \text{if } x = 0, \\ 0.7 & \text{if } x = 1, 2, 3. \end{cases}$$

and let $S: \prod_{i=1}^{4} [0,1] \longrightarrow [0,1]$ be a function defined by as follows:

$$S(x_1^4) = \min \left\{ x_1 + x_2 + x_3 + x_4, 1 \right\}$$

for all $x_1^4 \in [0,1]$ and a function f is defined by

$$f(x_1^4) = x_1 +_4 x_2 +_4 x_3 +_4 x_4, \forall x_1^4 \in \mathbb{Z}_4.$$

By routine calculations, we know that μ is a s-fuzzy 4-ary subgroup of (\mathbb{Z}_4, f) .

THEOREM 3.1. If $\{\mu_i | i \in I\}$ is an arbitrary family of s-fuzzy n-ary subgroup of (G, f) then $\bigcup \mu_i$ is s-fuzzy n-ary subgroup of (G, f), where $\bigcup A_i = \bigvee \mu_i$, where $\bigvee \mu_i(x) = \sup \{\mu_i(x) | x \in G \text{ and } i \in I\}$.

П

PROOF. The proof is trivial.

THEOREM 3.2. If μ is a fuzzy set in G is a s-fuzzy n-ary subgroup of (G, f), then so is μ' , where $\mu' = 1 - \mu$.

PROOF. It is sufficient to show that μ' satisfies conditions (SFnS1) and (SFnS2). Let $x_1^n \in G$. Then

$$\mu'(f(x_1^n)) = 1 - \mu(f(x_1^n))$$

$$\leq 1 - S\{\mu(x_1), ..., \mu(x_n)\}$$

$$\leq S\{1 - \mu(x_1), ..., 1 - \mu(x_n)\}$$

$$= S\{\mu'(x_1), ..., \mu'(x_n)\}.$$

and

$$\mu'(\overline{x}) = 1 - \mu(\overline{x}) \leqslant 1 - \mu(x) = \mu'(x).$$

Hence μ' is a s-fuzzy n-ary subgroup of (G, f).

The following Lemma gives the relation between T and S.

Lemma 3.1. Let T be a t-norm. Then the t-conorm S can be defined as

$$S(x_1^n) = 1 - T(1 - x_1, 1 - x_2, ..., 1 - x_n), \forall x_1^n \in G.$$

PROOF. Straightforward.

The following Theorem gives the relation between t-fuzzy n-ary subgroup and s-fuzzy n-ary subgroup of G.

Theorem 3.3. A fuzzy set μ of G is a t-fuzzy n-ary subgroup of (G, f) if and only if its complement μ' is a s-fuzzy n-ary subgroup of (G, f).

PROOF. Let μ be a t-fuzzy n-ary subgroup of (G, f). For all $x_1^n \in G$, we have

$$\mu'(f(x_1^n) = 1 - \mu(f(x_1^n))$$

$$\leq 1 - T\{\mu(x_1), \mu(x_2), ..., \mu(x_n)\}$$

$$= 1 - T\{1 - \mu'(x_1), 1 - \mu'(x_2), ..., 1 - \mu'(x_n)\}$$

$$= S\{\mu'(x_1), \mu'(x_2), ..., \mu'(x_n)\}.$$

For all $x \in G$, we have

$$\mu'(\overline{x}) = 1 - \mu(\overline{x}) \leqslant 1 - \mu(x) = \mu'(x).$$

The converse is proved similarly.

DEFINITION 3.2. Let μ be a fuzzy set in G and let $t \in [0,1]$. Then the set

$$L(\mu; t) := \{ x \in G | \mu(x) \leqslant t \}$$

is called anti-level subset μ of G.

The following Theorem is a consequence of the Transfer Principle described in [26].

THEOREM 3.4. A fuzzy set μ in G, is a s-fuzzy n-ary subgroup of (G, f) if and only if the anti-level subset $L(\mu; t)$ of G is an n-ary subgroup of (G, f) for every $t \in [0, 1]$, which is called s-level n-ary subgroup of (G, f).

PROOF. Let μ be a s-fuzzy n-ary subgroup of (G, f). If $x_1^n \in G$ and $t \in [0, 1]$, then $\mu(x_i) \leq t$ for all i = 1, 2, ..., n. Thus

$$\mu(f(x_1^n) \leqslant S\{\mu(x_1), ..., \mu(x_n)\} \leqslant t,$$

which implies $f(x_1^n) \in L(\mu;t)$. Moreover, for some $x \in L(\mu;t)$, we have

$$\mu((\overline{x}) \leqslant \mu(x)) \leqslant t$$

which implies $\overline{x} \in L(\mu; t)$. Thus $L(\mu; t)$ is an *n*-ary subgroup of (G, f).

