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ABSTRACT. Let G be a graph. The inherent Inj-equitable graph of a graph G
(IIE(QG)) is the graph with the same vertices as G and any two vertices v and v
are adjacent in ITE(Q) if they are adjacent in G and |deg;,, (u) — deg;,, (v)| < 1,
where for any vertex w € V(G), deg;,, (w) = ){w/ EV:Nw)NNw) # (b}‘
[2]. In this paper, inherent Inj-equitable graph of some graphs are obtained,
some properties and results are established. We define iterated Inj-equitable
graph of a graph, complete Inj-equitable graph and we define the Inj-equitable
graph.

1. Introduction

All graphs considered in this paper are finite, undirected without loops or
multiple edges. Let G = (E, V) be a graph with vertex set V' = {vy, va, ....v, }. Thus
|V| = n. The open neighborhood and the closed neighborhood of v are denoted by
N@w)={u e V(GQ) : wv € E} and N[v] = N(v)U{u}, respectively. The degree of a
vertex v in G is deg(v) = |N(v)|. A(G) and 6(G) are the maximum and minimum
vertex degree of G respectively. The distance d(u,v) between any two vertices u
and v in a graph G is the number of the edges in a shortest path. The eccentricity
of a vertex u in a connected graph G is e(u) = max{d(u,v), v € V'}. The diameter
of G is the value of the greatest eccentricity, and the radius of G is the value of
the smallest eccentricity. The Inj-neighborhood of a vertex u € V(G) denoted by
Nin(u) is defined as Nj,(u) = {v € V(G) : [T'(u,v)| > 1}, where |T'(u,v)| is the
number of common neighborhood between the vertices uw and v. The cardinality
of Nj,(u) is called injective degree of the vertex u and is denoted by deg;,, (u) in
G and Ny, [u] = Ny (u) U {u}. Let G and H be any two graphs with vertex sets
V(G), V(H) and edge sets E(G), E(H), respectively. Then the union GU H is the
graph with vertex set V(G)UV (H) and edge set E(G)U E(H). The join GV H, is
the graph obtained by taking the disjoint union of G and H and adding all edges
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{uv : v € V(G), v € V(H)}. The corona product G o H is obtained by taking one
copy of G and |V (G)| copies of H and by joining each vertex of the i-th copy of H to
the i-th vertex of G, where 1 < ¢ < |V(G)|. The cartesian product G x H is a graph
with vertex set V(G) x V(H) and edge set E(G x H) = {((u,u), (v,v)) : u = v
and u',v") € E(H), or v = v and (u,v) € E(G)}. For more terminologies and
notations, we refer the reader to [2], [4], [6] and [8]. A strongly regular graph
with parameters (n, k, A, 1) is a k-regular graph with n vertices such that any two
adjacent vertices have A common neighbors, and any two non-adjacent vertices have
4 common neighbors, [5].

DEFINITION 1.1 ([1]). Let G = (V, E) be a graph. The inherent injective equi-
table graph of G, denoted by ITE(G) is defined as the graph with vertex set V(QG)
and two vertices u and v are adjacent in ITE(G) if and only if they are adjacent in
G and |deg;,, (u) — deg;,,(v)| < 1. An edge e = wv € G s called injective equitable
edge if |deg;,, (u) — deg;,,(v)| < 1 and we say that u and v are Inj-equitable adjacent.

The adjacency matrix of the graph G is the symmetric square matrix A =
A(G) = ||a;j]|| of order n whose (4, j)-entry is defined as:
1 if the vertices v; and v; are adjacent;
(1.1) A5 = .
0 otherwise.
The equitable graph of a graph G is the graph with vertex set V(G) and two vertices
u, v are adjacent if and only if |deg(u) — deg(v)| < 1, [7]. The adjacency matrix
of equitable graph is the symmetric square matrix A. = A.(G) = ||b;;|| whose
(i,j)-entry is defined as:

(1.2) b 1 if v; and v; are adjacent and |deg(v;) — deg(v;)| < 1;
. Tl otherwise.

