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PRODUCT VERSION OF

RECIPROCAL DEGREE DISTANCE OF GRAPHS

K. Pattabiraman

Abstract. In this paper, we present the various upper and lower bounds
for the product version of reciprocal degree distance in terms of other graph
inavriants. Finally, we obtain the upper bounds for the product version of

reciprocal degree distance of the composition, Cartesian product and double
of a graph in terms of other graph invariants including the Harary index and
Zagreb indices. .

1. Introduction

All the graphs considered in this paper are simple and connected. For vertices
u, v ∈ V (G), the distance between u and v in G, denoted by dG(u, v), is the length
of a shortest (u, v)-path in G and let dG(v) be the degree of a vertex v ∈ V (G).
A topological index of a graph is a real number related to the graph; it does not
depend on labeling or pictorial representation of a graph. In theoretical chemistry,
molecular structure descriptors (also called topological indices) are used for mod-
eling physicochemical, pharmacologic, toxicologic, biological and other properties
of chemical compounds. There exist several types of such indices, especially those
based on vertex and edge distances. One of the most intensively studied topological
indices is the Wiener index; for other related topological indices see [17].

Let G be a connected graph. Then Wiener index of G is defined as W (G) =
1
2

∑
u, v ∈V (G)

dG(u, v) with the summation going over all pairs of distinct vertices

of G. Similarly, the Harary index of G is defined as H(G) = 1
2

∑
u, v∈V (G)

1
dG(u,v) .
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Gutman et al. [7,8] were introduced the product version of Wiener index which is
defined as W ∗(G) =

∏
{u,v}⊆V (G)

dG(u, v).

Dobrynin and Kochetova [3] and Gutman [6] independently proposed a vertex-
degree-weighted version of Wiener index called degree distance or Schultz molec-
ular topological index, which is defined for a connected graph G as DD(G) =
1
2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v), where dG(u) is the degree of the vertex u in

G. Note that the degree distance is a degree-weight version of the Wiener index.
Hua and Zhang [10] introduced a new graph invariant named reciprocal degree
distance, which can be seen as a degree-weight version of Harary index, that is,

HA(G) = 1
2

∑
u,v∈V (G)

(dG(u)+dG(v))
dG(u,v) . Hua and Zhang [10] have obtained lower and

upper bounds for the reciprocal degree distance of graph in terms of other graph
invariants including the degree distance, Harary index, the first Zagreb index, the
first Zagreb coindex, pendent vertices, independence number, chromatic number
and vertex and edge-connectivity. In this sequence, the product version of recipro-

cal degree distance is defined as H∗
A(G) =

∏
{u,v}⊆V (G)

dG(u)+dG(v)
dG(u,v) .

The first Zagreb index and second Zagerb index are defined as
M1(G) =

∑
u∈V (G)

dG(u)
2 =

∑
uv∈E(G)

(dG(u)+dG(v)) and M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

Similarly, the first Zagreb coindex and second Zagerb coindex are defined as

M1(G) =
∑

uv/∈E(G)

(dG(u) + dG(v))

and

M2(G) =
∑

uv/∈E(G)

dG(u)dG(v).

The Zagreb indices are found to have appilications in QSPR and QSAR studies as
well, see [4]. Various topological indices on tensor product, strong product have
been studied various authors, see [1,2,9,11–13,15,16]. In this paper, we present
the upper bounds for the product version of reciprocal degree distance of the tensor
product, join and strong product of two graphs in terms of other graph invariants
including the Harary index and Zagreb indices.

2. Bounds for H∗
A

In this section, we obtain the lower and upper bounds for H∗
A for a connected

graph.

Theorem 2.1. For any graph G, H∗
A(G) 6 DD∗(G) with equality if and only

if G ∼= Kn.

Proof. Let u, v ∈ V (G). Clearly, 1
dG(u,v) 6 dG(u, v) with equality if and only

if dG(u, v) = 1. Therefore

H∗
A(G) =

∏
{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)
6

∏
{u,v}⊆V (G)

(dG(u) + dG(v))dG(u, v) = DD∗(G).
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equality holds if and only if dG(u, v) = 1, for any two vertices u, v ∈ V (G). Hence
G ∼= Kn. �

Theorem 2.2. For any graph G, H∗
A(G) 6 M∗

1 (G)M
∗
1(G) with equality if and

only if G ∼= Kn.