Conversely, assume that $L(\mu;t)$ is an n-ary subgroup of (G,f). Let us define

$$t_0 = S\{\mu(x_1), ..., \mu(x_n)\},\$$

for some $x_1^n \in G$. Then obviously $x_1^n \in L(\mu; t_0)$, consequently $f(x_1^n) \in L(\mu; t_0)$. Thus

$$\mu(f(x_1^n)) \leqslant t_0 = S\{\mu(x_1), ..., \mu(x_n)\}.$$

Now, let $x \in L(\mu;t)$. Then $\mu(x) = t_0 \leqslant t$. Thus $x \in L(\mu;t_0)$. Since ,by the assumption, $\overline{x} \in L(\mu;t_0)$. Whence $\mu(\overline{x}) \leqslant t_0 = \mu(x)$. This complete the proof. \square

Using the above theorem, we can prove the following characterization of s-fuzzy n-ary subgroups.

THEOREM 3.5. A fuzzy set μ in G, is a s-fuzzy n-ary subgroup of (G, f) if and only if the anti-level subset $L(\mu; t)$ of G is an n-ary subgroup of (G, f) for all i = 1, 2, ..., n and all $x_1^n \in G$, μ satisfies the following conditions:

- (i) $\mu(f(x_1^n) \leq S\{\mu(x_1), ..., \mu(x_n)\},\$
- (ii) $\mu(x_i) \leq S\{\mu(x_1), ..., \mu(x_{i-1}), \mu(f(x_1^n)), \mu(x_{i-1}), ..., \mu(x_n)\}.$

PROOF. Assume that μ is a s-fuzzy n-ary subgroup of (G, f). Similarly as in the proof of Theorem 3.4, we can prove the non-empty level subset $L(\mu; t)$ under the operation f, that is $x_1^n \in L(\mu; t)$ implies $f(x_1^n) \in L(\mu; t)$.

the operation f, that is $x_1^n \in L(\mu;t)$ implies $f(x_1^n) \in L(\mu;t)$. Now let $x_0, x_1^{i-1}, x_{i+1}^n$, where $x_0 = f(x_1^{i-1}, z, x_{i+1}^n)$ for some i = 1, 2, ..., n and $z \in G$ which implies $x_0 \in L(\mu;t)$. Then, according to (ii), we have $\mu(z) \leqslant t$. So, the the equation (1) has a solution $z \in \mu(t)$. This mean that level subset $L(\mu;t)$ is an n-ary subgroups.

Conversely, assume that level subset $L(\mu;t)$ is an n-ary subgroups of (G,f). Then it is easy to prove the condition (i). For $x_1^n \in G$, we define

$$t_0 = S\{\mu(x_1), ..., \mu(x_{i-1}), \mu(f(x_1^n)), \mu(x_{i-1}), ..., \mu(x_n)\}.$$

Then $x_1^{i-1}, x_{i+1}^n, f(x_1^n) \in L(\mu, t_0)$. Whence, according to the definition of *n*-ary group, we conclude $x_i \in L(\mu, t_0)$. Thus $\mu(x_i) \leq t_0$. This proves the conditions (*ii*).

DEFINITION 3.3. Let (G, f) and (G', f) be an n-ary groups. A mapping $g: G \to G'$ is called an n-ary homomorphism if $g(f(x_1^n)) = f(g^n(x_1^n))$, where $g^n(x_1^n) = (g(x_1), ..., g(x_n))$ for all $x_1^n \in G$.

For any fuzzy set μ in G', we define the *preimage* of μ under g, denoted by $g^{-1}(\mu)$, is a fuzzy set in G defined by

$$g^{-1}(\mu) = \mu_{g^{-1}}(x) = \mu(g(x)), \forall x \in G.$$

For any fuzzy set μ in G, we define the *image* of μ under g, denoted by $g(\mu)$, is a fuzzy set in G' defined by

$$g\left(\mu\right)\left(y\right) = \left\{ \begin{array}{ll} \inf \limits_{x \in g^{-1}\left(y\right)} \mu(x), & if \ g^{-1}\left(y\right) \neq \phi, \\ 0, & otherwise. \end{array} \right.$$

for all $x \in G$ and $y \in G'$.

Theorem 3.6. Let g be a n-ary homomorphism mapping from G into G' with $g(\overline{x}) = g(x)$ for all $x \in G$ and μ is a s-fuzzy n-ary subgroup of (G', f). Then $g^{-1}(\mu)$ is a s-fuzzy n-ary subgroup of (G, f).

PROOF. Let $x_1^n \in G$, we have

$$\begin{array}{lcl} \mu_{g^{-1}}(f(x_1^n)) & = & \mu(g(f(x_1^n)) = \mu(f(g^n(x_1^n))) \\ & \leqslant & S\{\mu(g(x_1),...,\mu(g(x_n)\} \\ & = & S\{\mu_{g^{-1}}(x_1),...,\mu_{g^{-1}}(x_n)\}. \end{array}$$

П

and

$$\mu_{q^{-1}}(\overline{x}) = \mu(g(\overline{x})) \leqslant \mu(g(x)) = \mu_{q^{-1}(\mu)}(x).$$

This completes the proof.