The adjacency matrix of the congraph, defined in [3], is the symmetric matrix

‘ a;j whose (4, j)-entry is defined as:
. S I R N[
(1.3) @ij = ~

0 otherwise.

Where I'(v;, v;) is the set of vertices, different from v; and v;, that are adjacent to
both v; and v;.

Bearing in mind equations 1.2 and 1.3 as a sort of compromise, we introduce a
new symmetric square matrix A;rp = ||d;;|| of order n, whose (¢, j)-entry is defined
as:

5 - 1 ifv; and v; are adjacent and |deg;, (v;) — deg;,, (v;)] < 1;
10 otherwise.

This matrix can be viewed as the adjacency matrix of the inherent injective eq-
uitable graph. In this paper, the benefit of graph characterization to study the
properties and the structure of graphs motivated us to introduce and study new
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graphs called inherent injective equitable graph and complete inherent injective
equitable graph.

2. The Inherent Inj-equitable Graph of a Graph

In this section, we discuss some properties of the inherent injective equitable
graph of a graph and the inherent injective equitable graph of some graph’s families
is found.

PROPOSITION 2.1. For any graph G, G = ITE(G) if and only if every edge is
an Inj-equitable edge.

THEOREM 2.1. Let G be a complete graph or k-regular triangle-free graph with
diameter 2, then ITE(G) = G.

ProoF. If G is complete graph, then obviously ITE(G) = G. Suppose that
G is k-regular triangle-free graph with diameter 2. We know that ITF(G) is a
subgraph of G for any graph G. Since G is k-regular with diameter 2, then for any
vertex v, deg(v) = k and deg,,, (v) = n —k — 1. So, any adjacent vertices in G is
also Inj-equitable adjacent. Hence, ITE(G) = G.

O

COROLLARY 2.1. For any strongly reqular graph without triangle G, IIE(G) =
G.

PROPOSITION 2.2. For any strongly reqular graph with parameters (n,k, A\, n) ,
ITE(G) is also a strongly regular graph with the same parameters.

PROOF. Let G be a strongly regular graph with parameters (n, k, A,7). Then
for any two adjacent vertices v and v, deg;, (u) = deg,,, (v) = A. Therefore,

|degzn (u) - degzn (U)| =0.
Hence ITE(G) = G. O

REMARK 2.1. [t is not true in general that for any regular graph G, IIE(G) =
G. For example, one can see Figure 1.

> <X

%

G IIE(G)

FIGURE 1. A regular graph G with ITE(G) 2 G

PROPOSITION 2.3. The following holds:
(i) For any path P,, ITE(P,) = P,.
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(ii) For any cycle Cy,, ITE(C,,) = C,.
(iii) For any wheel W,,, ITE(W,,) &2 W,,.

PROPOSITION 2.4. For any complete bipartite graph K, s, where r + s > 4,

)

K., if |r—s/<1
| > 2.

IIE(K,,) = { _ ‘

’ Koys if |r—s

ProoF. Let G = K, ; be a complete bipartite graph with partite sets A and

B such that |A| = r, |B| = s. Clearly for any vertex v from A, deg,,,(v) =r—1 and

for any vertex u from B, deg;,(u) = s — 1. Therefore, u and v are Inj-equitable

adjacent if |(s — 1) — (r — 1)] = |r — s| < 1. Otherwise, they are not Inj-equitable
adjacent. Hence,

ITE(K, ) = K., if |r—s/ <1
DT Ky it r—s|>2.

A firefly graph F,,; is a graph on 2r + 2s +t + 1 vertices that consists of
r triangles, s pendant paths of length 2 and ¢ pendant edges sharing a common
vertex.

