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PERMUTING TRI-f-DERIVATIONS ON ALMOST

DISTRIBUTIVE LATTICES

G.C.RAO and K RAVI BABU

Abstract. In this paper, we introduce the concept of permuting tri-f -derivation
in an Almost Distributive Lattice (ADL) and derive some important proper-
ties of permuting tri-f -derivation in ADLs.

1. Introduction

The notion of derivation in lattices was first given in G. Szasz [14] in 1974.
Several authors worked on derivations in Lattices ([1], [2], [3], [4], [5], [6], [15],
[16] and [17]). The concept of derivation in an ADL was introduced in our earlier
paper [8]. Further, in an ADL we worked on f -derivations in [9], symmetric bi-
derivations in [10], symmetric bi-f -derivations in [11] and permuting tri-derivations
in [12]. The concept of permuting tri-f -derivations in lattices was introduced by

H. Yazarli and M. A. Öztürk [17] in 2011.
In this paper, we introduce the concept of permuting tri-f -derivations in an

ADL and investigate some important properties. If m is a maximal element in
an ADL L, then we prove that D(x, y, z) = fx when fx 6 D(m, y, z) and if fm
is also a maximal element of L, then we prove that D(x, y, z) > D(m, y, z) when
fx > D(m, y, z). Also. we prove that fx∧D(x∨w, y, z) = D(x, y, z) when D is an
isotone map and fx∧D(x∨w, y, z) 6 D(x, y, z) when f is either a join preserving
or an increasing function on L. We establish a set of conditions which are sufficient
for a permuting tri-f -derivation on an ADL with a maximal element to become an
isotone when f is a homomorphism. Also, we prove

d(x ∧ y) = (fy ∧ dx) ∨D(x, x, y) ∨D(x, y, y) ∨ (fx ∧ dy)
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where d is the trace of a permuting tri-f -derivation on an associative ADL L.
Finally, we prove that the set Fd(L) = {x ∈ L/dx = fx} is a weak ideal in an
associative ADL L where f is a join preserving map on L.

2. Preliminaries

In this section, we recollect certain basic concepts and important results on
Almost Distributive Lattices.

Definition 2.1. [7] An algebra (L,∨,∧) of type (2, 2) is called an Almost
Distributive Lattice, if it satisfies the following axioms:
L1 : (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (RD∧)
L2 : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (LD∧)
L3 : (a ∨ b) ∧ b = b
L4 : (a ∨ b) ∧ a = a
L5 : a ∨ (a ∧ b) = a for all a, b, c ∈ L.

Definition 2.2. [7] Let X be any non-empty set. Define, for any x, y ∈ L, x∨
y = x and x∧ y = y. Then (X,∨,∧) is an ADL and such an ADL, we call discrete
ADL.

Through out this paper L stands for an ADL (L,∨,∧) unless otherwise speci-
fied.

Lemma 2.1. [7] For any a, b ∈ L, we have:
(i) a ∧ a = a
(ii) a ∨ a = a.
(iii) (a ∧ b) ∨ b = b
(iv) a ∧ (a ∨ b) = a
(v) a ∨ (b ∧ a) = a.
(vi) a ∨ b = a if and only if a ∧ b = b
(vii) a ∨ b = b if and only if a ∧ b = a.

Definition 2.3. [7] For any a, b ∈ L, we say that a is less than or equal to b
and write a 6 b, if a ∧ b = a or, equivalently, a ∨ b = b.

Theorem 2.1. [7] For any a, b, c ∈ L, we have the following
(i) The relation 6 is a partial ordering on L.
(ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (LD∨)
(iii) (a ∨ b) ∨ a = a ∨ b = a ∨ (b ∨ a).
(iv) (a ∨ b) ∧ c = (b ∨ a) ∧ c.
(v) The operation ∧ is associative in L.
(vi) a ∧ b ∧ c = b ∧ a ∧ c.

