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PERMUTING TRI-f-DERIVATIONS ON ALMOST
DISTRIBUTIVE LATTICES

G.C.RAO and K RAVI BABU

ABSTRACT. In this paper, we introduce the concept of permuting tri- f-derivation
in an Almost Distributive Lattice (ADL) and derive some important proper-
ties of permuting tri- f-derivation in ADLs.

1. Introduction

The notion of derivation in lattices was first given in G. Szasz [14] in 1974.
Several authors worked on derivations in Lattices ([1], [2], [3], [4], [5], [6], [15],
[16] and [17]). The concept of derivation in an ADL was introduced in our earlier
paper [8]. Further, in an ADL we worked on f-derivations in [9], symmetric bi-
derivations in [10], symmetric bi- f-derivations in [11] and permuting tri-derivations
in [12]. The concept of permuting tri- f-derivations in lattices was introduced by
H. Yazarli and M. A. Oztiirk [17] in 2011.

In this paper, we introduce the concept of permuting tri- f-derivations in an
ADL and investigate some important properties. If m is a maximal element in
an ADL L, then we prove that D(z,y,z) = fx when fz < D(m,y,z) and if fm
is also a maximal element of L, then we prove that D(x,y,z) > D(m,y, z) when
fx = D(m,y,z). Also. we prove that fa AD(zVw,y,z) = D(x,y,z) when D is an
isotone map and fx A D(zVw,y,2) < D(x,y,z) when f is either a join preserving
or an increasing function on L. We establish a set of conditions which are sufficient
for a permuting tri- f-derivation on an ADL with a maximal element to become an
isotone when f is a homomorphism. Also, we prove

d(x ANy) = (fy Ndx) vV D(x,z,y) V D(x,y,y) V (fx A dy)
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where d is the trace of a permuting tri-f-derivation on an associative ADL L.
Finally, we prove that the set Fy(L) = {& € L/dx = fz} is a weak ideal in an
associative ADL L where f is a join preserving map on L.

2. Preliminaries

In this section, we recollect certain basic concepts and important results on
Almost Distributive Lattices.

DEFINITION 2.1. [7] An algebra (L,V,N) of type (2,2) is called an Almost
Distributive Lattice, if it satisfies the following axioms:
Li: (avb)Ac=(aAc)V (bAc) (RDA)
Ly: an(Ve)=(anb)V(aNc) (LDAN)
Ls: (avb)Ab=b
Ly: (avb)ha=a
Ls: aV(anb)=a for all a,b,c € L.

DEFINITION 2.2. [7] Let X be any non-empty set. Define, for any x,y € L, =V
y=x and x ANy =y. Then (X,V,A) is an ADL and such an ADL, we call discrete
ADL.

Through out this paper L stands for an ADL (L,V, A) unless otherwise speci-
fied.

LEMMA 2.1. [7] For any a,b € L, we have:
(i) aha=a
(i4) aVa=a.
(#33) (aAND)VD =D
(iv) aAN(aVd)=a
(v) av(bAa)=a.
(vi) aVb=a if and only if a Nb=b
(vii) aVb="b if and only if a Nb = a.

DEFINITION 2.3. [7] For any a,b € L, we say that a is less than or equal to b
and write a < b, if a Nb = a or, equivalently, a Vb =b.

THEOREM 2.1. [7] For any a,b,c € L, we have the following
(i) The relation < is a partial ordering on L.
(i) aV (bAc)=(aVb)A(aVe). (LDV)
(iii) (avd)Va=aVb=aV (bVa).
(iv) (aVb)Ac=(bVa)Ac.
(v) The operation A is associative in L.
(vi) aANbAc=DbAaAec.

THEOREM 2.2. [7] For any a,b € L, the following are equivalent.
1)) (anNb)Va=a
i) aNn(bVa)=a
i) (bAa)Vb=1b
iw) bA(aVb)=Db
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(v) aANb=bAa

(vi) aVb=bVa

(vii) The supremum of a and b exists in L and equals to a V' b
(viti) There exists x € L such that a <z and b < x

(iz)

ix) The infimum of a and b exists in L and equals to a N\ b.