If we strengthen the condition of g, then we can construct the converse of Theorem 3.6 as follows.

THEOREM 3.7. Let g be a n-ary homomorphism from G into G' and $g^{-1}(\mu)$ is a s-fuzzy n-ary subgroup of (G, f). Then μ is a s-fuzzy n-ary subgroup of (G', f).

PROOF. For any $x_1 \in G'$, there exists $a_1 \in G$ such that $g(a_1) = x_1$ and for any $f(x_1^n) \in (G', f)$, there exists $f(a_1^n) \in (G, f)$ such that $g(f(a_1^n)) = f(x_1^n)$. Then

$$\begin{array}{lcl} \mu(f(x_1^n)) & = & \mu(g(f(a_1^n)) = \mu_{g^{-1}}(f(a_1^n)) \\ & \leqslant & S\{\mu_{g^{-1}}(a_1), \mu_{g^{-1}}(a_2), ..., \mu_{g^{-1}}(a_n)\} \\ & = & S\{\mu(g(a_1), ..., \mu(g(a_n))\} \\ & = & S\{\mu(x_1), ..., \mu(x_n)\}. \end{array}$$

For any $\overline{x} \in G'$, there exists $\overline{a} \in G$ such that $g(\overline{a}) = \overline{x}$, we have

$$\mu(\overline{x}) = \mu(g(\overline{a})) = \mu_{q^{-1}}(\overline{a}) \leqslant \mu_{q^{-1}}(a) = \mu(a) = \mu(x).$$

This completes the proof.

THEOREM 3.8. Let $g: G \longrightarrow G'$ be an onto mapping. If μ is a s-fuzzy n-ary subgroup of (G, f), then $g(\mu)$ is a s-fuzzy n-ary subgroup of (G', f).

PROOF. Let g be a mapping from G onto G' and let $x_1^n \in G, y_1^n \in G'$. Noticing that

$$\{x_i(i=1,2,...,n)|x_i\in g^{-1}(f(y_1^n))\}\subseteq \{f(x_1^n)\in G|x_1\in g^{-1}(y_1), x_2\in g^{-1}(y_2),...,x_n\in g^{-1}(y_n))\}.$$

we have

$$\begin{split} &g(\mu)(f(y_1^n))\\ &=\inf\{\mu(x_1^n)|x_i\in g^{-1}(f(y_1^n))\}\\ &\leqslant\inf\{\mu(f(x_1^n)|x_1\in g^{-1}(y_1),x_2\in g^{-1}(y_2),...,x_n\in g^{-1}(y_n))\}\\ &\leqslant\inf\{\max\{\mu(x_1),\mu(x_2),...,\mu(x_n)\}|x_1\in g^{-1}(y_1),x_2\in g^{-1}(y_2),...,x_n\in g^{-1}(y_n))\}\\ &=\max\{\inf\{\mu(x_1)|x_1\in g^{-1}(y_1)\},\inf\{\mu(x_2)|x_1\in g^{-1}(y_2)\},...,\inf\{\mu(x_n)|x_1\in g^{-1}(y_n)\}\}\\ &\leqslant S\{g(\mu)(y_1),g(\mu)(y_2),...,g(\mu)(y_n)\}. \end{split}$$

and

$$g(\mu)(\overline{x}) = \inf\{\mu(\overline{x}) | \overline{x} \in g^{-1}(f(\overline{y}))\} \leqslant \inf\{\mu(x) | x \in g^{-1}(f(y))\} = g(\mu)(x).$$

This completes the proof.

COROLLARY 3.1. A fuzzy subset μ defined on group (G, .) is a s-fuzzy subgroup if and only if

- (1) $\mu(xy) \leqslant S\{\mu(x), \mu(y)\},$
- (2) $\mu(x) \leq S\{\mu(y), \mu(xy)\},\$
- (3) $\mu(y) \leqslant S\{\mu(x), \mu(xy)\}.$

holds for all $x, y \in G$.

Theorem 3.9. Let μ be a s-fuzzy subgroup of (G,.). If there exists an element $a \in G$ such that $\mu(a) \leq \mu(x)$ for every $x \in G$, then μ is a s-fuzzy subgroup of a group $ret_a(G,f)$.

PROOF. For all $x, y, a \in G$, let if possible μ is not a s-fuzzy subgroup of a group $ret_a(G, f)$. Then we have $\mu(x \circ y) > S\{\mu(x), \mu(y)\}$. That is

$$\begin{split} S\{\mu(x),\mu(x)\} &< \mu(x\circ x) \\ &= \mu(f(x,\overset{(n-2)}{a},x)) \\ &\leqslant S\{\mu(x),\mu(a),\mu(x)\} \\ S\{\mu(x),\mu(x)\} &< S\{\mu(x),\mu(a)\}. \end{split}$$

This holds only if $\mu(a) > \mu(x)$, which is contradiction to our assumption $\mu(a) \leq \mu(x)$.