Proof. One can see that 1
dG(u,v) 6 1 with equality if and only if dG(u, v) = 1,

for any two vertices u, v ∈ V (G). Therefore

H∗
A(G) =

∏
{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)

6
∏

{u,v}⊆V (G)

(dG(u) + dG(v))

=
∏

uv∈E(G)

(dG(u) + dG(v))
∏

uv/∈E(G)

(dG(u) + dG(v))

= M∗
1 (G)M

∗
1(G).

equality holds if and only if dG(u, v) = 1, for any two vertices u, v ∈ V (G). Hence
G ∼= Kn. �

Theorem 2.3. For any connected graph G, H∗
A(G) 6 M∗

1 (G)M
∗
1(G) with either

equality if and only if G is regular.

Proof. One can observe that 2δ 6 dG(u)+dG(v) 6 2∆ for two vertices u and
v in G. So

H∗
A(G) =

∏
{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)

6 2∆
∏

{u,v}⊆V (G)

1

dG(u, v)

= 2∆H∗(G).

Hence 2δ H∗(G) 6 H∗
A(G) 6 2∆H∗(G). This completes the proof. �

Theorem 2.4. For any graph G, H∗
A(G) >

(
M∗

1 (G)M
∗
1(G)

)2

DD∗(G) with equality if

and only if G ∼= Kn.

Proof. By the definitions of H∗
A and DD∗,

H∗
A(G)DD∗(G)

=
( ∏

{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)

)( ∏
{u,v}⊆V (G)

(dG(u) + dG(v))dG(u, v)
)

>
( ∏

{u,v}⊆V (G)

(dG(u) + dG(v))
)2
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=
( ∏

uv∈E(G)

(dG(u) + dG(v))
∏

uv/∈E(G)

(dG(u) + dG(v))
)2

=
(
M∗

1 (G)M
∗
1(G)

)2

.

Thus H∗
A(G) >

(
M∗

1 (G)M
∗
1(G)

)2

DD∗(G) with equality if and only if dG(u, v) is a constant.

Hence G ∼= Kn. �

Theorem 2.5. Let G be a connected graph. Then

2δ(G)
(
H∗(G) +H∗(G)

)
6 H∗

A(G) +H∗
A(G) > 2∆(G)

(
H∗(G) +H∗(G)

)
.

Proof. Consider

H∗
A(G) +H∗

A(G) =
∏

{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)
+

∏
{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)

6 2∆(G)H∗(G) + 2∆(G)H∗(G)

= 2∆(G)H∗(G) + 2δ(G)H∗(G)

6 2∆(G)H∗(G) + 2∆(G)H∗(G)

= 2∆(G)
(
H∗(G) +H∗(G)

)
.

On the other hand,

H∗
A(G) +H∗

A(G) > 2δ(G)H∗(G) + 2δ(G)H∗(G)

= 2δ(G)H∗(G) + 2∆(G)H∗(G)

= 2δ(G)
(
H∗(G) +H∗(G)

)
.

�

3. Product graphs

In this section, we obtain the upper bounds for H∗
A of composition, Cartesian

product and double of a graphs.

Remark 3.1. (Arithmetic Geometric Inequality) Let a1, a2, . . . , an be non neg-
ative n numbers. Then

n√a1a2 . . . an 6 a1+a2+...+an

n .

3.1. Composition. The composition of G and H, denoted by G[H], has ver-
tex set V (G)× V (H) in which (g1, h1)(g2, h2) is an edge whenever g1g2 is an edge
in G or, g1 = g2 and h1h2 is an edge in H. In this section, we obtain the product
version of reciprocal degree distance of the composition of two graphs.

