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A NUMERICAL METHOD

FOR THE SOLUTION OF GENERAL

THIRD ORDER BOUNDARY VALUE PROBLEM

IN ORDINARY DIFFERENTIAL EQUATIONS

Pramod Kumar Pandey

Abstract. In this article we have considered general third order boundary

value problems and proposed an efficient difference method for numerical so-
lution of the problems. We have shown under appropriate conditions that
proposed method is convergent and second order accurate. The numerical re-
sults in experiment on test problems show the simplicity and efficiency of the

method.

1. Introduction

The occurrences of differential equations are of common in modeling and studies
of physical phenomena in natural and applied sciences.Third order BVPs arise in
the study of aeroelasticity, sandwich beam analysis and beam deflection theory,
electromagnetic waves, theory of thin film flow and incompressible flows are some
specific subject in natural and applied science.

In this article we consider a direct method for the numerical solution of the
third order boundary value problems of the following form

(1.1) u′′′(x) = f(x, u, u′, u′′), a 6 x 6 b,

subject to the boundary conditions

u(a) = α, u′(a) = β and u′(b) = γ

where α, β and γ are real constant.

The theoretical concepts of existence, uniqueness and convergence of the solu-
tion of problem (1.1) can be found in the literature [1, 2, 3, 4, 5, 6]. The specific

2010 Mathematics Subject Classification. 65L10, 65L12.
Key words and phrases. Boundary Value Problem, Difference Method, Explicit Inverse, Sec-

ond Order Convergence, Third Order Differential Equation.

129



130 P.K.PANDEY

assumption further to ensure existence and uniqueness of the solution problem (1.1)
will not be considered. Thus the existence and uniqueness of the solution to prob-
lem (1.1) is assumed. Further we assume that problem (1.1) is well pose. In general
analytical solution of model problems of this class is not available, we depend on
numerical solution of these BVPs. The emphasis in this article will be on the de-
velopment of an efficient numerical method to deal with approximate numerical
solution of the third order boundary value problem.

Some efficient and accurate numerical methods for solving higher order bound-
ary value problems are available in literature. Some researchers have studied and
solved third order boundary value problems with different boundary conditions us-
ing different methods for instance some literary work in Finite Difference Method
[7], Quintic Splines [8], Quartic splines[9] Non polynomial spline [10], Quartic
B-splines [11], Haar wavelets method[12], Collocation quantic spline [13], Repro-
ducing Kernel Method [14] and references therein can be found. With advent of
computers it gained important to develop more accurate numerical methods to
solve higher order boundary value problems. Hence, the purpose of this article is
to develop an efficient numerical method for solution of third order boundary value
problems (1.1).

We have presented our work in this article as follows. In the next section we
proposed a finite difference method. We have discussed derivation and convergence
of the proposed method under appropriate condition in Section 3 and Section 4
respectively. The application of the proposed method on the test problems and
illustrative numerical results so produced to show the efficiency in Section 5. Dis-
cussion and conclusion on the performance of the proposed method are presented
in Section 6.

2. The Difference Method 1

We define N finite numbers of nodal points of the domain [a,b], in which the
solution of the problem (1.1) is desired, as a 6 x0 < x1 < x2 < ...... < xN = b
using uniform step length h such that xi = a + ih, i = 0, 1, 2, ....., N . Suppose
that we wish to determine the numerical approximation of the theoretical solution
u(x) of the problem (1.1) at the nodal point xi, i = 1, 2, ....., N . We denote the
numerical approximation of u(x) at node x = xi as ui . Let us denote fi as the
approximation of the theoretical value of the source function f(x, u(x), u′(x), u′′(x))
at node x = xi, i = 0, 1, 2, ....., N . Thus the boundary value problem (1.1) at node
x = xi may be written as

(2.1) u′′′
i = fi , a < xi < b,

subject to the boundary conditions

u0 = α, u′
0 = β and u′

N = γ.
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Let we define nodes xi± 1
2
= xi± h

2 , i = 1, 2, ...., N−1 and denote ui± 1
2
the solution

of the problem (1.1) at these nodes. Further let us define following approximations,