Also, we have μ is a s-fuzzy subgroup of (G,.). Thus $\mu(x^{-1}) \leq \mu(x)$ is obvious for all $x \in G$.

which complete the proof.

In Theorem 3.9, the assumption that $\mu(a) \leq \mu(x)$ cannot be omitted.

EXAMPLE 3.2. Let (\mathbb{Z}_4, f) be a 4-ary group from Example 3.1. Define a fuzzy set μ as follows:

$$\mu(x) = \begin{cases} 0.4, & if \ x = 0, \\ 1, & if \ x = 1, 2, 3. \end{cases}$$

Clearly, μ is a s-fuzzy 4-ary subgroup of (\mathbb{Z}_4, f) . For $ret_1(\mathbb{Z}_4, f)$, define

$$S(x,y) = \begin{cases} max(x,y) & if \ x = y, \\ min(x+y,1) & if \ x \neq y. \end{cases}$$

we have

$$\mu(0 \circ 0) = \mu((f(0, 1, 1, 0))) = \mu(2) = 1 \nleq 0.4 = \mu(0) = S\{\mu(0), \mu(0)\}.$$

Hence the assumptions $\mu(a) \leqslant \mu(x)$ cannot be omitted.

Theorem 3.10. Let (G,f) be an n-ary group. If μ is a s-fuzzy n-ary subgroup of a group $ret_a(G,f)$ and $\mu(a) \leq \mu(x)$ for all $a,x \in G$, then μ is a s-fuzzy n-ary subgroup of (G,f).

PROOF. According to Theorem 2.1, any n-ary group can be represented of the form (2), where $(G, \circ) = ret_a(G, f)$, $\varphi(x) = f(\overline{a}, x, \overset{(n-2)}{a})$ and $b = f(\overline{a}, ..., \overline{a})$. Then we have

$$\mu(\varphi(x)) = \mu(f(\overline{a}, x, \overset{(n-2)}{a})) \leqslant S\{\mu(\overline{a}), \mu(x), \mu(a)\} \leqslant \mu(x).$$

$$\mu(\varphi^2(x)) = \mu(f(\overline{a}, \varphi(x), \overset{(n-2)}{x})) \leqslant S\{\mu(\overline{a}), \mu(\varphi(x)), \mu(a)\} \leqslant S\{\mu(\overline{a}), \mu(x), \mu(a)\} \leqslant \mu(x).$$
Consequently, $\mu(\varphi^k(x)) \leqslant \mu(x)$. for all $x \in G$ and $k \in \mathbb{N}$.

Similarly, for all $x \in G$ we have

$$\mu(b) = \mu(f(\overline{a}, ..., \overline{a})) \leqslant \mu(\overline{a}) \leqslant \mu(x).$$

Thus

$$\mu(f(x_1^n)) = \mu(x_1 \circ \varphi(x_2) \circ \varphi^2(x_3) \circ \dots \circ \varphi^{n-2}(x_n) \circ b)$$

$$\leqslant S\{\mu(x_1), \mu(\varphi(x_2)), \mu(\varphi^2(x_3)), \dots, \mu(\varphi^{n-2}(x_n)), \mu(b)\}$$

$$\leqslant S\{\mu(x_1), \mu(x_2), \mu(x_3), \dots, \mu(x_n), \mu(b)\}$$

$$\leqslant S\{\mu(x_1), \mu(x_2), \mu(x_3), \dots, \mu(x_n)\}.$$

From (4) and (7) of [3], we have

$$\overline{x} = \left(\mu(\overline{a} \circ \varphi(x) \circ \varphi^2(x) \circ \dots \circ \varphi^{n-2}(x) \circ b\right)^{-1}$$

Thus

$$\begin{array}{lcl} \mu(\overline{x}) & = & \mu\left(\left(\overline{a}\circ\varphi(x)\circ\varphi^{2}(x)\circ\ldots\circ\varphi^{n-2}(x)\circ b\right)^{-1}\right)\\ & \leqslant & \mu\left(\overline{a}\circ\varphi(x)\circ\varphi^{2}(x)\circ\ldots\circ\varphi^{n-2}(x)\circ b\right)\\ & \leqslant & S\{\mu(\overline{a},\mu(\varphi(x)),\mu(\varphi^{2}(x)),\ldots,\mu(\varphi^{n-2}(x)),\mu(b)\}\\ & \leqslant & S\{\mu(x),\mu(b)\} = \mu(x). \end{array}$$

This completes the proof.

COROLLARY 3.2. If (G, f) is a ternary group, then any s-fuzzy subgroup of $ret_a(G, f)$ is a s-fuzzy ternary subgroup of (G, f).