Theorem 3.1. Let Gi be the connected graphs with ni vertices and mi edges,

i = 1, 2. Then H∗
A(G1[G2]) 6

(
1

n1n2

)3n1n2
[
n2m1(n

2
2 + 2m2 − n2) +

n1

2 (2M1(G2) +
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M1(G2))
]n1n2

[
n2
2 HA(G1)+4m2H(G1)

]n1n2
[
n2
2(n2−1)HA(G1)+2H(G1)(M1(G2)

+M1(G2))
]n1n2

.

Proof. Let V (G1) = {u1, u2, . . . , un1} and let V (G2) = {v1, v2, . . . , vn2}. Let
xij denote the vertex (ui, vj) of G1[G2]. The degree of the vertex xij in G1[G2] is
n2dG1(ui) + dG2(vj). By the definition of H∗

A

H∗
A(G1[G2]) =

∏
xij ,xkℓ∈V (G1[G2])

dG1[G2](xij) + dG1[G2](xkℓ)

dG1[G2](xij , xkℓ)

=

n1−1∏
i=0

n2−1∏
j, ℓ=0
j ̸= ℓ

dG1[G2](xij) + dG1[G2](xiℓ)

dG1[G2](xij , xiℓ)
×

n1−1∏
i, k=0
i ̸= k

n2−1∏
j =0

dG1[G2](xij) + dG1[G2](xkj)

dG1[G2](xij , xkj)

×
n1−1∏
i, k=0
i ̸= k

n2−1∏
j, ℓ=0
j ̸= ℓ

dG1[G2](xij) + dG1[G2](xkℓ)

dG1[G2](xij , xkℓ)
.

We shall calculate the above sums are separately. First we compute
n1−1∏
i=0

n2−1∏
j, ℓ=0
j ̸= ℓ

dG1[G2](xij)+dG1[G2](xiℓ)

dG1[G2](xij ,xiℓ)
.

n1−1∏
i=0

n2−1∏
j, ℓ=0
j ̸= ℓ

dG1[G2](xij) + dG1[G2](xiℓ)

dG1[G2](xij , xiℓ)

=

n1−1∏
i=0

n2−1∏
j, ℓ=0
j ̸= ℓ

2n2dG1(ui) + dG2(vj) + dG′(vℓ)

dG2(vj , vℓ)

6
[ 1

2

n1−1∑
i=0

n2−1∑
j, ℓ=0
j ̸= ℓ

2n2dG1 (ui)+dG2 (vj)+dG2 (vℓ)

dG2 (vj ,vℓ)

n1n2

]n1n2

by Remark 3.1

=

[
S1

n1n2

]n1n2

,

where

S1 =
1

2

n1−1∑
i=0

n2−1∑
j, ℓ=0
j ̸= ℓ

2n2dG1(ui)

dG2(vj , vℓ)
+

1

2

n1−1∑
i=0

n2−1∑
j, ℓ=0
j ̸= ℓ

dG2(vj) + dG2(vℓ)

dG2(vj , vℓ)

= n2

n1−1∑
i=0

dG1(ui)

 ∑
vjvℓ∈E(G2)

1

dG2(vj , vℓ)
+

∑
vjvℓ /∈E(G2)

1

dG2(vj , vℓ)


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+
1

2

n1−1∑
i=0

 ∑
vjvℓ∈E(G2)

dG2(vj) + dG2(vℓ)

dG2(vj , vℓ)
+

∑
vjvℓ /∈E(G2)

dG2(vj) + dG2(vℓ)

dG2(vj , vℓ)


= 2n2m1

 ∑
vj∈V (G2)

dG2(vj) +
∑

vj∈V (G2)

1

2
(m− dG2(vj)− 1)


+
1

2

n1−1∑
i=0

 ∑
vjvℓ∈E(G2)

(dG2(vj) + dG2(vℓ)) +
∑

vjvℓ /∈E(G2)

dG2(vj) + dG2(vℓ)

2

 ,

since each row

induces a copy of G2 and dG1[G2](xij , xiℓ) =

{
1, if vjvℓ ∈ E(G2)

2, if vjvℓ /∈ E(G2).

= n2m1(n
2
2 + 2m2 − n2) +

n1

2
(2M1(G2) +M1(G2)).