(2.2) u′
i− 1

2
=



4(u
i− 1

2
−ui−1)−hu′

i−1

h , i = 1
u
i+1

2
−u

i− 3
2

2h , i = 2, 3 < i < N
3u

i− 1
2
−4u

i− 3
2
+u

i− 5
2

2h , i = 3
u
i− 1

2
−u

i− 3
2
+2hu′

i

2h , i = N

(2.3) u′′
i− 1

2
=



h(u
i+1

2
−u

i− 1
2
)−u′

i−1

h2 , i = 1
u
i+1

2
−2u

i− 1
2
+u

i− 3
2

h2 , i = 2, 3 < i < N
−88ui−1+5u

i− 1
2
−6u

i− 3
2
+40u

i− 5
2

8h2 , i = 3
26u

i− 3
2
−25u

i− 1
2
−u

i− 5
2
+24hu′

i

23h2 , i = N

and

f i+ 1
2
= f(xi+ 1

2
, ui+ 1

2
, u′

i+ 1
2
, u′′

i+ 1
2
), i = 1, 2, ...., N − 1,(2.4)

f i− 1
2
= f(xi− 1

2
, ui− 1

2
, u′

i− 1
2
, u′′

i− 1
2
), i = 1, 2, ...., N

Following the idea in [15] and using approximations (2.2), (2.3) and (2.4), we
discretize problem (2.1) in [a, b] at nodes xi− 1

2
as,

9ui− 1
2
− ui+ 1

2
= 8ui−1 + 3hu′

i−1 −
3h3

8
f i− 1

2
+ ti, i = 1(2.5)

−15ui− 3
2
+ 10ui− 1

2
− 3ui+ 1

2
= −8ui−2 −

h3

48
(165f i− 1

2
− 45f i+ 1

2
) + ti, i = 2

ui− 5
2
− 3ui− 3

2
+ 3ui− 1

2
− ui+ 1

2
= −h3

2
(f i− 3

2
+ f i− 1

2
) + ti, 3 6 i 6 N − 1

ui− 5
2
− 3ui− 3

2
+ 2ui− 1

2
= hu′

i +
h3

48
(−25f i− 3

2
+ 21f i− 1

2
) + ti, i = N

where ti, i = 1, 2, ..., N is truncation error. We have not used any special discretiza-
tion technique for boundary conditions and we have used boundary conditions in
our method in a natural way.

After neglecting the ti in (2.5), at nodal points xi− 1
2
, i = 1, 2, ...., N , we will

obtain the N×N linear or nonlinear system of equations in unknown ui− 1
2
depends

on the source function f(x, u, u′, u′′) . We have to solve a system of equations by
an appropriate method. We have applied either Gauss Seidel or Newton-Raphson
iterative method to solve above system of equations (2.5) respectively for linear
and nonlinear system of equations.
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We compute numerical value of ui, i = 1, 2, ...., N by using following second
order approximation,

(2.6) ui =

{
1
2 (ui− 1

2
+ ui+ 1

2
), i = 1, 2, ..., N − 1

ui− 1
2
+ 1

2hu
′
i, i = N

3. The Difference Method 2

In this section we derive proposed finite difference method (2.5). From ap-
proximations (2.2), we find that u′

i− 1
2
will provide O(h2) approximation for u′

i− 1
2

i.e.

(3.1) u′
i− 1

2
= u′

i− 1
2
+O(h2).

From approximations (2.3),we find that u′′
i− 1

2
will provide O(h2) approximation for

u′′
i− 1

2

i.e.

(3.2) u′′
i− 1

2
= u′′

i− 1
2
+O(h2).

Using (3.1) and (3.2) in (2.4), after linearization of fi+ 1
2
, we find that f i+ 1

2
will

provide O(h2) approximation for fi+ 1
2
i.e.

(3.3) f i− 1
2
= fi− 1

2
+O(h2).

Thus from (3.3), we can conclude that method (2.5) is of O(h2) discretization for
the problem (1.1) at nodes xi− 1

2
, i = 1, 2, ...., N .

4. Convergence Analysis

We will consider following linear test equation for convergence analysis of the
proposed method (2.5).

(4.1) u′′′(x) = f(x, u(x), u′(x), u′′(x)), a 6 x 6 b.

subject to the boundary conditions u0 = α, u′
0 = β and u′

N = γ. We can
write the proposed method (2.5) for exact solution U in the matrix form as,

(4.2) DU = a(U)+ t

where t is truncation error matrix of which each element is of O(h2). The terms in
(4.2) are respectively

D =



9 −1 0
−15 10 −3
1 −3 3 −1

1 −3 3 −1
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..