PROOF. Since \overline{a} is a neutral element of a group $ret_a(G,f)$ then $\mu(\overline{a}) \leqslant \mu(x)$, for all $x \in G$. Thus $\mu(\overline{a}) \leqslant \mu(a)$. But in ternary group $\overline{a} = a$ for any $a \in G$, whence $\mu(a) = \mu(\overline{a}) \leqslant \mu(\overline{a}) \leqslant \mu(x)$. So, $\mu(a) = \mu(\overline{a}) \leqslant \mu(x)$, for all $x \in G$. This means that the assumption of Theorem 3.10 is satisfied. Hence $ret_a(G,f)$ is a s-fuzzy ternary subgroup of (G,f). This completes the proof.

EXAMPLE 3.3. Consider the ternary group (\mathbb{Z}_{12}, f) , derived from the additive group \mathbb{Z}_{12} . Let μ be a s-fuzzy subgroup of the group of $ret_1(G, f)$ induced by subgroups $S_1 = \{11\}$, $S_2 = \{5, 11\}$ and $S_3 = \{1, 3, 5, 7, 9, 11\}$. Define a fuzzy set μ as follows:

$$\mu(x) = \begin{cases} 0.1 & if \ x = 11, \\ 0.3 & if \ x = 5, \\ 0.5 & if \ x = 1, 3, 7, 9, \\ 0.9 & if \ x \notin S_3. \end{cases}$$

Then

$$\mu(\overline{5}) = \mu(7) = 0.5 \le 0.3 = \mu(5).$$

Hence μ is not a s-fuzzy ternary subgroup of (\mathbb{Z}_{12}, f) .

Observations. From the above Example 3.3 it follows that:

- (1) There are s-fuzzy subgroups of $ret_a(G,f)$ which are not s-fuzzy n-ary subgroups of (G,f).
- (2) In Theorem 3.10 the assumption $\mu(a) \leq \mu(x)$ can not be omitted. In the above example we have $\mu(1) = 0.5 \nleq 0.3 = \mu(5)$.
- (3) The assumption $\mu(a) \leqslant \mu(x)$ cannot be replaced by the natural assumption $\mu(\overline{a}) \leqslant \mu(x)$. (\overline{a} is the identity of $ret_a(G, f)$). In the above example $\overline{1} = 11$, then $\mu(11) \leqslant \mu(x)$ for all $x \in \mathbb{Z}_{12}$.

Theorem 3.11. Let (G, f) be an n-ary group of b-derived from the group (G, \circ) . Any fuzzy set μ of (G, \circ) such that $\mu(b) \leqslant \mu(x)$ for every $x \in G$ is a s-fuzzy n-ary subgroup of (G, f).

PROOF. The condition (SFnS1) is obvious. To prove (SFnS2), we have n-ary group (G, f) b-derived from the group (G, \circ) , which implies

$$\overline{x} = (x^{n-2} \circ b)^{-1},$$

where x^{n-2} is the power of x in $(G, \circ)[4]$.

Thus, for all $x \in G$

$$\mu(\overline{x}) = \mu((x^{n-2} \circ b)^{-1}) \leqslant \mu(x^{n-2} \circ b)^{-1} \leqslant S\{\mu(x^{n-2}), \mu(b)\} = \mu(x).$$

This complete the proof.

Corollary 3.3. Any s-fuzzy subgroup of a group (G, \circ) is a s-fuzzy n-ary subgroup of an n-ary group (G, f) derived from (G, \circ) .

PROOF. If n-ary group (G, f) is derived from the group (G, \circ) then b = e. Thus $\mu(e) \leq \mu(x)$ for all $x \in G$.

4. S-product of s-fuzzy n-ary relations

Definition 4.1. A fuzzy n-ary relation on any set G is a fuzzy set

$$\mu: G^n = G \times G \times ... \times G \ (n \ times) \rightarrow [0,1].$$

DEFINITION 4.2. Let μ be fuzzy n-ary relation on any set G and ν is a fuzzy set on G. Then μ is called s-fuzzy n-ary relation on ν if

$$\mu(x_1^n) \leq S(\nu(x_1), \nu(x_2), ..., \nu(x_n)),$$

for all $x_1^n \in G$.

Definition 4.3. Let $\mu_1^n = \mu_1, \mu_2, ..., \mu_n$ be a fuzzy sets in G. Then direct S-product of μ_1^n is defined by

$$(\mu_1 \times \mu_2 \times ... \times \mu_n)(x_1^n) = S(\mu_1(x_1), \mu_2(x_2), ..., \mu_n(x_n)), \forall x_1^n \in G.$$

LEMMA 4.1. Let S be a function induced by t-conorm and let μ_1^n be a fuzzy sets in G. Then

- (i) $\mu_1 \times_S \mu_2 \times_S ... \times_S \mu_n$ is a s-fuzzy n-ary relation on G,
- (ii) $L(\mu_1 \times \mu_2 \times ... \times \mu_n; t) = L(\mu_1; t) \times L(\mu_2; t) \times ... \times L(\mu_n; t), \forall t \in [0, 1].$

PROOF. The proof is obvious.