w; w,
° wl

2

v, Us

v AY
3 us-l

U

[ ]
V2,1

F1GURE 2. Firefly Graph

THEOREM 2.2. For any firefly graph F, 5., where r,s,t > 1,

Fr70,s+1 UFS th =1
IIE(F,«?s’t) = rKs U K1’5+2 UFS ift =2;
F25+t+1 @] ’I’KQ th > 2.
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PROOF. Let G be a firefly graph F, ;; as in Figure 2., where r > 1,5 > 1 and
t > 1. Let v be the center vertex, v; where ¢ = 1,2,...2r be any vertex from the
triangle other than v, w; where i = 1,2, ...t be any end vertex in the pendant edge,
u; and u} where i = 1,2, ..., s be any end vertex and internal vertex respectively in
the pendant path. Then, deg;,(v) = 2r + s, deg;,(v;) = 2r + s + t, deg;,,(w;) =
2r+s+t—1,deg,, (u;) =2r+ s+t —1 and deg;, (u;) = 1. We have three cases:

Case 1. Suppose that, t = 1. Since |deg;,, (v) — deg;,, (v;)| = 1 and
|degzn(u}¢) - degin (wl)| =0,

then IIE(FT-7S,t) = FT,O,S-‘,—l UFS

Case 2. Suppose that, t = 2. Then, deg;, (v) = 2r + s, deg;,, (v;) = 2r + 5+ 2,
deg,, (w;) = 2r+s+1, deg;,, (u}) = 2r+s+1. Hence, ITE(F, 5 4) = rKoUK7 s12UK .

Case 3. Suppose that ¢ > 2., then the only injective edges are e; = vv2,
€2 = UgV3...€p = Vgp_1V2,. Hence, ITE(F, ) = Kogii11 UrKa. O

PRrROPOSITION 2.5.

(i) For any firefly graph G = F,.00, IIE(G) = G.
(ii) For any firefly graph Fy s 0,

F0,2,O if s = 2,

[IE(Fy 4 0) = 0
(Fo.5.0) {KLSUKS if 5> 2.

(i) For any firefly graph F, s, where r = s =10

Fooe ift<2
IIl;(F‘rst)g - .
o Kt+1 if t > 3.
(iv) For any firefly graph Fy. s+, wherer =0, s > 1,t > 1,
P4 ifs=t= ].;
IIE(FT)S7t) = Kt-‘,—s UF@ if t < 27
Kiiosi1 ift > 3.

PROPOSITION 2.6. For any bipartite graph G, IIE(G) is also bipartite graph.

PROOF. Let G be a bipartite graph. Suppose that ITE(G) is not bipartite
graph. Then it contains at least one odd cycle say Cy,. Since ITE(G) is a subgraph
of G, then G contains odd cycle which contradicts that G is bipartite graph. Hence
ITE(G) is bipartite graph. O

PROPOSITION 2.7. Let G be a graph such that G = P, X P,. Then ITE(G) =
Pm X PQ.
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v, v, Vs v, U,
[ e o o
e o o

Uy U, Us Uy U,

FIGURE 3. P, x Ps.

PROOF. Let G be a graph such that G = P,, X P, . Then we have four cases:

Case 1. If m = 2, then G = Cy. Therefore, ITE(G) = G.

Case 2. If m = 3, then deg,;,(v) = 2 for all v € V(G). Therefore, for any
adjacent vertices u and v, |deg;,,(u) — deg;,,(v)| = 0. Hence, ITE(G) & P, x Ps.

Case 3. If m = 4, then for all v € V(G), either deg,, (v) = 2 or deg;, (v) = 3.
Therefore, for any two adjacent vertices u and v, |deg;,,(u) — deg;,,(v)| < 1. Hence,
IIE(G) & Py, x Ps.

Case 4. If m > 5, let G be labeling as in Figure 3. Then, deg,, (v;) =
degin(vm) = degin(ul) = degin(um) =2, degin(UQ) = degin(vm—l) = degin(u2) =
deg;,,(um—1) = 3 and for i = 3,4,..m — 2, deg,,,(v;) = deg,,,(u;) = 4. Therefore,
for any two adjacent vertices w and v in G, |deg,,(u) —deg,,(v)| < 1. Hence,
[IE(G) 2 P, x P».

O

ProproSITION 2.8. Let G be a graph such that G = P,, x P3, where m > 4.
Then IIE(G) & P, x P; — {e1,ea}, where e; and ey are the edges which are not
Inj-equitable edges in G.

