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SOLITARY WAVE SOLUTION OF THE VARIABLE

COEFFICIENT KdV - BURGERS EQUATION

M. Senthilkumaran and S. Karthigai Selvam

Abstract. In this paper, we find exact solitary wave solutions for the variable
coefficient KdV Burgers equation of the form ut+uux+f(t)uxx+g(t)uxxx =
0. We construct a transformation of variables which is applied in order to

obtain a constant coefficient KdV Burgers equation and also we obtain certain
solitary wave solutions with a constraint on f(t) and g(t).

1. Introduction

At present many phenomena in modern mathematical physics have been mod-
eled in terms of a variety of nonlinear partial differential equations. In order to un-
derstand these nonliear phenomena, many mathematician and physicists do strive
in seeking more exact solutions for them. Therefore it is still a very important
and essential task to search for the explicit and exact solutions to nonlinear par-
tial differential equations in modern science. Several powerful methods have been
proposed in order to obtain exact solution nonlinear evolution equations, such as
homogeneous balance method [1, 2], the tanh-function method [3], the sech-function
method[4], the Jacobi elliptic function expansion method [5, 6] and so on. How-
ever not all the above approaches are applicable for solving all kinds of nonlinear
evolution equations directly.

The standard form of the Korteweg-de Vries - Burgers (Kdv-Burgers) equation
is

(1.1) ut + αuux + βuxx + suxxx = 0,

where α, β and s are real constants with α, β, s ̸= 0.
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The KdV-Burgers equation (1.1) is the simplest form of the wave equation in
which the nonlinearity (uux), the dispersion uxxx and the dissipation uxx all occur.
It arises from many physical contexts, for example, the propagation of undular
bores in a shallow water [7, 8], the flow of liquids containing gas bubbles[9], the
propagation of waves in an elastic tube filled with a viscous fluid [10], weakly
nonlinear plasma waves with certain dissipative effects [11, 12], and the cascading
down process of turbulence[13]. It is also widely used as a nonlinear governing
model in the crystal lattice theory, the nonlinear circuit theory and the atmospheric
dynamics.

Recently as per demand of several physical situations it has become of consid-
erable interest to find the exact solutions of a nonlinear partial differential equation
when the parameters depend explicitly on time. In particular the KdV equation
with variable coefficients has been studied in the context of ocean waves, there the
spatio-temporal variability of the coefficients are due to the changes in the water
depth and other physical conditions.

A simple generalization of the KdV-Burgers equation, which bears more realis-
tic physical importance, is the variable-coefficient KdV-Burgers (VCKdVB) equa-
tion

(1.2) ut + uux + f(t)uxx + g(t)uxxx = 0.

where g(t) and f(t) stands for the dispersion uxxx and the dissipation uxx respec-
tively. The purpose of this paper is to study (1.2) for exact solitary wave solution
and a more general result is obtained. It does not seem that this new result has
been presented previously for VCKdVB equation.

The structure of paper is as follows: In section 2, the variable coefficients
KdV-Burgers equation is transformed into the standard form of the KdV-Burgers
equation under the generalized transformation. In section 3, we obtain the exact
solitary wave solutions of the variable coefficients KdV-Burgers equation through
the standard form of the KdV-Burgers equation by using complex tanh method.
Section 4 contains conclusion of this study.

2. Transforming the variable coefficients KdV-Burgers equation via
the generalized transformation

In order to look for solutions to KdV-Burgers equation

(2.1) ut + uux + f(t)uxx + g(t)uxxx = 0,

we apply the generalized transformation given by

(2.2) u(x, t) = A(x, t)G(τ, z) +B(x, t), z = α(t)x+ β(t), τ = τ(t),

where A(x, t) ̸= 0, B(x, t), α(t), β(t) and τ(t) are some functions to be determined
later.
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We use the above ansatz into (2.1) to obtain,

Aτ ′Gτ + αA2GGz + [fα2A+ 3gα2Ax]Gzz + α3AgGzzz

+[At +ABx +AxB + fAxx + gAxxx]G+AAxG
2

+[α′Ax + β′A+ αAB + 2αfAx + 3αgAxx]Gz

+[Bt +BBx + fBxx + gBxxx] = 0,(2.3)

Now we assume the following conditions,

αA2

Aτ ′
= 1,(2.4)

fα2A+ 3gα2Ax

Aτ ′
= −γ,(2.5)

α3g

τ ′
= µ,(2.6)

At +ABx +AxB + fAxx + gAxxx = 0,(2.7)

AAx = 0,(2.8)

α′Ax + β′A+ αAB + 2αfAx + 3αgAxx = 0,(2.9)

Bt +BBx + fBxx + gBxxx = 0,(2.10)

where γ and µ are non zero real constants.
We use the above conditions (2.4)-(2.10), equation (2.1) reduces to the KdV-

Burgers equation,

(2.11) Gτ +GGz − γGzz + µGzzz = 0,

Solving the equation (2.8), we get

(2.12) A = A(t),

Subtitute A = A(t) in equation (2.7), we get Bx = −A′

A and

(2.13) B =
−A′

A
x+ C1(t),

where C1(t) is a constant. Using A = A(t) in equation(2.9),

(2.14) B =
−α′

α
x− β′

α

Using the equation(2.14), Bxx and Bxxx are vanishes and from the equation (2.10),
we get

(2.15) Bt +BBx = 0,

Inserting (2.14) into (2.15), then we obtain

(2.16)

[
−
(
α′

α

)′

+

(
α′

α

)2
]
x+

[
−
(
β′

α

)′

+

(
β′

α

)(
α′

α

)]
= 0,



398 M. S. KUMARAN AND S. K. SELVAM

Equating the x coefficients in equation (2.16) to zero, we get

(2.17) −
(
α′

α

)′

+

(
α′

α

)2

= 0,

We take y = α′

α and from equation (2.17),

(2.18) −y′ + y2 = 0.

