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A STUDY OF n-ARY SUBGROUPS
WITH RESPECT TO t-CONORM

D.R. Prince Williams

ABSTRACT. In this paper, we introduce a notion of fuzzy n-ary subgroups with
respect to t-conorm(s-fuzzy m-ary subgroups) in an n-ary groups (G, f) and
have studied their related properties. The main contribution of this paper are
studying the properties of s-fuzzy n-ary subgroups over s-level n-ary subgroup
of (G, f), n-ary homomorphism and retq(G, f). Moreover some results of
the S-product of s-fuzzy n-ary relations in an n-ary groups (G, f) are also
obtained.

1. Introduction

The theory of fuzzy set was first developed by Zadeh [29] and has been applied
to many branches in mathematics. Later fuzzification of the “group” concept into
“fuzzy subgroup” was made by Rosenfeld [28]. This work was the first fuzzification
of any algebraic structure and thus opened a new direction, new exploration, new
path of thinking to mathematicians, engineers, computer scientists and many others
in various tests.The study of n-ary systems was initiated by Kasner [26] in 1904,
but the important study on n-ary groups was done by Dornte [3]. The theory of n-
ary systems have many applications. For example, in the theory of automata [23],
n-ary semigroup and n-ary groups are used. The n-ary groupoids are applied
in the theory of quantum groups [27]. Also the ternary structures in physics are
described by Kerner in [25]. The n-ary system dealt in detail [4-9,11,12,14-22]. The
first fuzzification of n-ary system was introduced by Dudek [10]. Moreover Davvaz
et. al [2] have studied fuzzy m-ary groups as a generalization of Rosenfeld’s fuzzy
groups and have investigated their related properties. The notion of intuitionistic
fuzzy sets, as a generalization of the notion of fuzzy set. Dudek [13] has introduced
intuitionistic fuzzy sets idea’s in n-ary systems and has discussed in detail.
Triangular norm(¢-norm) and triangular conorm(¢-conorm) are the most general
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104 D.R. PRINCE WILLIAMS

families of binary operations that satisfy the requirement of the conjunction and
disjunction operators, respectively. Thus, the t-norm generalizes the conjunctive
(AND) operator and the ¢-conorm generalizes the disjunctive (OR) operator. In
application, t-norm 7" and ¢-conorm S are two functions that map the unit square
into the unit interval. To study more about t-conorm see [24]. In this paper,we
introduce the notion of fuzzy n-ary subgroups with respect to t-conorm ( s-fuzzy n-
ary subgroup ) in n-ary group (G, f) and have investigated their related properties.

2. Preliminaries

A non-empty set G together with one n-ary operation f : G™ — G,where
n > 2, is called an n-ary groupoid and is denoted by (G, f). According to the
general convention used in the theory of n-ary groupoids the sequence of elements
Ti, Tig1, ..., 2, is denoted by 2. In the case j < i , it denoted the empty symbol.

. ; . @ .
If 2,01 = 442 = ... = 2434 = x, then instead of xzii and we write . In this
convention

f(xlv 7T’n) = f(l‘?)

and

i (1)
J(@1y ooy @4, Ty oo X Ty g1, s Tn) = f(2], T, 274
t
An n-ary groupoid (G, f) is called an (i, j)-associative if

P fagt a2t = (2 pa ) a2

hold for all xq,...,z2,—1 € G.If this identity holds for all 1 < ¢ < j < n,then we
say that the operation f is associative and (G, f) is called an n-ary semigroup. It
is clear that an n-ary groupoid is associative if and only if it is (1, j)-associative
for all j = 2,..,n. In the binary case (i.e. n=2)it is usual semigroup.If for all
2o, L1, ..., Ty € G and fixed i € {1,...,n} there exists an element z € G such that

F ez aly) =20 1

then we say that this equation is i-solvable or solvable at the place i. If the solution
is unique,then we say that (1) is uniquely i-solvable. An n-ary groupoid (G, f)
uniquely solvable for all i = 1,...,n is called an n-ary quasigroup . An associative
n-ary quasigroup is called an n-ary group .