U1 (L) V13 V14 Vim
[ — —e ® o oo g
V21 U2 V23 Vo4 Vo
® o— — @ ® o o ¢ O
V31 V32 V33 Uzq V3
® o— —@ ® o o ¢ O

FIGURE 4. P,, x P;

PROOF. Suppose that, G = P,, x P3 be labeling as in Figure 4. Then we have
two cases:

Case 1. If m = 4, then all the vertices have Inj-degree 3 or 4 or 5 except va
and ve3 have Inj-degree 5. Therefore all the edges are Inj-equitable edges except
€1 = U1V and ey = v93v24. Hence, ITE(G) = P, x P; — {e1, ea}.
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Case 2. If m > 5, then all the edges are Inj-equitable edges except e; = va1v92
and e = Vo, —1V2,. Hence, ITE(G) & P, X P3 — {e1,e2}.
O

For the generalized case, we have the following result:

PROPOSITION 2.9. Let G be a graph such that G = P, x P,, where m,n > 5.
Then IIE(G) > Comitan—a U (Pm,Q X Pnfg).

U V12 V13 V1a V1im
[ ] 99— —@ ® o e ¢ @
U2 V22 V23 & Vo
[ ] @— —@ P o o o O
V31 GEY) V33 Uzs G
[ 2 *— —@ ® °* °* @
* L] L] L] L]
* L] L] L] L]
* ] L] L] L]
. . 4. . . 3 o .
Unl an ’U"3 ’U"4 vnm

FiGure 5. P, x P,

PROOF. Suppose that G = P, x P, be labeling as in Figure 5. Then
degin (Ull) = degin (vlm) = degin (vnl) = degin (Unm) =3
and
deg;,, (vi2) = deg;, (V(1)(m-1)) = deg;, (v21) = deg;, (vam) = deg;, (Vin—1)(1)) =
deg;, (Vin—1)(m)) = degy, (vn2) = degy, (V(n)(m—2)) = 4.
Also, for i = 3,4,..m — 2,
degin (Uli) = degzn (U’Vli) =5
and for i = 3,4, ...m,
deg;,, (vi1) = deg;,, (vim) = 5.
Fori,j=2,m—1,
deg;,, (vi;) = 6.
For i =3,4,..m — 2,
deg;,, (v2;) = deg;, (V(n-1)(i)) =7
and for i = 3,4,..n — 1,

deg;,, (viz) = deg;, (V(i)(m-1)) = T-
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For i,7 =3,4,..m — 2,
degm(vij) = 8.
Therefore, all the edges are Inj-equitable edges except
V21022, V(2)(m—1)V2m, V(n—-1)(1)V(n—1)(2)s Y(n—1)(m—1)V(n—1)(m)

and for j =2,3,..m — 1, vi,v25, UnjU(n—1)()- Hence IIE(P,, x P,) = Comiaon—a U
(Pm—2 X Pn—2)-
O

PROPOSITION 2.10. Let G be a generalized petersen graph GP(m,1). Then
ITE(G) 2 GP(m,1).

FIGURE 6. GP(m,1)

PROOF. Let G be a generalized petersen graph GP(m, 1). Then G = C,, X Ps.
We have three cases:

Case 1. If m = 3, then for all v € V(G), deg,,,(v) = 4. Therefore, all the edges
are Inj-equitable edge. Hence, ITE(G) = C,, x Ps.

Case 2. If m = 4, then for all v € V(G), deg;,,,(v) = 3. Therefore, all the edges
are Inj-equitable edge. Hence, ITE(G) = C,, x Ps.

Case 3. If m > 5, let G = (), x P be labeling as in Figure 6. Then
deg;, (v;) = 4 and deg,, (u;) = 4, for i = 1,2,...m. Therefore, for any adjacent
vertices w and v in G, |deg,, (u) — deg,, (v)| = 0. Therefore, ITE(G) = Cp, X Ps.
Hence, IIE(GP(m,1)) 2 GP(m,1). O

PROPOSITION 2.11. Let G = C,, x P3. Then ITE(G) = C,, X Ps.