Theorem 2.2. [7] For any a, b ∈ L, the following are equivalent.
(i) (a ∧ b) ∨ a = a
(ii) a ∧ (b ∨ a) = a
(iii) (b ∧ a) ∨ b = b
(iv) b ∧ (a ∨ b) = b
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(v) a ∧ b = b ∧ a
(vi) a ∨ b = b ∨ a
(vii) The supremum of a and b exists in L and equals to a ∨ b
(viii) There exists x ∈ L such that a 6 x and b 6 x
(ix) The infimum of a and b exists in L and equals to a ∧ b.

Definition 2.4. [7] L is said to be associative, if the operation ∨ in L is
associative.

Theorem 2.3. [7] The following are equivalent:
(i) L is a distributive lattice.
(ii) The poset (L,6) is directed above.
(iii) a ∧ (b ∨ a) = a, for all a, b ∈ L.
(iv) The operation ∨ is commutative in L.
(v) The operation ∧ is commutative in L.
(vi) The relation θ := {(a, b) ∈ L× L | a ∧ b = b} is anti-symmetric.
(vii) The relation θ defined in (vi) is a partial order on L.

Lemma 2.2. [7] For any a, b, c, d ∈ L, we have the following:
(i) a ∧ b 6 b and a 6 a ∨ b
(ii) a ∧ b = b ∧ a whenever a 6 b.
(iii) [a ∨ (b ∨ c)] ∧ d = [(a ∨ b) ∨ c] ∧ d.
(iv) a 6 b implies a ∧ c 6 b ∧ c, c ∧ a 6 c ∧ b and c ∨ a 6 c ∨ b.

Definition 2.5. [7] An element 0 ∈ L is called zero element of L, if 0∧a = 0
for all a ∈ L.

Lemma 2.3. [7] If L has 0, then for any a, b ∈ L , we have the following:
(i) a ∨ 0 = a, (ii) 0 ∨ a = a and (iii) a ∧ 0 = 0.
(iv) a ∧ b = 0 if and only if b ∧ a = 0.

Definition 2.6. [13] Let L be a non-empty set and x0 ∈ L. If for x, y ∈ L we
define
x ∧ y = y if x ̸= x0

x ∧ y = x if x = x0 and
x ∨ y = x if x ̸= x0

x ∨ y = y if x = x0,
then (L,∨,∧, x0) is an ADL with x0 as zero element. This is called discrete ADL
with zero.

An element x ∈ L is called maximal if, for any y ∈ L, x 6 y implies x = y.
We immediately have the following.

Lemma 2.4. [7] For any m ∈ L, the following are equivalent:
(1) m is maximal
(2) m ∨ x = m for all x ∈ L
(3) m ∧ x = x for all x ∈ L.

Definition 2.7. [7] A nonempty subset I of L is said to be an ideal if and only
if it satisfies the following:
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(1) a, b ∈ I ⇒ a ∨ b ∈ I
(2) a ∈ I, x ∈ L ⇒ a ∧ x ∈ I.

Definition 2.8. [7] A nonempty subset I of L is said to be an initial segment
of L if, a ∈ L and x ∈ L such that x 6 a imply that x ∈ L.

Definition 2.9. [10] A nonempty subset I of L is said to be a weak ideal if
and only if it satisfies the following:
(1) a, b ∈ I ⇒ a ∨ b ∈ I
(2) I is an initial segment of L.

Observe that every ideal of L ia weak ideal, but not converse.

Definition 2.10. [7] A function f : L → L is said to be an ADL homomor-
phism if it satisfies the following:
(1) f(x ∧ y) = fx ∧ fy,
(2) f(x ∨ y) = fx ∨ fy for all x, y ∈ L.

Definition 2.11. A function d : L → L is called an isotone, if dx 6 dy for
any x, y ∈ L with x 6 y.

3. Permuting tri-f-derivations in ADLs.

We begin this paper with the following definition of a permuting map in an
ADL.