Solving the equation (2.18), y = −1/(t+ C0). Therfore α = C2/(t+ C0).
Equating the constant coefficients in equation (2.16) to zero, we get

(2.19) −
(
β′

α

)′

+

(
β′

α

)(
α′

α

)
= 0,

Next we take s = β′

α and from equation (2.19) gives

(2.20) −s′ + s
α′

α
= 0,

Solving the equation(2.20), s = C3(t+ C0)
−1 where C3 is a constant.

Use s = C3(t+ C0)
−1, we get

(2.21) β =
−C4

(t+ C0)
+ C5,

where C4 = C2C3 and C5 are constants. On solving equations (2.13) and (2.14),

we obtain C1(t) = −β′

α Therefore

C1(t) = − C3

t+ C0
,

From equations (2.13) and (2.14), we get

(2.22)
α′

α
=

A′

A
,

Solving the equation (2.22), A = C6

t+C0
.

Now (2.4) gives τ ′ = Aα, and its solution is,

τ =
−C7

t+ C0
+ C8,

After inserting for α and τ in (2.6), we have

g =
µC7

C3
2

(t+ C0).

Using A = A(t), (2.5) gives fα2 = −γτ ′, and its solution is, (after inserting for
α2, τ) We get f = −γ C7

C2
2
.

Substituting all the known terms into (2.2), we find that

u =
C6

t+ C0
G(τ, z) +

x

t+ C0
− C3

t+ C0
.

where z = C2

t+C0
x− C4

t+C0
+ C5 and τ = − C7

t+C0
+ C8.
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3. Solitary wave solutions

In order to construct the solitary solution of equation (2.11) by the complex
tanh method[14], we use the wave transformation

(3.1) G(z, τ) = g(ξ), ξ = i(z + λτ)

Substituting (3.1) into (2.11) and integrating once with respect to ξ and setting
the constant of integration to be zero, we obtain

(3.2) λig +
i

2
g2 + γg′ − iµg′′ = 0.

For the tanh method [14], we introduce the new independent variable y = tanhξ
which leads to the change of variables

d

dξ
= (1− y2)

d

dy
,

d2

dξ2
= −2y(1− y2)

d

dy
+ (1− y2)2

d2

dy2
.

Using the transformation y = tanhξ, equation (3.2) becomes,

(3.3) λg +
1

2
g2 − iγ(1− y2)

dg

dy
+ µ

[
2y(1− y2)

dg

dy
− (1− y2)2

d2g

dy2

]
= 0.

Now, we balance the linear term of highest order with the highest order non-linear
terms in equation (3.3), we obtain n = 2. Hence we assume that

(3.4) G(z, τ) = g(ξ) = a0 + a1y + a2y
2.

Substituting equation (3.4) into equation (3.3), and equating the coefficient of
yi, i = 0, 1, 2, 3, 4 leads to the following system of algebraic equation:

a20
2

+ a0λ− ia1γ − 2a2µ = 0

a0a1 + a1λ+ 2a1µ− 2ia2γ = 0

a0a2 +
a21
2

+ ia1γ + a2λ+ 8a2µ = 0(3.5)

a1a2 − 2a1µ+ 2ia2γ = 0

a22
2

− 6a2µ = 0

Solving the system of equations (3.5), we get two classes of the solutions
I : a0 = −(λ+ 12µ), a1 = − 12γ

5 i, a2 = 12µ, λ = ±24µ, γ = ±10iµ
II : a0 = −(λ+ 8µ), a1 = 0, a2 = 12µ, λ = ±4µ, γ = 0.
Therefore the solutions of the equation (2.11) are

G(z, τ) = −(λ+ 12µ)− 12γ

5
tan(z + λτ)− 12µ tan2(z + λτ),(3.6)

with λ = ±24µ, γ = ±10iµ and

G(z, τ) = −(λ+ 8µ)− 12µ tan2(z + λτ), with λ = ±4µ, γ = 0,
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Hence the solutions of the equation (1.2) with

f = −γ C7

C2
2
and g = µC7

C3
2
(t+ C0)

are

u(x, t) = −(λ+ 12µ)− 12γ
5 tan

[
c2x−c4−λc7

t+c7
+ (c5 + λc8)

]
−12µ tan2

[
c2x−c4−λc7

t+c7
+ (c5 + λc8)

]
,

with λ = ±24µ, γ = ±10iµ,

u(x, t) = −(λ+ 8µ)− 12µ tan2
[
c2x−c4−λc7

t+c7
+ (c5 + λc8)

]
,

with λ = ±4µ, γ = 0.

4. Conclusion

In this paper we reduce the problem of finding solution to a VCKdVB equa-
tion to that of solving a similar equation with constant coefficients. This approach
simplifies the tedious algebraic computations and allows us to use known results.
First the variable coefficients KdV-Burgers equation is transformed into the stan-
dard form of the KdV-Burgers equation under the generalized transformation and
we obtain the exact solutions of the variable coefficients KdV-Burgers equation
through the standard form of the KdV-Burgers equation by using complex tanh
method. We think that the results we presented in this work are new in the litera-
ture for VCKdVB equation.
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