PROOF. Let G = C,,, x P53 be labeling as in Figure 7. We have three cases:

Case 1. If m = 3, then for all v € V(G), deg;,,(v) = 5. Therefore, all the edges
are Inj-equitable edges. Hence, ITE(G) = C,,, X Ps.
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FIGURE 7. C,, x P

Case 2. If m = 4, then for i = 1,2,...4, deg;,,(v1;) = deg,,(vs;) = 4 and

deg;,,(v2;) = 5. Therefore, all the edges are Inj-equitable edges. Hence, ITE(G) =
Cm X P3-

Case 3. If m > 5, then for i = 1,2,...m, deg,,(v1;) = deg;,(vs;) = 5 and
deg;,, (va;) = 6. Therefore, for any adjacent vertices u and v in G,
|deg;,, (u) — deg;,, (v)] = 0. Hence, ITE(G) = C,, x Ps. d

THEOREM 2.3. For any graph G such that G = C,, X P,
ITE(G) =2 2C,, U (Cyy X Pp_3), where n > 5.

FIGUuRre 8. C,, x P,
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PROOF. Suppose that G = C,,, X P, be labeling as in Figure 8. We have three
cases:

Case 1. If m = 3, then for i = 1,2, 3, deg;,, (v1;) = deg,,,(vn;) = 5, deg,,, (va;) =
deg;,(vp—1) = 7 and for i = 3,4,.n — 2, j = 1,2,3, deg,;,(v;;) = 8. Hence
IIE(G) = 2Cy, U (Cyy X Po_s).

Case 2. If m = 4, then for i = 1,2,..4, deg;,(v1;) = deg,,(vni) = 4,
deg;,, (ve;) = deg;,, (vn—1:) =6 and for i = 3,4,.n—2, j =1,2,..4, deg;,, (vi;) = 7.
IIE(G) = 2Cy, U (Cyy X Py_s).

Case 3. if m > 5, then as in Figure 8., for ¢ = 1,2,..m, deg;,(v1;) =
deg;,,(vni) = 5, deg;,,(v2;) = deg,,, (vn—1 i) =Tand fori =3,4,.n—2,j=1,2,..m,
degy, (vi;) = 8. ITE(G) = 20, U (Chy X Po_s). O

THEOREM 2.4. For any graph G, such that G = Cp, x Cp,, ITE(G) =2 Cy, X Cps.

Ficure 9. C,, x C,,

PROOF. Let G be any graph such that G = C,, x C},. From Figure 9., for all
v € V(G), deg;, (v) = 8. Therefore, all the edges are Inj-equitable edges. Hence
IIE(G) = Cy, % Cy. O

PROPOSITION 2.12. For any two graphs G1 and Go, IIE(G1V G2) = G1 V Gs.

PrOOF. Let G; and G2 be any two graphs. Since every edge in G V G is
injective equitable edge, then ITE(G1 V G2) = G1 V Ga. O

~ PROPOSITION 2.13. For any cycle graph C,, and any totally disconnected graph
K, wherem > 2, ITE(Cy 0o K,;,) 2 Cp UKy,

PROOF. Let {uj,us,...u,} be the vertex set of the cycle graph C,, and let
{v1,v9,...v, } be the vertex set of K,,. Then for i = 1,2, ...n, deg,, (u;) = 2(m + 1)
and for j = 1,2,..m, deg;,(vj) = m + 1. Therefore, |deg;, (u;) — deg,,(v;)| =
m+1> 1. Hence, IIE(C,, 0 K,,) 2 Cp UK iy - O
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THEOREM 2.5. For any graph G with 6 > 2, if G is k—regular or (k,k +
1)—biregular, then
IIE(G oK) = ITE(G) UK pm.

where n is the number of vertices in G.