Definition 3.1. [12]
(i) A map D : L× L× L → L is called permuting map if

D(x, y, z) = D(x, z, y) = D(y, z, x) = D(y, x, z) = D(z, x, y) = D(z, y, x)

for all x, y, z ∈ L.

(ii) D is called an isotone map if, for any x, y, z, w ∈ L with x 6 w, D(x, y, z) 6
D(w, y, z).

(iii) The mapping d : L → L defined by dx = D(x, x, x) for all x ∈ L, is called
the trace of D.

Definition 3.2. [12] A permuting map D : L×L×L → L is called a permuting
tri-derivation on L, if

D(x ∧ w, y, z) = [w ∧D(x, y, z)] ∨ [x ∧D(w, y, z)]

for all x, y, z, w ∈ L.

Now, the following definition gives the notion of permuting tri-f -derivation in
an ADL.

Definition 3.3. A permuting map D : L × L × L → L is called a permuting
tri-f -derivation on L, if there exists a function f : L → L such that

D(x ∧ w, y, z) = [fw ∧D(x, y, z)] ∨ [fx ∧D(w, y, z)] for all x, y, z, w ∈ L.

Observe that a permuting tri-f -derivation D on L also satisfies
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D(x, y ∧ w, z) = [fw ∧D(x, y, z)] ∨ [fy ∧D(x,w, z)] and
D(x, y, z ∧ w) = [fw ∧D(x, y, z)] ∨ [fz ∧D(x, y, w)]

for all x, y, z, w ∈ L.

Example 3.1. Every permuting tri-derivation on L is a permuting tri-f -
derivation, where f : L → L is the identity map.

Example 3.2. Let L be an ADL with 0 and 0 ̸= a ∈ L. If we define a mapping
D : L × L × L → L by D(x, y, z) = a for all x, y, z ∈ L and f : L → L by fx = a
for all x ∈ L, then D is a permuting tri-f -derivation on L but not a permuting
tri-derivation on L..

Example 3.3. Let L be an ADL with atleast two elements. If we define a
mapping D : L×L×L → L by D(x, y, z) = (x∨ y)∨ z, then D is not a permuting
tri-f -derivation on L, since it is not a permuting map on L.

Example 3.4. Let L be an ADL with at least three elements and a ∈ L. If
we define the mapping D : L × L × L → L by D(x, y, z) = (x ∨ y ∨ z) ∧ a for
all x, y, z ∈ L and f : L → L by fx = a for all x ∈ L, then D is a permuting
tri-f -derivation on L but, not a permuting tri-derivation on L.

Lemma 3.1. Let D be a permuting tri-f -derivation on L. Then the following
identities hold:

(1) D(x, y, z) = fx ∧ D(x, y, z) = fy ∧ D(x, y, z) = fz ∧ D(x, y, z) for all
x, y, z ∈ L

(2) If L has 0 and f0 = 0, then D(0, y, z) = 0 for all y, z ∈ L
(3) (fx ∨ fy) ∧D(x ∧ w, y, z) = D(x ∧ w, y, z) for all x, y, z, w ∈ L
(4) fx ∧ dx = dx for all x ∈ L.

Proof. Let x, y, z, w ∈ L.
(1) D(x, y, z) = D(x∧x, y, z) = [fx∧D(x, y, z)]∨ [fx∧D(x, y, z)] = fx∧D(x, y, z).
Similarly, fy ∧D(x, y, z) = D(x, y, z) = fz ∧D(x, y, z).

(2) Suppose L has 0 and f0 = 0. Now by (1) above, D(0, y, z) = f0 ∧D(0, y, z) =
0 ∧D(0, y, z) = 0.

(3) (fx∨ fw)∧D(x∧w, y, z) = (fx∨ fw)∧ [[fw∧D(x, y, z)]∨ [fx∧D(w, y, z)]] =
[fw ∧D(x, y, z)] ∨ [fx ∧D(w, y, z)] = D(x ∧ w, y, z).