DEFINITION 4.4. Let S be a function induced by t-conorm. If ν is a fuzzy set in G, the strongest s-fuzzy n-ary relation on G that is a s-fuzzy n-ary relation on ν is μ_{ν} , given by

$$\mu_{\nu}(x_1^n) = S(\nu(x_1), \nu(x_2), ..., \nu(x_n)), \forall x_1^n \in G.$$

LEMMA 4.2. For a given fuzzy set ν in G, let μ be the strongest s-fuzzy n-ary relation of G. Then for $t \in [0,1]$, $L(\mu_{\nu};t) = L(\nu;t) \times L(\nu;t) \times ... \times L(\nu;t)$.

PROOF. The proof is obvious.

PROPOSITION 4.1. Let S be a function induced by t-conorm and let $\mu_1, \mu_2, ..., \mu_n$ be s-fuzzy n-ary subgroup of (G, f). Then, $\mu_1 \times \mu_2 \times ... \times \mu_n$ is a s-fuzzy n-ary subgroup of (G^n, f) .

PROOF. For $x_1^n \in G$ and $f(x_1^n) = (f_1(x_1^n), ..., f_n(x_1^n)) \in (G^n, f)$, we have $(\mu_1 \times \mu_2 \times, ..., \times \mu_n)(f(x_1^n))$ $= (\mu_1 \times \mu_2 \times, ..., \times \mu_n)(f_1(x_1^n), ..., f_n(x_1^n))$

 $= S\{\mu_1(f(x_1^n)), \mu_2(f(x_1^n))..., \mu_n(f(x_1^n))\}$ $\leq S\{S\{\mu_1(x_1), \mu_1(x_2), ..., \mu_1(x_n)\}, ..., S\{\mu_n(x_1), \mu_n(x_2), ..., \mu_n(x_n)\}\}$

 $= S\{(\mu_1 \times \mu_2 \times ... \times \mu_n)(x_1, ..., x_1), ..., (\mu_1 \times \mu_2 \times ... \times \mu_n)(x_n, ..., x_n)\}$ = $S\{(\mu_1 \times \mu_2 \times ... \times \mu_n)(x_1), ..., (\mu_1 \times \mu_2 \times ... \times \mu_n)(x_n)\}.$

and for all $x = x_1^n, \overline{x} = \overline{x}_1^n \in G^n$, we have

 $(\mu_1 \times \mu_2 \times, ..., \times \mu_n)(\overline{x}) = (\mu_1 \times \mu_2 \times, ..., \times \mu_n)(\overline{x}_1, ..., \overline{x}_n)$ $= S\{\mu_1(\overline{x}_1), ..., \mu_n(\overline{x}_n)\}$ $\leq S\{(\mu_1(x_1), ..., \mu_n(x_n))\}$ $= (\mu_1 \times \mu_2 \times ... \times \mu_n)(x_1^n)$ $= (\mu_1 \times \mu_2 \times ... \times \mu_n)(x).$

This completes the proof.

The following Corollary is the immediate consequence of Proposition 4.1.

COROLLARY 4.1. Let S be a function induced by t-conorm and let $\prod_{i=1}^{n} (G_i, f)$

be the finite collection of n-ary subgroups and $G = \prod_{i=1}^{n} G_i$ the S-product of G_i . Let

 μ_i be a s-fuzzy n-ary subgroup of (G_i, f) , where $1 \leq i \leq n$. Then, $\mu = \prod_{i=1}^n \mu_i$ defined by

$$\mu(x_1^n) = \prod_{i=1}^n \mu_i(x_1^n) = S(\mu(x_1), \mu(x_2), ..., \mu(x_n)).$$

Then μ is a s-fuzzy n-ary subgroup of (G, f).

DEFINITION 4.5. Let μ_1^n be fuzzy sets in G. Then, the S-product of μ_1^n , written as $[\mu_1 \cdot \mu_2 \cdot ... \cdot \mu_n]_S$, is defined by:

$$[\mu_1 \cdot \mu_2 \cdot ... \cdot \mu_n]_S(x) = S(\mu_1(x), \mu_2(x), ..., \mu_n(x)) \ \forall x \in G.$$

Theorem 4.1. Let μ_1^n be s-fuzzy n-ary subgroup of (G, f). If S^* is a function induced by t-conorm dominates S, that is,

$$S^*(S(x_1^n), S(y_1^n), ..., S(z_1^n)) \leq S(S^*(x_1, y_1, ..., z_1), ..., S^*(x_n, y_n, ..., z_n))$$

for all $x_1^n, y_1^n, ..., z_1^n \in [0, 1]$. Then S^* -product of $\mu_1^n, [\mu_1 \cdot \mu_2 \cdot ... \cdot \mu_n]_{S_n^*}$, is a s-fuzzy n-ary subgroup of (G, f).