PROOF. Let G be a k—regular graph with n vertices and 6 > 2. Suppose
that {uy,us,...u,} and {vy va,...v;,} is the vertex set of G and K,,, respectively.
Therefore, Then for i = 1,2,...n, deg,,(u;) = k(m + 1) and for j = 1,2,..m,
deg;, (vj) = k + m — 1. Therefore, |deg;, (u;) — deg;,(v;)] = m(k —1) +1 > 1.
Hence, I1E(G o K,,) = ITE(G) U K, Similarly, we can prove if G is (k, k + 1)-
biregular, then ITE(G o K,,,) = IIE(G) U K .. O

3. Complete inherent Inj-equitable graphs

DEFINITION 3.1. A graph G is called complete inherent injective equitable graph
(CITE—graph) if for any two adjacent vertices u and v, |deg;, (u) — deg;,, (v)| < 1.

ExampLE 3.1. C, x C), is CIIE-graph.

ProroOSITION 3.1. Any complete graph is CI1IE-graph but the converse is not
always true. For example, paths and cycles are CI1E-graph but not complete.

PROPOSITION 3.2. Let G be any graph. IIE(G) = G if and only if G is CIIE-
graph.

PROPOSITION 3.3. Let H be a CIIE-graph and let G be a subgraph of H. Then
IIE(G) is a subgraph of IIE(H).

PROOF. Let H be a CIIE-graph and let G be a subgraph of H. Let e be an
edge in ITE(G). Then e € G. Therefore e € H. So, e € ITE(H). Hence, IIE(G)
is a subgraph of ITE(H).

O

PROPOSITION 3.4. For any CIIE-graph G, IIE(G) is also CIIE-graph.

PROOF. Let e = uv be any edge in ITE(G). Then e is an edge in G. Since G is
CIIE—graph, then |deg;,, (u) — deg;,,(v)| < 1in G. Therefore, |deg,,, (u) — deg,,, (v)]
1in ITE(G). So, ITE(G) is CIIE-graph. O

THEOREM 3.1. A graph G is CIIE—graph if and only if A(G) = A;p(G),

where A(G) and Arrg(G) are the adjacency matriz of G and adjacency matriz of
the inherent injective equitable graph of G respectively.

PROOF. Suppose that G is CIIE—graph. Then for any two adjacent vertices
v; and vj, |deg;, (v;) — deg;, (v;)| < 1. Therefore, A(G) = Arrg(G). Similarly, if
A(G) = Arre(G) then G is C1IE—graph. O

m

PROPOSITION 3.5. Let G = |JG;. If G;,i = 1,2,...m, are CIIE—graphs, then
i=1
G is CI1IE—graph.
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PROOF. Let v and v be any two adjacent vertices in G. Therefore, u and v
are adjacent vertices in a graph G, i = 1,2,..n. But G; is CIIE—graph. Then,
|deg;,,(u) — deg;,,(v)| < 1. Hence, G is CIIE—graph. O

_ DEFINITION 3.2. A graph G which is C11E—graph is called strong C11E—graph
if G is also CI1E—graph.

EXAMPLE 3.2. Any cycle C, with n vertices is strong CI1E—graphs. Similarly,
any path P, with n vertices is strong C'I1FE—graphs.

PROPOSITION 3.6. For any graph G =2 K, , such that |m —n| < 1, G is strong
CIIE—graph.

ProoOF. Let u and v be any two adjacent vertices in G = K,,,. Then
|deg;,,(u) — deg;,, (v)| < 1. Therefore, G is CII E—graph. Also, since G = K,, UK,
then |deg,,, (u) — deg,,,(v)| < 1 for any two adjacent vertices u and v. Hence, G is
strong C'IIE—graph. O

PROPOSITION 3.7. For any graph G, IIE(G) is a subgraph of IIE(G).
PROOF. Let e be any edge in ITE(G). Then, e € G. Therefore, e ¢ G. So,

e ¢ ITE(G). Then, e € IIE(G). Hence ITE(G) is a subgraph of ITE(G). O

PROPOSITION 3.8. ITE(G) is subgraph of G.

THEOREM 3.2. For any strong CIIE—graph G, ITE(G) = I1E(G).