(4) By (1) above, we get that fx∧D(x, x, x) = D(x, x, x). Thus fx∧ dx = dx. �
Theorem 3.1. Let D be a permuting tri-f -derivation on L and m be a maximal

element in L. Then the following hold:

(1) If x, y, z ∈ L such that fx 6 D(m, y, z), then D(x, y, z) = fx.
(2) If x, y, z ∈ L such that fx > D(m, y, z) and fm is a maximal element in

L, then D(x, y, z) > D(m, y, z).

Proof. (1) Let x, y, z ∈ L with fx 6 D(m, y, z). Then D(x, y, z) = D(m ∧
x, y, z) = [fx ∧ D(m, y, z)] ∨ [fm ∧ D(x, y, z)] = fx ∨ [fm ∧ D(x, y, z)] = (fx ∨
fm) ∧ [fx ∨D(x, y, z)] = (fx ∨ fm) ∧ fx = fx, by Lemma 3.1.

(2) Let x, y, z ∈ L with fx > D(m, y, z). Then D(x, y, z) = D(m ∧ x, y, z) =
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[fx ∧ D(m, y, z)] ∨ [fm ∧ D(x, y, z)] = D(m, y, z) ∨ D(x, y, z). Thus D(x, y, z) >
D(m, y, z). �

Theorem 3.2. Let D be a permuting tri-f -derivation on L where f is an
increasing function on L. If x, y, z ∈ L such that w 6 x and D(x,y,z)=fx, then
D(w, y, z) = fw.

Proof. Let x, y, z ∈ L with w 6 x and D(x, y, z) = fx. Since f is an increas-
ing function on L, fw 6 fx. Now D(w, y, z) = D(x ∧w, y, z) = [fw ∧D(x, y, z)] ∨
[fx ∧D(w, y, z)] = [fw ∧ fx] ∨ [fx ∧ fw ∧D(w, y, z)] = fw ∨ [fw ∧D(w, y, z)] =
fw. �

Theorem 3.3. Let D be a permuting tri-f -derivation on L. Then for any
x, y, z, w ∈ L, the following hold:

(1) If D is an isotone map on L, then fx ∧D(x ∨ w, y, z) = D(x, y, z).
(2) If f is either a join preserving or an increasing function on L, then fx∧

D(x ∨ w, y, z) 6 D(x, y, z).

Proof. Let x, y, z, w ∈ L.
(1) Suppose D is an isotone map on L. Then D(x, y, z) 6 D(x ∨ w, y, z). Now
D(x, y, z) = D((x ∨ w) ∧ x, y, z) = [fx ∧D(x ∨ w, y, z)] ∨ [f(x ∨ w) ∧D(x, y, z)] =
[fx ∧D(x ∨ w, y, z)] ∨ [f(x ∨ w) ∧D(x, y, z) ∧D(x ∨ w, y, z)] = [fx ∨ [f(x ∨ w) ∧
D(x, y, z)]]∧D(x∨w, y, z) = [[fx∨f(x∨w)]∧fx]∧D(x∨w, y, z) = fx∧D(x∨w, y, z).
(2) Case(i): Suppose f is a join preserving map on L. Then
D(x, y, z) = D((x ∨ w) ∧ x, y, z) = [fx ∧D(x ∨ w, y, z)] ∨ [f(x ∨ w) ∧D(x, y, z)] =
[fx∧D(x∨w, y, z)]∨ [(fx∨fw)∧fx∧D(x, y, z)] = [fx∧D(x∨w, y, z)]∨D(x, y, z).
Thus fx ∧D(x ∨ w, y, z) 6 D(x, y, z).