DEFINITION 2.4. [7] L is said to be associative, if the operation V in L is
associative.

THEOREM 2.3. [7] The following are equivalent:
(1) L is a distributive lattice.
(ii) The poset (L, <) is directed above.
(#5i) aAN(bVa)=a, for all a,b € L.
(iv) The operation V is commutative in L.
(v)  The operation A\ is commutative in L.
(vi) The relation 0 := {(a,b) € L X L | a ANb="b} is anti-symmetric.
(vit) The relation 0 defined in (vi) is a partial order on L.

LEMMA 2.2. [7] For any a,b,c,d € L, we have the following:
1) aANb<banda<aVd
i) a ANb=bAa whenever a < b.
i) [aVv (bV ) Ad=[(aVb)VAd.
w) a<bimpliessaNc<bAc,cha<cAbandcVa<ceVb.

DEFINITION 2.5. [7] An element O € L is called zero element of L, if 0Aa =10
foralla € L.

LEMMA 2.3. [7] If L has 0, then for any a,b € L , we have the following:
(1) av0O=a, (it) 0OVa=a and (i) aN0=0.
(iv) aANb=0 if and only if bAa = 0.

DEFINITION 2.6. [13] Let L be a non-empty set and xo € L. If for x,y € L we
define
cANy=yifr# g
cANy==zx if xt =x9 and
xVy==zifx#x
zVy=y if v = o,
then (L,V, A, xo) is an ADL with xo as zero element. This is called discrete ADL
with zero.

An element x € L is called maximal if, for any y € L, < y implies « = y.
We immediately have the following.

LEMMA 2.4. [7] For any m € L, the following are equivalent:
(1) m is mazimal
(2) mVaz=m forallz e L
(83) mAx =z forallxz e L.

DEFINITION 2.7. [7] A nonempty subset I of L is said to be an ideal if and only
if it satisfies the following:
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(1)a,bel=aVvbel
(2)ael, reL=aNxel.

DEFINITION 2.8. [7] A nonempty subset I of L is said to be an initial segment
of L if,a € L and x € L such that x < a imply that x € L.

DEFINITION 2.9. [10] A nonempty subset I of L is said to be a weak ideal if
and only if it satisfies the following:
(1)a,bel=aVvbel
(2) I is an initial segment of L.

Observe that every ideal of L ia weak ideal, but not converse.

DEFINITION 2.10. [7] A function f : L — L is said to be an ADL homomor-
phism if it satisfies the following:
(1) f(z Ay) = fz A fy,
(2) flxVy) = fzV fy forall z,y € L.

DEFINITION 2.11. A function d : L — L is called an isotone, if dx < dy for
any x,y € L with x < y.

3. Permuting tri- f-derivations in ADLs.

We begin this paper with the following definition of a permuting map in an
ADL.

DEFINITION 3.1. [12]

(1) Amap D:LxLxL— L is called permuting map if

D(z,y,2) = D(z,2,y) = D(y, 2,2) = D(y,x,2) = D(z,%,y) = D(2,y,x)
forall x,y,z € L.

(ii) D is called an isotone map if, for any x,y,z,w € L withx < w, D(z,y,2) <
D(w,y, z).

(¢i1) The mapping d : L — L defined by de = D(z,x,x) for all x € L, is called
the trace of D.

DEFINITION 3.2. [12] A permuting map D : Lx Lx L — L is called a permuting
tri-derivation on L, if

D(x Aw,y,z) =[wA D(z,y,2)] V [z A D(w,y, z)]

for all x,y,z,w € L.

Now, the following definition gives the notion of permuting tri- f-derivation in
an ADL.

DEFINITION 3.3. A permuting map D : L x L x L — L is called a permuting
tri-f-derivation on L, if there exists a function f: L — L such that

D(z Aw,y,z) =[fwA D(z,y,2)] V[fz A D(w,y, z)] for all x,y,z,w € L.