PROOF. Let e be any edge in ITE(G). Then e ¢ ITE(G). Since G is strong
CIIE—graph, then e ¢ G. Therefore, e € G which implies that e € ITE(G),

since G is strong CIIE—graph . So, [IE(G) C IIE(G). Henc by propostion 3.7 ,

ITE(G) = ITE(G). O

THEOREM 3.3. Let G be a graph with adjacency matriz A = ||a;;||. Let Brip =
1 Zf |degin(vi) - degln(v)‘ < 1;
b | where by; = { ’

0 otherwise.
Then
a11bin aebiz ... apbin
Arre = [[hijl| = :
anlbnl an2bn2 annbnn

where Arrg is the adjacency matriz of the inherent injective equitable graph of G.

PROOF. Suppose that G is a graph with adjacency matrix A and suppose

1 lf |degzn(vl) - degin(vj” < 1;

B = ||b;5 here b;; =
11 = [[bisl] where bi; { 0 otherwise.

Let
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a11biy  aisbiz ... ainbin
Crig =
anlbnl ananQ annbnn
Then for i,j = 1,2,...m, as;b;; = 0 if a;;5 = 0 or b;; = 0, i.e, v; and v; are not
adjacent or |deg;,, (v;) — deg;, (v;)| > 1. For i,j =1,2,..m, a;;b;; = 1 if a;; = b;; =
1, i.e, v; and v; are Inj-equitable adjacent. Therefore,
1 if v; and v; are Inj-equitable adjacent;
Crig = .
0 otherwise.
Hence C[[E = A[[E. O

4. Tterated inherent Inj-equitable graphs

DEFINITION 4.1. We consider iterated inherent Inj-equitable graph, i.e., those
obtained from a graph G as follows: IIE°(G) = G and II1E* = IIE(ITE*1(Q)),
for k e N.

THEOREM 4.1. For any graph G, there exists a positive integer k such that
ITE*(G) is CIIE—graph for some k.

ProOF. If G is CITE—graph, then ITE(G) = G and then, ITE(G) is
CIIE—graph. If G is not CIIE—graph, then there exists an edge e = uv such that
|deg;,,, (u) — deg;,, (v)| > 1. Therefore e ¢ ITE(G) and all the edges in ITE(G) are
Inj-equitable edge in G. If ITE(G) is CII E—graph, then ITE?(G) is CI11E-graph.
If it is not C'ITE—graph, then there exist an edge e in ITE(G) such that e is not
Inj-equitable edge and therefore, e ¢ ITE?(G) and all the edges in ITE?(G) are Inj-
equitable edge in ITE(G). Continues in the same way until we get CIIE—graph
or totally disconnected graph. Hence there exists k > 1 such that ITE*(G) is
CIIE—graph. O

DEFINITION 4.2. For any graph G, the completeness injective inherent equitable
number is the smallest postive integer k such that IIE*(G) is CI1E-graph and
denoted by ciie(Q).

PROPOSITION 4.1.

(i) If G is C1IE-graph, then c;ie(G) = 0.
(ii) If G = C,, x Cy, then ¢;;e(G) = 0.

5. Inherent Inj-equitable graphs

DEFINITION 5.1. A graph G is said to be inherent Inj-equitable graph (IT1E-
graph) if there exists a graph H such that ITE(H) = G.

For example, any path, cycle and complete graph are I1FE-graph. The family
of graphs H which satisfy the condition ITF(H) = G is called the inherent Inj-
equitable family of G and denoted by

Grig={H:IIE(H) % G}
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REMARK 5.1. The inherent Inj-equitable graph is not unique.

THEOREM 5.1. For any Complete bipartite graph G = K, ,, G is not I1E-

graph, where p > 3.

PROOF. Suppose to the contrary that G = K , is I E-graph. So, there exists

at least a graph H such that ITE(H) = G. Therefore, H contains at least the same
number of edges as G' or more. Clearly H 2 K, and the number of edges in H

will

be more than the number of edges in K ,. So any edge in H other than the

edges of K1, is Inj-equitable edge which is contradiction to JIE(H) = G. Hence
G is not I1E-graph. O

(1]
2]
(3]
(4]
(5]
(6]
(7]

(8]
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