Case(ii): Suppose f is an increasing function on L. Then fx 6 f(x ∨ w). Now
D(x, y, z) = D((x∨w)∧x, y, z) = [fx∧D(x∨w, y, z)]∨[f(x∨w)∧D(x, y, z)] = [fx∧
D(x∨w, y, z)]∨[f(x∨w)∧fx∧D(x, y, z)] = [fx∧D(x∨w, y, z)]∨[fx∧D(x, y, z)] =
[fx ∧D(x ∨ w, y, z)] ∨D(x, y, z). Hence fx ∧D(x ∨ w, y, z) 6 D(x, y, z). �

Theorem 3.4. Let D be a permuting tri-f -derivation on L and m be a maximal
element in L. If f is a homomorphism on L, then the following are equivalent.

(1) D is an isotone map on L
(2) D(x, y, z) = fx ∧D(m, y, z) for all x, y, z ∈ L
(3) D is a join preserving map on L
(4) D is a meet preserving map on L.

Proof. Let f be a homomorphism on L and x, y, z ∈ L.

(1) ⇒ (2) : D(x, y, z) = D(m∧x, y, z) = [fx∧D(m, y, z)]∨ [fm∧D(x, y, z)]. Thus
fx ∧D(m, y, z) 6 D(x, y, z). On the other hand,
fx ∧ D(x ∧ m, y, z) = fx ∧ [[fm ∧ D(x, y, z)] ∨ [fx ∧ D(m, y, z)]] = [fx ∧ fm ∧
D(x, y, z)]∨ [fx∧D(m, y, z)] = [fm∧ fx∧D(x, y, z)]∨ [fx∧D(m, y, z)] = [f(m∧
x)∧D(x, y, z)]∨[fx∧D(m, y, z)] = [fx∧D(x, y, z)]∨[fx∧D(m, y, z)] = D(x, y, z)∨
[fx ∧ D(m, y, z)] = D(x, y, z). Since D is an isotone map on L, D(x ∧ m, y, z) 6
D(m, y, z). Thus D(x, y, z) = fx ∧ D(x ∧ m, y, z) 6 fx ∧ D(m, y, z). Hence
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D(x, y, z) = fx ∧D(m, y, z).

(2) ⇒ (3) : D(x ∨ w, y, z) = f(x ∨ w) ∧ D(m, y, z) = (fx ∨ fw) ∧ D(m, y, z) =
(fx ∧ D(m, y, z)) ∨ (fy ∧ D(m, y, z)) = D(x, y, z) ∨ D(w, y, z). Thus D is a join
preserving map on L.

(2) ⇒ (4) : D(x ∧ w, y, z) = f(x ∧ w) ∧ D(m, y, z) = fx ∧ fw ∧ D(m, y, z) =
D(x, y, z) ∧D(w, y, z). Thus D is a meet preserving map on L.

(3) ⇒ (1) and (4) ⇒ (1) are trivial. �

Theorem 3.5. Let d be the trace of the permuting tri-f -derivation D on an
associative ADL L. Then d(x ∧ y) = (fy ∧ dx) ∨D(x, x, y) ∨D(x, y, y) ∨ (fx ∧ dy)
for all x, y, z ∈ L.

Proof. Let x, y, z ∈ L. Then
fy ∧ D(x, x ∧ y, x ∧ y) = fy ∧ [[fy ∧ D(x, x, x ∧ y)] ∨ [fx ∧ D(x, y, x ∧ y)]] =
[fy ∧D(x, x, x∧ y)]∨D(x, y, x ∧ y) = [fy ∧ [[fy ∧D(x, x, x)]∨ [fx∧D(x, x, y)]]]∨
[[fy∧D(x, y, x)]∨[fx∧D(x, y, y)]] = (fy∧dx)∨D(x, x, y)∨D(x, y, x)∨D(x, y, y) =
(fy ∧ dx) ∨D(x, x, y) ∨D(x, y, y).