Observe that a permuting tri- f-derivation D on L also satisfies
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D(z,y Nw,z) = [fw A D(z,y,2)] V [fy A D(z,w, z)] and
D(z,y,z Aw) = [fw A D(z,y,2)] V [fz A D(z,y,w)]
for all z,y,z,w € L.

ExXaMPLE 3.1. Every permuting tri-derivation on L is a permuting tri-f -
derivation, where f : L. — L is the identity map.

ExXAMPLE 3.2. Let L be an ADL with 0 and 0 # a € L. If we define a mapping
D:LxLxL—Lby D(x,y,z) =aforall z,y,z€ Land f: L — Lby fx=a
for all x € L, then D is a permuting tri- f-derivation on L but not a permuting
tri-derivation on L..

EXAMPLE 3.3. Let L be an ADL with atleast two elements. If we define a
mapping D : Lx L x L — L by D(x,y,z) = (xVy)V z, then D is not a permuting
tri- f-derivation on L, since it is not a permuting map on L.

ExXAMPLE 3.4. Let L be an ADL with at least three elements and a € L. If
we define the mapping D : L x L x L — L by D(z,y,2) = (x VyV 2z) Aa for
all x,y,z € Land f: L — L by fx = a for all z € L, then D is a permuting
tri- f-derivation on L but, not a permuting tri-derivation on L.

LEMMA 3.1. Let D be a permuting tri-f-derivation on L. Then the following
identities hold:
(1) D(z,y,2) = fx A D(x,y,2) = fy AN D(z,y,2) = fz AN D(z,y,2) for all
z,Yy,2 €L
(2) If L has 0 and fO0 =0, then D(0,y,2) =0 for ally,z € L
3) (fxV fy)y AD(z Aw,y,z) = D(x ANw,y, z) for all z,y,z,w € L
(4) fxANdx =dx forallz € L.

Proor. Let z,y,2z,w € L.

(1) D(z,y,2) = D(xAw,y,z) = [fe AD(z,y, 2)]V[fe AD(z,y, 2)] = faAD(z,y, 2).
Similarly, fy A D(z,y,2) = D(x,y,z) = fz A D(x,y, z).

(2) Suppose L has 0 and fO0 = 0. Now by (1) above, D(0,y,2) = fOA D(0,y,2) =
0AD(0,y,z) =0.

(3) (fzV fw)AD(zAw,y,2) = (foV fw) N[fwAD(z,y, 2)]V [fz AD(w,y,2)]] =
[fwAD(z,y,2)]V [fx A D(w,y,2)] = D(z Aw,y, 2).

(4) By (1) above, we get that fo A D(z,z,2) = D(x,2z,x). Thus fe Ade =dx. O

THEOREM 3.1. Let D be a permuting tri-f-derivation on L and m be a mazimal
element in L. Then the following hold:

(1) If z,y,z € L such that fx < D(m,y, z), then D(z,y,2) = fz.
(2) If x,y,2z € L such that fx > D(m,y,z) and fm is a mazimal element in
L, then D(z,y,z) = D(m,y, 2).

ProoF. (1) Let z,y,z € L with fo < D(m,y,z). Then D(z,y,z) = D(m A
z,y,2) = [fx AD(m,y,2)] V [fm A D(z,y,2)] = fz V[fm A D(z,y,2)] = (fz Vv
fm)A[fxeVv D(z,y,2)] = (fxV fm) A fx = fz, by Lemma 3.1.