Fixing an n-ary operation f, where n > 3, the elements a} 2 we obtain the new
binary operation z oy = f(x,a} %,y). If (G, f) is an n-ary group then (G, o) is
a group. Choosing different elements a§72 we obtain different groups. All these
groups are isomorphic[8]. So, we can consider only group of the form

ret,(G, f) = (G,0), where zoy = f(x, (ngz),y).

n—3
In this group e = @,z~ ! = f(a,( a ),5,6).

In the theory of n-ary groups, the following Theorem plays an important role.
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THEOREM 2.1. For any n-ary group (G, f) there exist a group (G, o), its auto-
morphism ¢ and an element b € G such that

f(al) =10 @(@2) 0 p*(x3) 0 o0 9" () 0 b (2)
holds for all 7 € G.

In what follows, G is a non-empty set and (G, f) is an n-ary group unless
otherwise specified.

DEFINITION 2.1. By a t-norm , a function T : [0,1] x [0,1] — [0, 1]satisfying
the following conditions is meant:

(T1) T(z,1) = x;

(T2) T(z,y) < T(x,2) ify < z;

(T3) T(x,y) =T(y,x);

(T4) T(x,T(y, 2)) = T(T(x,y),2);

for all z,y, z € [0,1].

DEFINITION 2.2. By a t-conorm , a function S : [0,1] x [0,1] — [0, 1]satisfying
the following conditions is meant:

(S1) S(z,0) = x;

(52) S(x, y) S(:Jc,z) ify <

(53) S(x,y) = S(y,x);

(54) S(x,5(y,2)) = S(S(x,y), 2);

for all z,y, z € [0,1].

Replacing 0 by 1 in condition (S1), we obtain the concept of t-norm T'.
DEFINITION 2.3. Given a t-norm T and a t-conorm S, T and S are dual (with

respect to the negation /) if and only if (T'(x,y)) = S(2',y').

Now we generalize the domain of S to [] [0, 1] as follows:
i=1

DEFINITION 2.4. The function S H [0,1] — [0,1] is defined by:
—1(a

Sﬂ(a?) :Sn(Oéh(lQ,...,Oén) (aw 1a"'aai—17ai+1a"'aan))

foralll <i<nn>2.

For a t-conorm S on [] [0,1], it is denoted by
i=1

A= {a €[0,1]|S(a, a,...,a) = a}.
It is clear that every t-conorm has the following property:
S(af) = max{ai, ag, ..., }

for all o € [0, 1].
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3. s-fuzzy n-ary subgroups

DEFINITION 3.1. A fuzzy set p in G is called a s-fuzzy n-ary subgroup of (G, f)
if the following axioms holds:

(SFnS1) (Vap € G), (u(f (1)) < S{p(1), oo n(za)}),
(SFnS2) (Vo € G), (u(z) < p(x)).

EXAMPLE 3.1. Let (Zy4, f) be a 4-ary subgroup derived from additive group
Zy4. Define a fuzzy subset p in Zy4 as follows:

] 01 ifxz=0,
plz) = { 0.7 ifx=123.
4
and let S: J] [0,1] — [0, 1] be a function defined by as follows:
i=1
S(x1) = min {xy + 29 + 23 + 24,1}
for all z{ € [0,1] and a function f is defined by
f(x]) = @1 44 22 +4 T3 +4 24, V2] € Zy.
By routine calculations, we know that p is a s-fuzzy 4-ary subgroup of (Zy, f).

THEOREM 3.1. If {p;|i € I} is an arbitrary family of s-fuzzy n-ary subgroup of
(G, f) then Ui is s-fuzzy n-ary subgroup of (G, f), where |JA; =\ p;, where
V pi(x) = sup{ui(z)|r € G and i € I}.

PROOF. The proof is trivial. O

THEOREM 3.2. If u is a fuzzy set in G is a s-fuzzy n-ary subgroup of (G, f),
then so is u', where y/ =1 — p.