Next we obtain
n1−1∏
i, k=0
i ̸= k

n2−1∏
j =0

d(xij)+d(xkj)
dG1[G2](xij ,xkj)

.

n1−1∏
i, k=0
i ̸= k

n2−1∏
j =0

d(xij) + d(xkj)

dG1[G2](xij , xkj)
=

n1−1∏
i, k=0
i ̸= k

n2−1∏
j =0

n2(d(ui) + d(uk)) + 2d(vj)

dG1(ui, uk)
,

since the distance between a pair of vertices in a column is

same as the distance between the corresponding vertices of

other column

6
[

S2

n1n2

]n1n2

, by Remark 3.1

where

S2 =
1

2

n1−1∑
i, k=0
i ̸= k

n2−1∑
j =0

n2(d(ui) + d(uk)) + 2d(vj)

dG1(ui, uk)
,

=
1

2

n1−1∑
i, k=0
i ̸= k

n2−1∑
j =0

n2(d(ui) + d(uk))

dG1(ui, uk)
+

1

2

n1−1∑
i, k=0
i ̸= k

n2−1∑
j =0

2d(vj)

dG1(ui, uk)

= n2
2 HA(G1) + 4m2H(G1).

Finally, we compute
n1−1∏
i, k=0
i ̸= k

n2−1∏
j, ℓ=0
j ̸= ℓ

d(xij)+d(xkℓ)
dG1[G2](xij ,xkℓ)

. Since dG1[G2](xij , xkℓ) = dG1(ui, uk)

for all j and k and further the distance between the corresponding vertices of the
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layers is counted in previous sum. Hence

n1−1∏
i, k=0
i ̸= k

n2−1∏
j, ℓ=0
j ̸= ℓ

d(xij) + d(xkℓ)

dG1[G2](xij , xkℓ)
6

[ 1
2

n1−1∑
i, k=0
i ̸= k

n2−1∑
j, ℓ=0
j ̸= ℓ

n2d(ui)+d(vj)+n2d(uk)+d(vℓ)
dG1 (ui,uk)

n1n2

]n1n2

=
[ S3

n1n2

]n1n2

, by Remark 3.1

where

S3 =
1

2

n1−1∑
i, k=0
i ̸= k

n2−1∑
j, ℓ=0
j ̸= ℓ

n2(d(ui) + d(uk))

dG1(ui, uk)
+

1

2

n1−1∑
i, k=0
i ̸= k

n2−1∑
j, ℓ=0
j ̸= ℓ

d(vj) + d(vℓ)

dG1(ui, uk)
,

= n2
2(n2 − 1)HA(G1) + 2H(G1)(M1(G2) +M1(G2)).

Combine the aboves we get the desired result. �

3.2. Cartesian product. The Cartesian product, G�H, of graphs G and H
has the vertex set V (G�H) = V (G)× V (H) and (u, x)(v, y) is an edge of G�H
if u = v and xy ∈ E(H) or, uv ∈ E(G) and x = y. To each vertex u ∈ V (G), there
is an isomorphic copy of H in G�H and to each vertex v ∈ V (H), there is an
isomorphic copy of G in G�H. The following lemma follows from the structure of
G�H.

Lemma 3.1. Let G and H be two connected graphs with n1 and n2 vertices,
respectively. Then

(i) The distance between two vertices of G�H is given by

dG�H((ui, vj), (up, vq)) = dG(ui, up) + dH(vj , vq).

(ii) The degree of a vertex (ui, vj) of G�H is dG(ui) + dH(vj).

Now we obtain the upper bound for product version of reciprocal degree dis-
tance of Cartesian product of two connected graphs.

Theorem 3.2. Let Gi be the connected graphs with ni vertices and mi edges,
i = 1, 2. Then

H∗
A(G1�G2) 6

[
n2HA(G1)+n1HA(G2)+4m1H(G2)+4m2H(G1)

n1n2

]n1n2

.

Proof. By the definition of H∗
A,

H∗
A(G1�G2) =

∏
(u,x),(v,y)∈V (G1�G2)

dG1�G2
((u, x)) + dG1�G2

((v, x))

dG1�G2
((u, x), (v, y))

.