(2) Let z,y,z € L with fo > D(m,y,z). Then D(z,y,2z) = D(m A z,y,z) =
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[fz A D(m,y,2)] V [fm A D(z,y,2)] = D(m,y,z) V D(x,y,z). Thus D(x,y,z) >
D(m,y, 2). O

THEOREM 3.2. Let D be a permuting tri-f-derivation on L where f is an
increasing function on L. If z,y,z € L such that w < x and D(z,y,z)=fz, then
D(w7y,z) :fw

PROOF. Let z,y,z € L with w < « and D(z,y,z) = fz. Since f is an increas-
ing function on L, fw < fz. Now D(w,y,z) = D(z Aw,y,z) = [fw A D(x,y,2)] V
[fx A D(w,y,2)] = [fwA fz] V[fr A fu A D(w,y,2)] = fuV [fw A D(w,y,z)] =
fw. O

THEOREM 3.3. Let D be a permuting tri-f-derivation on L. Then for any
x,y,z,w € L, the following hold:
(1) If D is an isotone map on L, then fx A D(x V w,y,z) = D(z,y, 2).
(2) If f is either a join preserving or an increasing function on L, then fx A
D(zVw,y,z) < D(x,y, z).

PrOOF. Let z,y,z,w € L.

(1) Suppose D is an isotone map on L. Then D(z,y,z) < D(x V w,y,z). Now
D(z,y,z) = D((x Vw) Az,y,z) = [fr AD(xVw,y,2)]V[f(zVw)AD(z,y,z)] =
[ A D( Vw3, )V [F@ v w) A D@, 2) A D(e v w,,2)] = [f v [z V w) A
D(z,y, 2)|JAD(xVw,y, z) = [[faV f(zVw)]Afz]AD(zVw,y, z) = feAD(zVw, y, 2).
(2) Case(i): Suppose f is a join preserving map on L. Then

D(z,y,2) = D((x Vw) Na,y,2z) = [fr AD(@Vw,y,2)]V[f(zVw)AD,y,z)] =
[feAD(zVw,y, 2)]V[(fzV fw)AfeAD(z,y,2)] = [faAD(@Vw,y, 2)]VD(z,y, z).
Thus fx A D(zV w,y,z) < D(z,y, 2).

Case(ii): Suppose f is an increasing function on L. Then fz < f(z V w). Now
D(z,y,z) = D((zVw)Ax,y,2z) = [feAD(zVw,y, 2)|]V[f(eVw)AD(z,y, z)] = [fxA
D(xVw,y,2)|V[faVw)A feAD(z,y,2)] = [feAD(zVw,y, 2)|V[frAD(x,y,2z)] =
[fx AD(zVw,y,2)]V D(x,y,2). Hence fz A D(xVw,y,z) < D(z,y, 2). O

THEOREM 3.4. Let D be a permuting tri-f-derivation on L and m be a mazimal
element in L. If f is a homomorphism on L, then the following are equivalent.

(1) D is an isotone map on L

(2) D(z,y,2) = fx AD(m,y,z) for all z,y,z € L
(3) D is a join preserving map on L

(4) D is a meet preserving map on L.

PROOF. Let f be a homomorphism on L and z,y,z € L.

(1) = (2): D(z,y,2) = D(mAz,y,2) = [ft ND(m,y, 2)]V [fmAD(x,y, z)]. Thus
fx AD(m,y,z) < D(z,y,z). On the other hand,

fx AD(x Am,y,z) = fa AN[[fm A D(z,y,2)] V [fr A D(m,y, 2)]] = [fx A fm A
D(x,y,z)] \% [fz:/\D(m,y,z)] = [fm/\fx/\D(a:,y,z)] \ [fx/\D(mhva)] = [f(m/\
D)AD(z,y, |V [frAD(m,y, 2)] = [f2AD(z,y, )|V [frAD(m, g, 2)] = D(w,y, )V
[fz A D(m,y,z)] = D(x,y,z). Since D is an isotone map on L, D(z A m,y,z) <
D(m,y,z). Thus D(z,y,z) = fx A D(x Am,y,z) < fx A D(m,y,z). Hence
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D(z,y,2) = fx A D(m,y, 2).

(2) = () : D@ Vw,y,2) = flzVw)AD(my,z2) = (frV fw) AD(m,y,z) =
(fx AN D(m,y,z2)) V (fy A D(m,y,z)) = D(x,y,2) V D(w,y,z). Thus D is a join
preserving map on L.