Proor. It is sufficient to show that p’ satisfies conditions (SFnS1) and (SFnS2).
Let 27 € G. Then

' (f (1))

1 — p(f(21))

1= S{u(@1), ..., p(zn)}t
S{1 = p(a1), s 1 — pulan)}
S{' (1), .o W/ (20) }-

NN

)

and
p(@) =1-p@) <1—p(z) =p(x)
Hence 1/ is a s-fuzzy n-ary subgroup of (G, f). O
The following Lemma gives the relation between T and S.
LEMMA 3.1. Let T be a t-norm. Then the t-conorm S can be defined as
SE})=1-T(1 —21,1 —x9,...,1 —x,), V] € G.

PROOF. Straightforward. O
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The following Theorem gives the relation between t-fuzzy n-ary subgroup and
s-fuzzy n-ary subgroup of G.

THEOREM 3.3. A fuzzy set p of G is a t-fuzzy n-ary subgroup of (G, f) if and
only if its complement ' is a s-fuzzy n-ary subgroup of (G, f).

PROOF. Let u be a t-fuzzy n-ary subgroup of (G, f). For all 27 € G, we have
p(fy) = 1—n(fr))

1- T{:u(xl)v ’u(l‘g)7 ceey ,[L(l’n)}

1- T{l - //(xl)v 1- /-/(xQ)’ ) 1- /.L/(l‘n)}

S{w/ (@), 1 (w2), - 1/ () }.

([N

For all z € G, we have
W@ =1-p@ < 1-p)=p(2).

The converse is proved similarly. (]

DEFINITION 3.2. Let p1 be a fuzzy set in G and let t € [0,1]. Then the set
L(p;t) == {z € Glu(z) < t}
is called anti-level subset 1 of G.
The following Theorem is a consequence of the Transfer Principle described in
[26].

THEOREM 3.4. A fuzzy set u in G, is a s-fuzzy n-ary subgroup of (G, f) if
and only if the anti-level subset L(u;t) of G is an n-ary subgroup of (G, f) for every
t € [0, 1], which is called s-level n-ary subgroup of (G, f).

PROOF. Let u be a s-fuzzy n-ary subgroup of (G,f). If 2% € G and t €
[0,1],then p(z;) <t for all i =1,2,...,n. Thus
u(f(at) < S{pu(zr), ..o plzn)} <t
which implies f(x}) € L(u;t). Moreover, for some x € L(p;t), we have

n((T) < plx)) <t
which implies T € L(p;t). Thus L(u;t) is an n-ary subgroup of (G, f).
Conversely, assume that L(u;t) is an n-ary subgroup of (G, f). Let us define

to = S{u(x1), ., )},
for some zt € G.Then obviously = € L(u;to) , consequently f(xt) € L(u;to).
Thus
Now, let z € L(u;t). Then u(x) = to < t. Thus © € L(u;tp). Since ,by the
assumption, T € L(u;to). Whence u(Z) < to = p(x). This complete the proof. O

Using the above theorem, we can prove the following characterization of s-fuzzy
n-ary subgroups.
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THEOREM 3.5. A fuzzy set p in G, is a s-fuzzy n-ary subgroup of (G, f) if
and only if the anti-level subset L(u;t) of G is an n-ary subgroup of (G, f) for all
1=1,2,...,n and all 2} € G, p satisfies the following conditions:

(1) p(f(@t) < S{u(w1), .., u(wn)},
(@) p(zi) < S{p(@1), ooy p(@iz1), p(f(@7))s (@im1), ooy () }-

PROOF. Assume that p is a s-fuzzy n-ary subgroupof (G, f). Similarly as in
the proof of Theorem 3.4, we can prove the non-empty level subset L(u;t) under
the operation f, that is 7 € L(p;t) implies f(z}) € L(u;t).

Now let xo,a:’fl,x;q_l, where zo = f(a:’fl,z,ac?_s_l) for some i = 1,2,...,n and
z € G which implies xg € L(p;t). Then, according to (i7), we have u(z) < t. So,
the the equation (1) has a solution z € p(t). This mean that level subset L(u;t) is
an n-ary subgroups.

Conversely, assume that level subset L(u;t) is an n-ary subgroups of (G, f).
Then it is easy to prove the condition (3).