PROOF. Let $x_1^n \in G$, we have

$$\begin{split} &[\mu_1 \cdot \mu_2 \cdot \ldots \cdot \mu_n]_{S^*}(f(x_1^n)) \\ &= S^*(\mu_1(f(x_1^n)), \mu_2(f(x_1^n)), ..., \mu_n(f(x_1^n))) \\ &\leqslant S^*(S(\mu_1(x_1), \mu_1(x_2), ..., \mu_1(x_n)), ..., S(\mu_n(x_1), \mu_n(x_2), ..., \mu_n(x_n)) \\ &\leqslant S(S^*(\mu_1(x_1), \mu_2(x_1), ..., \mu_n(x_1)), ..., S^*(\mu_1(x_n), \mu_2(x_n), ..., \mu_n(x_n)) \\ &= S([\mu_1 \cdot \mu_2 \cdot ... \cdot \mu_n]_{S^*}(x_1), ..., [\mu_1 \cdot \mu_2 \cdot ... \cdot \mu_n]_{S^*}(x_n)) \end{split}$$

and for all $x \in G$, we have

$$[\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_n]_{S^*}(\overline{x}) = S^*(\mu_1(\overline{x}), \mu_2(\overline{x}), \dots, \mu_n(\overline{x}))$$

$$\leq S^*(\mu_1(x), \mu_2(x), \dots, \mu_n(x))$$

$$= [\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_n]_{S^*}(x).$$

Hence, $[\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_n]_{S^*}$ is a s-fuzzy n-ary subgroup of (G, f). This completes the proof.

Let (G,f) and (G',f) be an n-ary groups. A mapping $g:G\to G'$ is an onto homomorphism. Let S and S^* be functions induced by t-conorm such that S^* dominates S. If μ_1^n are s-fuzzy n-ary subgroup of (G,f), then the S^* -product of $\mu_1^n, [\mu_1 \cdot \mu_2 \cdot \ldots \cdot \mu_n]_{S^*}$ is a s-fuzzy n-ary subgroup. Since every onto homomorphic inverse image of a s-fuzzy n-ary subgroup, the inverse images $g^{-1}(\mu_1), g^{-1}(\mu_2), \ldots, g^{-1}(\mu_n)$ and $g^{-1}([\mu_1 \cdot \mu_2 \cdot \ldots \cdot \mu_n]_{S^*})$ are s-fuzzy n-ary subgroup (G,f).

The following theorem provides the relation between $g^{-1}([\mu_1 \cdot \mu_2 \cdot \ldots \cdot \mu_n]_{S^*})$ and S^* -product $([g^{-1}(\mu_1) \cdot g^{-1}(\mu_2) \cdot \ldots \cdot g^{-1}(\mu_n)]_{S^*})$ of $g^{-1}(\mu_1), g^{-1}(\mu_2)$ and $g^{-1}(\mu_n)$.

Theorem 4.2. Let (G, f) and (G', f) be an n-ary groups. A mapping $g: G \to G'$ is an onto n-ary homomorphism. Let S^* be a function induced by t-conorm such that S^* dominates S. Let μ_1^n be s-fuzzy n-ary subgroups of (G, f). If $[\mu_1 \cdot \mu_2 \cdot \ldots \cdot \mu_n]_{S^*}$ and is the S^* -product of μ_1^n , and $([g^{-1}(\mu_1) \cdot g^{-1}(\mu_2) \cdot \ldots \cdot g^{-1}(\mu_n)]_{S^*})$ is the S^* -product of $g^{-1}(\mu_1), g^{-1}(\mu_2), \ldots g^{-1}(\mu_n)$ then

$$g^{-1}([\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_n]_{S^*}) = [g^{-1}(\mu_1) \cdot g^{-1}(\mu_2) \cdot \dots \cdot g^{-1}(\mu_n)]_{S^*}.$$

PROOF. Let $x \in G$, we have

$$g^{-1}([\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_n]_{S^*})(x) = ([\mu_1 \cdot \mu_2 \cdot \dots \cdot \mu_n]_{S^*})(g(x))$$

$$= S^*(\mu_1(g(x)) \cdot \mu_2(g(x)) \cdot \dots \cdot \mu_n(g(x)))$$

$$= S^*(g^{-1}(\mu_1)(x) \cdot g^{-1}(\mu_2)(x) \cdot \dots \cdot g^{-1}(\mu_n)(x))$$

$$= [g^{-1}(\mu_1) \cdot g^{-1}(\mu_2) \cdot \dots \cdot g^{-1}(\mu_n)]_{S^*}.$$

This completes the proof.

Acknowledgement: The author is extremely grateful to the learned referee's for their valuable comments and suggestions which helped me a lot for improving the standard of this paper.