(2) = (4) : D(x Aw,y,2) = f(z Aw) A D(m,y,z) = fx A fwAD(m,y,z) =
D(z,y,z) AN D(w,y,z). Thus D is a meet preserving map on L.

(3) = (1) and (4) = (1) are trivial. O

THEOREM 3.5. Let d be the trace of the permuting tri-f-derivation D on an
associative ADL L. Then d(z Ay) = (fy ANdz)V D(z,x,y) V D(x,y,y) V (fz Ady)
forall x,y,z € L.

ProoOF. Let z,y,2z € L. Then
fy AN D(z,x Ny,x Ny) = fy A[fy A D(@,z,0 Ay)]V [fa A D(z,y,z A y)]]
[fy AND(z,z,2 Ny)|V D(z,y,x Ny) = [fy N[[fy A D(z,z,2)]V [fr AD(z,2,y)]]]
[[fyAD(z,y,2)|V[fxAD(z,y,y)l] = (fyAdz)VD(z,z,y)VD(z,y,x)VD(z,y,y)
(fy Ndz)V D(x,z,y) vV D(x,y,y).

Again, fx AD(y, xNy,zAy) = feA[[fyAD(y,z, 2 Ay)|V [fx AD(y,y, x A\y)]] =
D(y,,x Ay)V [fx AD(y,y,x Ay)] = [fyAD(y, ,2)]V [fr AD(y,z,y)|V[fe A[[fy A
D(y,y, )]V [fz A D(y,y,9)]ll = D(y,z,2) V D(y,2,y) V D(y,y,2) V (fx Ady) =
D(y,xz,x) V D(x,y,y) V (fx A dy).

Thus d(x Ay) = D(x Ay, z ANy, x Ay) = [fyAND(z,z Ay, Ay)]V[fe AD(y,x A
y,x Ay = (fyAdx)V D(z,z,y) VvV D(x,y,y) V (fr A dy). O

<l

THEOREM 3.6. Let d be the trace of the join preserving permuting tri- f -derivation
D on an associative ADL L. If f is a join preserving map on L, then Fy(L) =
{z € L|dx = fx} is a weak ideal in L.

PROOF. Suppose f is a join preserving map on L. Let z € L,y € F4(L) and
x < y. Since f is a join preserving, f is an increasing function on L and hence
fzr < fy. Now, by Theorem 3.5,
de =d(y Nz) = (fx Ady) V D(y,y,2) V D(y,z,2) V (fy Ndz) = fz vV D(y,y,z) V
D(y,z,z)V (fy ANdz) = fa VvV (fy ANdx) = fy A fe = fx. Thus z € F4(L).

Let 2,y € Fy(L). Then d(xVy) =D(xVy,zVy,zVy) =D(x,zVyzVy)V
D(y,zVy,zVy)=D(z,z,xVy)V D(x,y,zVy)VD(y,z,zVy)VDy,yxVy) =
dx VvV D(z,z,y)V D(x,y,x) V D(z,y,y) V D(y,z,2) V D(y,z,y) V D(y,y,x) Vdy =
dzVD(z,z,y)VD(z,y,y)VD(z,z,y)VD(z,y,y)Vdy = faVD(z,z,y)VD(z,y,y)V
D(z,z,y)VD(z,y,y)V fy = faV fy = f(xVy). Thus aVy € Fy(L). Hence Fy(L)
is a weak ideal in L. (]

LEMMA 3.2. Let L be an associative ADL with 0 and D a join preserving
permuting tri-f-derivation on L and d the trace of D. If dr =0 for all x € L, then
D =0.

PROOF. Supposedr =0forallz € L. Let x,y,z € L. Then we have d(zVy) =
D(xvy, 2Vy, 2Vy) = deVD(z, z,y)VD(x,y,y)Vdy. Thus D(z,z,y)VD(x,y,y) = 0.
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Therefore D(x,x,y) = 0 for all z,y € L. In particular, D(z V z,2 V z,y) = 0 and
hence D(x,y,z) = 0. Therefore D = 0. O

Let us recall the definition of a prime ADL in the following.