For z7 € G, we define

to = S{p(xr), s plwiza), (f (1)), (@i1)s oo i @) }-

Then 2}~ ', 27, f(z7) € L(u,to). Whence, according to the definition of n-ary
group, we conclude z; € L(u,tg). Thus pu(x;) < to. This proves the conditions
(i4). O

DEFINITION 3.3. Let (G, f) and (G, f) be an n-ary groups. A mapping
g : G — G is called an n-ary homomorphism if g(f(z7)) = f(g"(x})), where

g (7)) = (9(z1), ..., g(xy)) for all 2} € G.
For any fuzzy set u in G’, we define the preimageof u under g, denoted by
g (), is a fuzzy set in G defined by
97 (1) = pg-1(2) = p(g(x)),Vx € G.

For any fuzzy set u in G, we define the image of p under g, denoted by g(u),
is a fuzzy set in G’ defined by

inf plx), if 97 (y) # ¢,
9 (1) (y) =4 ='W

0, otherwise.
forall z € G and y € G'.

THEOREM 3.6. Let g be a n-ary homomorphism mapping from G into G’ with
9(Z) = g(x) for allz € G and p is a s-fuzzy n-ary subgroup of (G', f). Then g=—1(u)
is a s-fuzzy n-ary subgroup of (G, f).

PROOF. Let 2} € G, we have
pg—r(f(21)) = wlg(f(z7)) = p(f(g"(21)))

S{ug(x1), ., m(g(xn)}
S{Mgfl(xl)v "'7/1'5'*1(1'71)}'

N
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and
pg—1(T) = p(g(@)) < plg(x)) = pg-1() ().
This completes the proof. O

If we strengthen the condition of g, then we can construct the converse of
Theorem 3.6 as follows.

THEOREM 3.7. Let g be a n-ary homomorphism from G into G' and g~ (u) is
a s-fuzzy n-ary subgroup of (G, f). Then u is a s-fuzzy n-ary subgroup of (G, f).

PRrROOF. For any x; € G', there exists a1 € G such that g(a;) = z; and for any
f(z}) € (G, f), there exists f(a}) € (G, f) such that g(f(al)) = f(z]). Then
n(f(z1)) w(g(f(ay)) = pg-1(f(ay))
S{pg-1(a1), pg-1(az), ..., pg-1(an)}
= S{ulglar), ..., n(g(an)}
= S{plw1), o i)}

For any T € G, there exists @ € G such that g(a) = Z, we have

N

w(@ = wg(@) = pg-1(a) < pg-1(a) = pla) = p(x).
This completes the proof. O
THEOREM 3.8. Let g : G — G’ be an onto mapping. If 1 is a s-fuzzy n-ary
subgroup of (G, f), then g(u) is a s-fuzzy n-ary subgroup of (G', f).

PROOF. Let g be a mapping from G onto G' and let 27 € G, y" € G'. Noticing
that

{xi(i = 1’27 7n)|xl S g_l(f(y?))} -
{f(2?) € Glz1 € g7 (1), 22 € g7 (Y2), -y Tn € 9 (yn))}

we have

g(w)(f(y1)

= inf{u(=!)|z; € g7 (f(y1))}

<inf{u(f(@)|zr € g7 (1), 22 € 97 (Y2)s o tn € 97 (yn))}

< inf{max{p(z1), p(x2), ... w(zn) 1 € g7 (1), 22 € g7 (Y2), 0 € 97 (yn))}

= max{inf{p(z1)|z1 € g~ (1)}, inf{pu(z2)|z1 € g7 (y2)}, o inf{pu(zn)|z1 € g (yn)}}
< S{g() (1), g(1) (y2), -+ 9(12) (yn) }-

and

9@ = inf{u@T e g™ (f@)} <influl@)lz € g7 (f(¥)} = g9(w) ().
This completes the proof. U
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COROLLARY 3.1. A fuzzy subset u defined on group (G,.) is a s-fuzzy subgroup
if and only if
(1) w(xy) < S{u(x), 1(y)},
(2) w(x) < S{p(y), p(xy ){

(3) uly) < S{u(x), p(zy)
holds for all x,y € G.

THEOREM 3.9. Let p be a s-fuzzy subgroup of (G,.). If there exists an element
a € G such that u(a) < p(x) for every x € G, then p is a s-fuzzy subgroup of a
group ret, (G, f).