Again, fx∧D(y, x∧y, x∧y) = fx∧ [[fy∧D(y, x, x∧y)]∨ [fx∧D(y, y, x∧y)]] =
D(y, x, x∧y)∨ [fx∧D(y, y, x∧y)] = [fy∧D(y, x, x)]∨ [fx∧D(y, x, y)]∨ [fx∧ [[fy∧
D(y, y, x)] ∨ [fx ∧ D(y, y, y)]]] = D(y, x, x) ∨ D(y, x, y) ∨ D(y, y, x) ∨ (fx ∧ dy) =
D(y, x, x) ∨D(x, y, y) ∨ (fx ∧ dy).

Thus d(x∧ y) = D(x∧ y, x∧ y, x∧ y) = [fy∧D(x, x∧ y, x∧ y)]∨ [fx∧D(y, x∧
y, x ∧ y)] = (fy ∧ dx) ∨D(x, x, y) ∨D(x, y, y) ∨ (fx ∧ dy). �

Theorem 3.6. Let d be the trace of the join preserving permuting tri-f -derivation
D on an associative ADL L. If f is a join preserving map on L, then Fd(L) =
{x ∈ L|dx = fx} is a weak ideal in L.

Proof. Suppose f is a join preserving map on L. Let x ∈ L, y ∈ Fd(L) and
x 6 y. Since f is a join preserving, f is an increasing function on L and hence
fx 6 fy. Now, by Theorem 3.5,
dx = d(y ∧ x) = (fx ∧ dy) ∨D(y, y, x) ∨D(y, x, x) ∨ (fy ∧ dx) = fx ∨D(y, y, x) ∨
D(y, x, x) ∨ (fy ∧ dx) = fx ∨ (fy ∧ dx) = fy ∧ fx = fx. Thus x ∈ Fd(L).

Let x, y ∈ Fd(L). Then d(x ∨ y) = D(x ∨ y, x ∨ y, x ∨ y) = D(x, x ∨ y, x ∨ y) ∨
D(y, x∨ y, x∨ y) = D(x, x, x∨ y)∨D(x, y, x∨ y)∨D(y, x, x∨ y)∨D(y, y, x∨ y) =
dx ∨D(x, x, y) ∨D(x, y, x) ∨D(x, y, y) ∨D(y, x, x) ∨D(y, x, y) ∨D(y, y, x) ∨ dy =
dx∨D(x, x, y)∨D(x, y, y)∨D(x, x, y)∨D(x, y, y)∨dy = fx∨D(x, x, y)∨D(x, y, y)∨
D(x, x, y)∨D(x, y, y)∨fy = fx∨fy = f(x∨y). Thus x∨y ∈ Fd(L). Hence Fd(L)
is a weak ideal in L. �

Lemma 3.2. Let L be an associative ADL with 0 and D a join preserving
permuting tri-f -derivation on L and d the trace of D. If dx = 0 for all x ∈ L, then
D = 0.

Proof. Suppose dx = 0 for all x ∈ L. Let x, y, z ∈ L. Then we have d(x∨y) =
D(x∨y, x∨y, x∨y) = dx∨D(x, x, y)∨D(x, y, y)∨dy. ThusD(x, x, y)∨D(x, y, y) = 0.
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Therefore D(x, x, y) = 0 for all x, y ∈ L. In particular, D(x ∨ z, x ∨ z, y) = 0 and
hence D(x, y, z) = 0. Therefore D = 0. �

Let us recall the definition of a prime ADL in the following.

Definition 3.4. [12] An ADL L with 0 is said to be a prime ADL if, for
a, b ∈ L, a ∧ b = 0 implies either a = 0 or b = 0.

Theorem 3.7. Let L be an associative prime ADL and d1, d2 be the traces
of join preserving permuting tri-f1, tri-f2-derivations D1, D2 on L, respectively. If
d1x ∧ d2x = 0 for all x ∈ L, then either D1 = 0 or D2 = 0.