1 −3 3 −1
0 1 −3 2


N×N

,
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U = (Ui− 1
2
), a = (ai),

ai =


8α+ 3hβ − 3h3

8 f i− 1
2
, i = 1

−8α− 5h3

16 (11f i− 1
2
− 3f i+ 1

2
), i = 2

−h3

2 (f i− 3
2
+ f i− 1

2
), 3 6 i 6 N − 1

hγ + h3

48 (−25f i− 3
2
+ 21f i− 1

2
), i = N

and t = (ti) ,

ti =
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−27h5

1920u
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2

, i = 1

−7h5

8 u
(5)

i− 1
2

, i = 2

o(h6), 3 6 i 6 N − 1
31h5

1920u
(5)
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2

, i = N

are N -dimensional column vectors. After neglecting the terms ti in (4.2), we will
obtain a system of equations in ui− 1

2
. We can write system of equations in the

matrix form ,

(4.3) Du = a(u)

where u = (ui− 1
2
) is N -dimensional column vector of approximate solution of sys-

tem of equations obtained from (4.2). Let us define

F i− 1
2
= f(xi− 1

2
, Ui− 1

2
, Uxi− 1

2
, Uxxi− 1

2
)

and

f i− 1
2
= f(xi− 1

2
, ui− 1

2
, uxi− 1

2
, uxxi− 1

2
)

After linearization of f i− 1
2
we have,

(4.4)

f i− 1
2
−F i− 1

2
= (ui− 1

2
−Ui− 1

2
)Gi− 1

2
+(uxi− 1

2
−Uxi− 1

2
)Hi− 1

2
+(uxxi− 1

2
−Uxxi− 1

2
)Ii− 1

2
.

where G = ∂f
∂U , H = ∂f

∂Ux
and I = ∂f

∂Uxx
.

Let us define

(4.5) ei− 1
2
= ui− 1

2
− Ui− 1

2

Application of approximations (2.2),(2.3) in (4.4), a Taylor series expansions of
Gi− 1

2
,Hi− 1

2
and Ii− 1

2
at mesh point xi− 1

2
and (4.5), we have get the matrix equation

from (4.2) and (4.3),

(4.6) a(U)− a(u) = Pe

where P = (−Pl,m)N×N is the Toeplitz matrix defined as,

(Pl,l−2) =

{
h3

2 (− 1
2hHi− 1

2
+ 1

h2 Ii− 1
2
+ 1

2H
′
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2

− 1
hI
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2
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2
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2
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2 H ′
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2
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(Pl,l−1) =
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2
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2
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2
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2
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2
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and

(Pl,l+1) =


3h3

8 (− 4
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2
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2
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h2
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2
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where ui− 1
2

is an approximate value of Ui− 1
2
, i = 1, 2, ..., N. Let there are no

roundoff errors in solution of difference equation (2.5), so from (4.2),(4.3) and (4.6)
we can write an error equation

(4.7) (D+P)e = t

where e = (ei− 1
2
), i = 1, 2, ..., N is N -dimnsional column vector. Define a sets

G0 = {Gi− 1
2
, i = 1, 2, ...., N}

H0 = {Hi− 1
2
, i = 1, 2, ...., N}

I0 = {Ii− 1
2
, i = 1, 2, ...., N}

Dx = {Hxi− 1
2
, Ixi− 1

2
, i = 1, 2, ...., N}

Let

G∗ = min
x∈(a,b)

∂f

∂U
, G∗ = max

x∈(a,b)

∂f

∂U

Then

0 < G∗ 6 t 6 G∗ , ∀ t ∈ G0.

Let us assume that

0 < |θ| < qk, qk > 0, k = 1(1)3 ,∀ θ ∈ H0, I0, Dx.

So, we can assume that (D + P) > D for small h. Let K = (kij) be the explicit
inverse as defined in [16, 17, 18] of nonsymmetric Toeplitz matrix D,

(4.8) kij =


(2i−1)(4N−2i+1)

24N , 1 6 i 6 N, j = 1

(2i− 1)2c1, i 6 j 6 N, 2 6 j
(N−i)(N−i+1)

2 c2 − (N−i+2)(N−i−1)
2 c3, j + 1 6 i 6 N − 1
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where

(4.9) c1 =

{
(N+1−j)(2j+1)2

40N(8j−(2j−5)2) , j = 2
N+1−j

8N , 2 < j 6 N

(4.10) c2 =

{
(N+1−j)(4N(j−1)+1)−8(j−1)

24N , j = 2
(N+1−j)(4N(j−1)+1)−8(j−1)

8N , j + 1 6 i < N

(4.11) c3 =

{
(N+1−j)(4N(j−1)+1)

24N , j = 2
(N+1−j)(4N(j−1)+1)

8N , j + 1 6 i < N

From (4.9), (4.10) and (4.11), we can prove that K is nonsymmetric and positive
matrix. So (D+P)−1 6 K. Let matrix R = (Ri1)N×1, denotes the matrix of the
row sum of the matrix K = (kij)N×N where,

(4.12) Ri1 =
N∑
j=1

kij

Hence we have obtained

(4.13) ∥K∥ = max
16i6N

|Ri1| =
4N4 − (9N2 − 9N − 2)

48N

Thus for large N, from (4.13) we conclude that

(4.14) ∥K∥ 6 (b− a)3

12h3

Let

(4.15) M = max
x∈[a,b]

∣∣∣u(5)(x)
∣∣∣ ,

Then from (4.7), (4.14) and (4.15) we have

(4.16) ∥e∥ 6 7h2(b− a)3

96
M

From equation (4.16) it follows that ∥e∥ → 0 as h → 0. This establishes the
convergence of the method (2.5) and the order of convergence of method (2.5) is at
least O(h2).