PRrROOF. For all z,y,a € G, let if possible u is not a s-fuzzy subgroup of a
group ret, (G, f). Then we have u(x oy) > S{u(x), u(y)}. That is

S{u(),u(@)} < plzox)
= p(f(, " 2))
(n-2)

< S{ua), u(a), plx)}
S{n(a) u(@)} < S{u(a).pla)}.

This holds only if u(a) > p(x), which is contradiction to our assumption p(a) <
().

Also, we have p is a s-fuzzy subgroup of (G,.). Thus p(z~1) < p(x) is obvious
for all z € G.
which complete the proof. O

In Theorem 3.9, the assumption that p(a) < p(x) cannot be omitted.

EXAMPLE 3.2. Let (Zg, f) be a 4-ary group from Example 3.1.
Define a fuzzy set p as follows:

{04, ifx=0,
“(x){ 1, ifz=1,23.

Clearly, u is a s-fuzzy 4-ary subgroup of (Z4, f). For ret1(Zy, f), define

_ | maz(z,y) ifz=y,
S(a,y) = { min(z +y, 1) ifx#y.

we have

£1(000) = p((£(0,1,1,0)) = pu(2) = 1£0.4 = p(0) = S{1(0), u(0)}.
Hence the assumptions pu(a ) p(x) cannot be omitted.
THEOREM 3.10. Let (G, f) be an n-ary group. If pu is a s-fuzzy n-ary subgroup
of a group rety (G, f) and ,u(a) < p(x) for all a,x € G, then p is a s-fuzzy n-ary
subgroup of (G, f).
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PROOF. According to Theorem 2.1, any n-ary group can be represented of the
n—2
form (2), where (G,0) = reto(G, f), p(z) = f(ﬁ,x,( a )) and b = f(a,...,a). Then

we have
(@) = p(f (@2, "a”)) < S{u(@), (@), ma)} < (o).

ple*(@) = plF @ 0lw), ") < ${u(@), up(@), 1@} < S{u(@), u(z), w(@)} < ().
Consequently, u(¢" (x)) << p(z). for all 2 € G and k € N.

Similarly, for all x € G we have

/J'(b) = /.L(f(a, "'76)) < M(E) < M(J?)
Thus

u(f(2) = wzrop(ze) o’ (zs ©" () 0 b)

o ( ) o
< S{pu(@r), ple(x2)), p(@® (23)), ooy (™ > (wn)), u(b) }
< S{p(xr), p(@2), p(@3), ooy @), u(b)}
< w(za), p(x3), -
£

o...

n
S{u(z1), plx2), 1 s () }-

[3], we have

x3),

)

From (4) and (7) o

7= (u(@o p(x) o p*(x) 0 ..o " () o)

Thus
w@ = u ((Eo () o p*(x)o...00" 2(x)o b)il)
< (@0 () o p?(@) o 0" 2(x) o)
< S{u@, wlp(@)), wl@® (@), o ule™ (), u(b)}
< S{p(@), wd)} = p(z).
This completes the proof. O

COROLLARY 3.2. If (G, f) is a ternary group, then any s-fuzzy subgroup of
reto (G, f) is a s-fuzzy ternary subgroup of (G, f).

PROOF. Since @ is a neutral element of a group ret, (G, f) then u(@) < p(z),
for all z € G. Thus p(a) < p(a). But in ternary group @ = a for any a € G, whence
wula) = p(@) < p(@) < p(x). So, p(a) = p(@) < p(z), for all x € G. This means
that the assumption of Theorem 3.10 is satisfied. Hence ret,(G, f) is a s-fuzzy
ternary subgroup of (G, f). This completes the proof. (]

ExaMPLE 3.3. Consider the ternary group (Zis, f), derived from the additive
group Zja. Let p be a s-fuzzy subgroup of the group of ret; (G, f) induced by
subgroups S1 = {11}, S = {5,11} and S5 ={1,3,5,7,9,11}. Define a fuzzy set u
as follows:

01 if x=11,
0.3 if r=05,
p@) =9 5 if x=1,3,7,09,
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Then
pd)=pu(7) =05 £ 03=pu(5).

Hence p is not a s-fuzzy ternary subgroup of (Zis, f).