Proof. Suppose d1x ∧ d2x = 0 for all x ∈ L. Assume that d1 ̸= 0 and
d2 ̸= 0. Then d1y ̸= 0 and d2z ̸= 0 for some y, z ∈ L. Now, d1(y ∨ z) =
D1(y ∨ z, y ∨ z, y ∨ z) = d1y ∨ D1(y, y, z) ∨ D1(y, z, z) ∨ d1z ̸= 0 and d2(y ∨ z) =
D2(y ∨ z, y ∨ z, y ∨ z) = d2y ∨ D2(y, y, z) ∨ D2(y, z, z) ∨ d2z ̸= 0. But, by our
assumption d1(y ∨ z) ∧ d2(y ∨ z) = 0. This is a contradiction, (since L is a prime
ADL). Thus d1 = 0 or d2 = 0 and hence by Lemma 3.2, either D1 = 0 or
D2 = 0. �

Finally we conclude this paper with the following theorem.

Theorem 3.8. Let L be an associative prime ADL and d1, d2 be the traces of
join preserving permuting tri-f1, tri-f2-derivations D1, D2 on L, respectively such
that d1of2 = d1 and f1od2 = d2. Suppose one of the following condition hold

(1) D1(d2x, f2x, f2x) = 0 for all x ∈ L
(2) D1(d2x, d2x, f2x) = 0 for all x ∈ L
(3) d1od2 = 0, then either D1 = 0 or D2 = 0.

Proof. (1) Suppose D1(d2x, f2x, f2x) = 0 for all x ∈ L. Let x ∈ L. Since
f2x ∧ d2x = d2x, we get that
[f1(d2x)∧D1(f2x, f2x, , f2x, )]∨[f1(f2x)∧D1(d2x, f2x, f2x)] = D1(f2x∧d2x, f2x, f2x) =
0. Thus (f1od2)x ∧ (d1of2)x = 0. Therefore d2x ∧ d1x = 0.

(3) Suppose D1(d2x, d2x, f2x) = 0 for all x ∈ L. Let x ∈ L. Again since f2x∧d2x =
d2x, we get that [f1(d2x) ∧ D1(f2x, d2x, f2x)] ∨ [f1(f2x) ∧ D1(d2x, d2x, f2x)] =
D1(f2x ∧ d2x, d2x, f2x) = 0. Thus (f1od2)x ∧ D1(f2x, d2x, f2x) = 0. Therefore
d2x ∧ D1(f2x, d2x, f2x) = 0 . Thus [d2x ∧ f1(d2x) ∧ (d1of2)x] ∨ [d2x ∧ f1(f2x) ∧
D1(f2x, d2x, f2x)] = d2x∧D1(f2x, f2x∧d2x, f2x) = 0 . Therefore d2x∧ (f1od2)x∧
(d1of2)x = 0 and hence d2x ∧ d1x = 0.

(2) Suppose d1od2 = 0. Then d1(d2x) = 0 for all x ∈ L. So that,D1(d2x, d2x, d2x) =
0 for all x ∈ L. Let x ∈ L. Again since f2x ∧ d2x = d2x, we get that [f1(d2x) ∧
D1(d2x, d2x, f2x)] ∨ [f1(f2x) ∧ D1(d2x, d2x, d2x)] = D1(d2x, d2x, f2x ∧ d2x) = 0.
Therefore d2x ∧D1(d2x, d2x, f2x) = 0. Thus [d2x ∧ f1(d2x) ∧D1(d2x, f2x, f2x)] ∨
[d2x ∧ f1(f2x) ∧ D1(d2x, d2x, f2x)]=d2x ∧ D1(d2x, f2x ∧ d2x, f2x) = 0. Hence
d2x ∧D1(d2x, f2x, f2x) = 0. So that [d2x ∧ f1(d2x) ∧ (d1of2)x] ∨ [d2x ∧ f1(f2x) ∧
D1(f2x, d2x, f2x)]=d2x ∧ D1(f2x, f2x ∧ d2x, f2x) = 0 and hence d2x ∧ d1x = 0.
Therefore, d2x ∧ d1x = 0 for all x ∈ L in all three cases. By Theorem 3.7, we get
that either D1 = 0 or D2 = 0. �
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