References

- M.Akram and J.Zhan. On sensiable fuzzy ideals of BCK-algebras with respect to t-conorm. Int. J. Math. Math. Sci. Volume 2006, Article ID 35930, Pages 112.
- B.Davvaz and W.A. Dudek. Fuzzy n-ary groups as a generalization of Rosenfeld's fuzzy groups. Journal of Multiple-Valued Logic and Soft Computing 15(5-6)(2009), 451-469.
- [3] W. Dörnte. Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z., 29(1928), 1-19.
- [4] W.A. Dudek. Remarks on n-groups. Demonstratio Math., 13 (1980), 165-181.
- [5] W.A. Dudek. Autodistributive n-groups. Commentationes Math. Annales Soc. Math. Polonae Prace Matematyczne, 23(1983), 1-11.
- [6] W.A. Dudek. On (i, j)-associative n-groupoids with the non-empty center. Ricerche Mat. (Napoli), 35(1986), 105-111.
- [7] W.A. Dudek. Medial n-groups and skew elements, in: Proc. V Universal Algebra Symp. "Universal and Applied Algebra" (pp. 55-80). Turawa 1988, World Scientic, Singapore 1989.
- [8] W.A. Dudek. On n-ary group with only one skew element. Sarajevo J. Math. (Formerly: Radovi mat., 6(2)(1990), 171-175.
- [9] W.A. Dudek. Varieties of polyadic groups. Filomat, 9(3)(1995), 657-674.
- [10] W.A. Dudek. Fuzzification of n-ary groupoids. Quasigroups and Related Systems, 7(2000), 45-66.
- [11] W. A, Dudek. Idempotents in n-ary semigroups. Southeast Asian Bull. Math., 25(2001), 97-104.
- [12] W.A. Dudek. On some old and new problems in n-ary groups. Quasigroups and Related Systems, 8(2001), 15-36.
- [13] W.A. Dudek. Intuitionistic fuzzy approach to n-ary systems. Quasigroups and Related Systems, 15(2005), 213-228.
- [14] W.A. Dudek. Remarks to Glazeks results on n-ary groups, Discussiones Mathematicae, General Algebra and Applications, 27(2)(2007), 199-233.
- [15] W. A. Dudek and K. GAlazek. Around the Hossz'u-Gluskin Theorem for n-ary groups. Discrete Math., 308(21)(2008), 4861-4876.

- [16] W.A. Dudek and J.Michalski. On a generalization of Hosszú theorem, Demonstratio Mathematica, 15(1982), 783-805
- [17] W.A. Dudek, K. Gazek and B. Gleichgewicht. A note on the axioms of n-groups, Colloquia Math. Soc. J. Bolyai 29 (Universal Algebra, Esztergom (Hungary), (1977), 195-202 (North-Holland, Amsterdam 1982).
- [18] W.A. Dudek and I. Grozdzinska. On ideals in regular n-semigroups. Mat. Bilten Skopje, 3/4 (29/30) (1979-1980), 35-44.
- [19] W.A. Dudek and J. Michalski. On a generalization of Hossz theorem. Demonstratio Math., 15(1982), 783-805.
- [20] W.A. Dudek and J. Michalski. On retracts of polyadic groups. Demonstratio Math., 17(1984), 281-301.
- [21] W.A. Dudek and J. Michalski. On a generalization of a theorem of Timm. *Demonstratio Math.*, 18 (1985), 869-883.
- [22] W.A. Dudek and Z. Stojakovic. On Rusakovs n-ary rs-groups. Czechoslovak Math. J., 51 (126) (2001), 275-283.
- [23] J.W. Grzymala-Busse. Automorphisms of polyadic automata. J. Assoc. Comput. Mach., 16 (1969), 208 - 219.
- [24] B Jagadeesha, K.B Srinivas and K.S Prasad. Interval valued L-fuzzy ideals based on t-norms and t-conorms. J. Intell. Fuzzy Syst., 28(6) (2015), 2631 - 2641.
- [25] R.Karner. Ternary algebraic structures and their applications in physics, Univ. P. and M.Curie, Paris 2000.
- [26] R.Kasner. An extension of the group concepts. Bull. Amer. Math. Soc., 10(1904), 290-291.
- [27] D. Nikshych and L. Vainerman. Finite quantum groupoids and their Applications. Univ. California, Los Angeles 2000.
- [28] A.Rosenfeld. Fuzzy groups. J. Math. Anal. Appl., ${\bf 35}$ (1971), 512 517.
- [29] A.Zadeh. Fuzzy sets. Inf. Control, 8 (1965), 338 353.

Reseived by editors 02.09.2016; Revised version 02.10.2016; Available online 17.10.2016.

DEPARTMENT OF INFORMATION TECHNOLOGY, COLLEGE OF APPLIED SCIENCES, MINISTRY OF HIGHER EDUCATION, PB:135, SOHAR-311, SULTANATE OF OMAN.

 $E\text{-}mail\ address: \verb|princeshree10gmail.com||$