DEFINITION 3.4. [12] An ADL L with 0 is said to be a prime ADL if, for
a,be L, a ANb=0 implies either a =0 or b =0.

THEOREM 3.7. Let L be an associative prime ADL and di,ds be the traces
of join preserving permuting tri-fy, tri-fo-derivations Dy, Dy on L, respectively. If
dixz ANdox =0 for all x € L, then either D1 =0 or Dy = 0.

PROOF. Suppose dix A dox = 0 for all £ € L. Assume that d; # 0 and
dy # 0. Then diy # 0 and daz # 0 for some y,z € L. Now, di(y V z) =
Di(yVz,yVz,yVz)=dyV Di(y,y,2) VD1(y,2z,2) Vdiz # 0 and da(y V 2) =
Do(yV z,yV z,yV z) = doy V Da(y,y,2) V Da(y,2,2) Vdoz # 0. But, by our
assumption di(y V z) Ada(y V z) = 0. This is a contradiction, (since L is a prime
ADL). Thus d; = 0 or d2 = 0 and hence by Lemma 3.2, either D; = 0 or
Dy = 0. 0

Finally we conclude this paper with the following theorem.

THEOREM 3.8. Let L be an associative prime ADL and dy,ds be the traces of
join preserving permuting tri-f1, tri-fo-derivations D1, Dy on L, respectively such
that diofa = dy and fiody = da. Suppose one of the following condition hold

(1) D;(dez, fox, fox) =0 for allz € L
(2) D;(dex,daz, fox) =0 for allz € L
(3) diody =0, then either D1 =0 or Dy = 0.

PROOF. (1) Suppose D;(doz, fox, fox) = 0 for all z € L. Let x € L. Since
fox N dox = doz, we get that
[f1(d2z) AD1(fox, fox,, fox, )V fi1(fax)AD1(doz, fox, fox)] = Di(faxAdax, foz, fox) =
0. Thus (fiod2)x A (diofs)x = 0. Therefore dox A dyz = 0.
(3) Suppose D1 (dax,dox, fox) =0 forallxz € L. Let € L. Again since fox Adoz =
dax, we get that [fi(d2x) A Di(fox,dox, fox)] V [fi1(fax) A Di(dox, dox, fox)] =
D1 (fax A daz,dox, fax) = 0. Thus (fiode)x A Di(fax,daz, fox) = 0. Therefore
d2x N Dl(f2.73, dgl‘, fQJU) = (0 . Thus [dgl‘ A\ f1 (dQI) A (dlofg)l‘] \Y [dgx A f1 (fgx) A
D1 (fox,dox, fox)] = dox A D1(fox, fox Adaz, fax) = 0. Therefore dox A (frods)x A
(diofz)x = 0 and hence dsx A diz = 0.
(2) Suppose djods = 0. Then dy(dax) = 0 for all z € L. So that, Dy (dax, dox, dex) =
0 for all € L. Let z € L. Again since fox A dox = dox, we get that [f1(d2x) A
Dy (dox,doz, fox)] V [f1(fox) A Dy(dox, dox,dox)] = Di(daz, dox, fox A doz) = 0.
Therefore dox A Dy (d2x, dax, fox) = 0. Thus [dex A fi(dex) A Dy (dox, fox, fox)] V
[daz A fi(fox) A Di(daz, doz, fox)|=dax A Di(dex, fox A dox, fax) = 0. Hence
dQZE A Dl(dgx, f2.’L’, fQ.T) = 0. So that [dzdf N f1 (dQ.Z‘) N (lefQ)l‘] V [dgl‘ A f1 (fz.r) A
D1 (fox, dox, fox)|=dax A Di(fox, fox A dax, fax) = 0 and hence dox A dyz = 0.
Therefore, dox A dixz = 0 for all € L in all three cases. By Theorem 3.7, we get
that either D; =0 or Dy = 0. O
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