By Lemma 3.1, we have

H∗
A(G1�G2) =

∏
(u,x),(v,y)∈V (G1�G2)

dG1(u) + dG2(x) + dG1(v) + dG2(y)

dG1
(u, v) + dG2

(x, y)
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6
[ ∑

(u,x),(v,y)∈V (G1�G2)

dG1 (u)+dG2 (x)+dG1 (v)+dG2 (y)

dG1 (u,v)+dG2 (x,y)

n1n2

]n1n2

by Remark 3.1

=

[
A

n1n2

]n1n2

,

where

A =
∑

(u,x),(v,y)∈V (G1�G2)

dG1(u) + dG2(x) + dG1(v) + dG2(y)

dG1(u, v) + dG2(x, y)

6
∑

r∈V (G1)

∑
x,y∈V (G2)

(dG1(u) + dG1(v)

dG2(x, y) + t
+

dG2(x) + dG2(y)

dG2(x, y) + t

)
+

∑
u,v∈V (G1)

∑
z∈V (G2)

(dG1(u) + dG1(v)

dG1(u, v) + t
+

dG2(x) + dG2(y)

dG1(u, v) + t

)
= n2HA(G1) + n1HA(G2) + 4m1H(G2) + 4m2H(G1).

Hence

H∗
A(G1�G2) 6

[
n2HA(G1) + n1HA(G2) + 4m1H(G2) + 4m2H(G1)

n1n2

]n1n2

.

�

3.3. Double graph. Let us denote the double graph of a graphG by G∗,
which is constructed from two copies of G in the following manner. Let the vertex
set of G be V (G) = {v1, v2, . . . , vn}, and the vertices of G∗ are given by the two sets
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Thus for each vertex vi ∈ V (G),
there are two vertices xi and yi in V (G∗). The double graph G∗ includes the initial
edge set of each copies of G, and for any edge vivj ∈ E(G), two more edges xiyj
and xjyi are added. Now we obtain the H∗

A of double graph.

Theorem 3.3. Let G be a connected graph. Then

H∗
A(G

∗) 6

(
HA(G)

)6n(
M1(G)

)2n

n8n .

Proof. From the structure of the double graph, the distance between two
vertices of G∗ are given as follows.
dG∗(xi, xj) = dG(xi, xj), i, j ∈ {1, 2, . . . , n}.
dG∗(xi, yj) = dG(xi, xj), i, j ∈ {1, 2, . . . , n}.
dG∗(xi, yi) = 2, i ∈ {1, 2, . . . , n}.
Similarly, the degree of the vertex of G∗ is

dG∗(xi) = dG∗(yi) = 2dG(xi), i ∈ {1, 2, . . . , n}.

H∗
A(G

∗) =
∏

16i<j6n

dG∗(vi) + dG∗(vj)

dG∗(vi, vj)
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=
∏

16i<j6n

dG∗(xi) + dG∗(xj)

dG∗(xi, xj)
×

∏
16i<j6n

dG∗(yi) + dG∗(yj)

dG∗(yi, yj)

×
n∏

i,j=1,i ̸=j

dG∗(xi) + dG∗(yj)

dG∗(xi, yj)
×

n∏
i=1

dG∗(xi) + dG∗(yi)

dG∗(xi, yi)

6
[ ∑
16i<j6n

2dG(xi)+2dG(xj)
dG(xi,xj)

2n

]2n[ ∑
16i<j6n

2dG(xi)+2dG(xj)
dG(xi,xj)

2n

]2n
[ n∑
i,j=1,i̸=j

2dG(xi)+2dG(xj)
dG(xi,xj)

2n

]2n[ ∑
xi∈V (G)

2dG(xi)+2dG(xi)
2

2n

]2n
by Remark 3.1

=
(HA(G)

n

)2n(HA(G)

n

)2n(2HA(G)

n

)2n(M1(G)

2n

)2n

=

(
HA(G)

)6n(
M1(G)

)2n

n8n
.

�
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