Observations. From the above Example 3.3 it follows that:

(1) There are s-fuzzy subgroups of ret, (G, f) which are not s-fuzzy n-ary subgroups
of (G,f).

(2) In Theorem 3.10 the assumption p(a) < p(x) can not be omitted. In the above
example we have p(1) = 0.5 £ 0.3 = pu(5).

(3) The assumption p(a) < p(x) cannot be replaced by the natural assumption
wu(@) < p(z). (ais the identity of ret,(G, f)). In the above example 1 = 11, then
1(11) < p(x) for all & € Zs.

THEOREM 3.11. Let (G, f) be an n-ary group of b-derived from the group
(G,0). Any fuzzy set i of (G,0) such that pu(b) < p(z) for every x € G is a s-fuzzy
n-ary subgroup of (G, f).

PROOF. The condition (SFnS1) is obvious. To prove (SFnS2), we have n-ary
group (G, f) b-derived from the group (G, o), which implies

(1’”72 o b)fl,

T =
where "2 is the power of z in (G, 0)[4] .
Thus, for all x € G

pE@) = p(@"2ob)™) <p(a" 2 ob)Th < S{p(a"7?), u(b)} = ulw).
This complete the proof. O

COROLLARY 3.3. Any s-fuzzy subgroup of a group (G,o) is a s-fuzzy n-ary
subgroup of an n-ary group (G, f) derived from (G, o).

PROOF. If n-ary group (G, f) is derived from the group (G,o) then b = e.
Thus p(e) < p(x) for all x € G. O

4. S-product of s-fuzzy n-ary relations
DEFINITION 4.1. A fuzzy n-ary relation on any set G is a fuzzy set
p:G"=GxGx..xG(n times) = [0,1].

DEFINITION 4.2. Let p be fuzzy n-ary relation on any set G and v is a fuzzy
set on G. Then u is called s-fuzzy n-ary relation on v if

p(ay) < S(v(a),v(ws), ..., v(an)),
for all 27 € G.

DEFINITION 4.3. Let u} = pi, fo, ..., bn be a fuzzy sets in G. Then direct
S-product of ut is defined by

(1 X pr2 X oo X g )(27) = S(p1(21), p2(22), ooy i (), V! € G.
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LEMMA 4.1. Let S be a function induced by t-conorm and let ui be a fuzzy sets
in G. Then

(i) g1 X s pa X5 ... X5 n 8 a s-fuzzy n-ary relation on G,

(1) L(py X po X ooo X fipn;t) = L{pq;t) X Lpe;t) X ... X L(ug;t),VE € [0,1].

PROOF. The proof is obvious. O
DEFINITION 4.4. Let S be a function induced by t-conorm. If v is a fuzzy set

in G, the strongest s-fuzzy n-ary relation on G that is a s-fuzzy n-ary relation on
vV 1S [y, given by

py(23) = S(w(zr), v(xe), ..., v(zy)), Vol € G.
LEMMA 4.2. For a given fuzzy set v in G, let u be the strongest s-fuzzy n-ary
relation of G. Then for t € [0,1], L(uy;t) = L(v;t) x L(v;t) x ... x L(v;t).
PROOF. The proof is obvious. O
PROPOSITION 4.1. Let S be a function induced by t-conorm and let j1, 12, ..., tin

be s-fuzzy m-ary subgroup of (G, f). Then, p1 X pa X ... X iy, is a s-fuzzy n-ary
subgroup of (G™, f).

PrOOF. For 27 € G and f(27) = (fi(a]), ..., fu(z})) € (G™, f),we have
)

(1 X pr2 Xy ey X pin ) (f ()

= (1 X p2 X, oy X ) (f1 (@), s fr(21))

= S{M(f(ff)) 2(f(@1))-s i (f (27))}

< S{S{m(@1), pa(@2), .oy pa(an) by oo S{pn (@1), pin(22), s i (w0) 1}
= S{(p1 X pra X coo X ) (@1, ey 1)y oeey (1 X 2 X eoe X i) Ty vy T)
= S{(p1 X p2 X oo X pn)(@1), ooy (1 X 2 X oo X ) (@) -

and for all = 27,7 =77 € G", we have

(1 X 2%, ooy X ) () = (1 X p2 X, ooy X fi ) (T4, oo, Ty
= S{m(@1), s in(Tn) }

< S{(pa(@a)s e pn(n))}
= (1 X p2 X oo X pp) (27)
= (p1 X p2 X oo X fig) ().
This completes the proof. O

The following Corollary is the immediate consequence of Proposition 4.1.