5. Numerical Results

To illustrate our method and demonstrate its computational efficiency, we have
considered four model problems. In each model problem, we took uniform step size
h. In Table 1 - Table 4, we have shown MAU the maximum absolute error in the
solution u of the problems (1.1) for different values of N. We have used the following
formula in computation of MAU ,

MAU = max
16i6N

|u(xi)− ui|.

We have used Gauss Seidel and Newton-Raphson iteration method to solve respec-
tively for linear and nonlinear system of equations arised from equation (2.5). All
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computations were performed on a Windows 2007 Ultimate operating system in
the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core
i3-2330M, 2.20 Ghz PC. The solutions are computed on N nodes and iteration is
continued until either the maximum difference between two successive iterates is
less than 10−10 or the number of iteration reached 103.
Problem 1. The nonlinear model problem given by

u′′′(x) = x2(u′′(x)− u′(x)) + y2(x) + f(x), 0 6 x 6 1

subject to the boundary conditions

u(0) = 0 , u′(0) = −1 and u′(1) = sin(1)

where f(x) is calculated so that the analytical solution of the problem is
u(x) = (x− 1) sin(x). The MAU computed by method (2.5) and no. of iterations
Iter. required for different values of N are presented in Table 1.

Problem 2. The linear model problem [19] given by,

u′′′(x) = −xu′′(x)− 6x2 + 3x− 6, 0 6 x 6 1

subject to the boundary conditions

u(0) = 0 , u′(0) = 0 and u′(1) = 0

The analytical solution of the problem is u(x) = x2( 32 − x). The MAU computed
by method (2.5) and no. of iterations Iter. required for different values of N are
presented in Table 2.

Problem 3. The linear model problem [14] given by,

u′′′(x) = K2u′(x)− r, 0 6 x 6 1

subject to the boundary conditions

u(0) =
r(−K + 2 tanh(K2 ))

2K3
, u′(0) = 0 and u′(1) = 0

The analytical solution of the problem is

u(x) =
r(K(2x− 1)− 2 sinh(Kx) + 2 cosh(Kx) tanh(K2 ))

2K3

and MAU computed by method (2.5) and no. of iterations Iter. required for
different values of N, K = 5, 10 and r = 1 are presented in Table 3 and Table 4.

Table 1. Maximum absolute error (Problem 1).

N

32 64 128 256 512

MAU .79360791(-3) .64820051(-4) .16197562(-4) .40680170(-5) .11026859(-5)

Iter. 4533 1666 352 118 33
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Table 2. Maximum absolute error (Problem 2).

N

128 256 512 1024 2048

MAU .30696392(-4) .61094761(-5) .14379621(-5) .41723251(-6) .16298145(-6)

Iter. 53 5 3 4 5

Table 3. Maximum absolute error (Problem 3).

r=1, K=5.0, N

64 128 256 512 1024

MAU .36522746(-4) .43436885(-5) .51409006(-6) .99651515(-7) .25145710(-7)

Iter. 2475 441 38 3 5

Table 4. Maximum absolute error (Problem 3).

r=1, K=10.0, N

64 128 256 512 1024

MAU .17987564(-4) .40354207(-5) .40931627(-6) .55879354(-7) .13038516(-7)

Iter. 2222 1107 127 6 6

We have described a numerical method for numerical solution of third order
boundary value problem and three model problems considered to test the perfor-
mance of the proposed method. Numerical results for example 1 for different values
of N which is presented in table 1, maximum absolute errors in solution decreases
with decrease in step size h. The order of accuracy in the result is appreciable.
Same observation can be drawn from the results for the other model problems. It
is evident that method (2.5) is convergent and the rate of convergence is at least
quadratic.

6. Conclusion

A finite difference method to find the numerical solution of third order bound-
ary value problems has been developed. At nodal point x = xi− 1

2
, i = 1, 2...N we

have obtained a system of algebraic equations given by (2.5). Thus we have a sys-
tem of linear equations if source function f(x, u, u′, u′′) is linear otherwise system
of nonlinear equations. The propose method produces good approximate numerical
value of the solution for model problems and it is computationally efficient and ac-
curate method. The idea presented in this article leads to the possibility to develop
finite difference methods for the numerical solution of higher odd order boundary
value problems. Works in these directions are in progress.
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