COROLLARY 4.1. Let S be a function induced by t-conorm and let [] (Gi, f)
i=1

be the finite collection of n-ary subgroups and G = [] G; the S-product of G;. Let
i=1
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wi be a s-fuzzy n-ary subgroup of (G, f), where 1 < i < n. Then,u = [] p; defined

i=1
by
= [ wi@@?) = S(u(1), w(@a), ..., p(n)).-
i=1
Then p is as-fuzzy n-ary subgroup of (G, f). O

DEFINITION 4.5. Let u} be fuzzy sets in G. Then, the S-product of p7, written
as [ty -« o« ... - lnls, s defined by:

(b1 - p2 - e pin]s (@) = S(pa (@), p2 (), ... pn (7)) Vo € G.

THEOREM 4.1. Let uf be s-fuzzy n-ary subgroup of (G, f). If S* is a function
induced by t-conorm dominates S, that is,

S*(S(1), S(Wr)s - S(21)) < S(S™ (w1, Y1500 21), 0y 8™ (T, Yy oo0s 20))

for all 2%, 4y}, ..., 20 € [0,1]. Then S*-product of uy, [p1-p2- ...  tnlsh, is a s-fuzzy
n-ary subgroup of (G, f).

ProoF. Let 27 € G, we have

1 2 e fin]s (f(27))

S*(pa (f (7)), p2(f(@1)), ooy i (f (7))

S* (S (@), 1 (@2), ooy f11(20)) ooy S (b (1) o (T2), s i ()
S(S™ (1), p2(@1); oo in (1)), oy S™ (1 (20), p12(20), s i ()
= S([p1 - pa - -Mn]s*($1)7~--7[ul'M2-~-~-Mn]s*($n))

<
<

and for all z € GG, we have

bz ol (8) = S (), (@), s 1 ()
< S*(ﬂl(w)af‘@(z)vaﬂn(ID
= (g1 p2 o pn]se ().

Hence, [p1 - po - ... « pin]s+ is a s-fuzzy n-ary subgroup of (G, f). This completes
the proof. O

Let (G, f) and (G', f) be an n-ary groups. A mapping g : G — G’ is
an onto homomorphism. Let S and S* be functions induced by ¢-conorm such
that S* dominates S. If u} are s-fuzzy n-ary subgroup of (G, f), then the
S*-product of uf,[u1 - p2 - ... - fin]s+ is a s-fuzzy n-ary subgroup. Since every
onto homomorphic inverse image of a s-fuzzy n-ary subgroup, the inverse images
9 (1), 97 (p2)s - g7 () and g7" ([p1 - pig - oo - pin]s+) are  s-fuzzy n-ary sub-
group (G, f).

The following theorem provides the relation between g~ ([ [y 2 e ] )
and §*-product ([g~ (11)-g~ (12)----g~ (1a))s+) of g~ (s12), g~ (1) and g~ (1r):
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THEOREM 4.2. Let (G, f) and (G', f) be an n-ary groups. A mapping g : G —

G’ is an onto n-ary homomorphism . Let S* be a function induced by t-conorm
such that S* dominates S. Let up be s-fuzzy n-ary subgroups of (G, f). If
(1112 .. pin] s+ and is the S*- product of i, and ([g= (1) g~  (12)--- g~ (1n)]5+)
is the S*-product of g='(u1), g7 (pa), ...~ (un) then

g ([ pz o pnlse) = g7 (a) g~ (p2) oo g™ ()] s--
PROOF. Let x € G, we have

9 (- p2 - pnls=) (@) = ([pa - p2 oo pnlse)(g(x))
= S"(u(g(x)) - p2(g(@)) - o - pn(g(2)))
= (g M) (@) - g (u2) (@) - o g7 () ()
= g () - g (m2) - g (pn)]s--
This completes the proof. O
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