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Abstract. Let G be a graph. The inherent Inj-equitable graph of a graph G

(IIE(G)) is the graph with the same vertices as G and any two vertices u and v
are adjacent in IIE(G) if they are adjacent inG and |degin(u)− degin(v)| 6 1,

where for any vertex w ∈ V (G), degin(w) =
∣∣∣{w′ ∈ V : N(w

′
) ∩N(w) ̸= ϕ}

∣∣∣
[2]. In this paper, inherent Inj-equitable graph of some graphs are obtained,

some properties and results are established. We define iterated Inj-equitable
graph of a graph, complete Inj-equitable graph and we define the Inj-equitable
graph.

1. Introduction

All graphs considered in this paper are finite, undirected without loops or
multiple edges. Let G = (E, V ) be a graph with vertex set V = {v1, v2, ....vn}. Thus
|V | = n. The open neighborhood and the closed neighborhood of v are denoted by
N(v) = {u ∈ V (G) : uv ∈ E} and N [v] = N(v)∪{u}, respectively. The degree of a
vertex v in G is deg(v) = |N(v)| . ∆(G) and δ(G) are the maximum and minimum
vertex degree of G respectively. The distance d(u, v) between any two vertices u
and v in a graph G is the number of the edges in a shortest path. The eccentricity
of a vertex u in a connected graph G is e(u) = max{d(u, v), v ∈ V }. The diameter
of G is the value of the greatest eccentricity, and the radius of G is the value of
the smallest eccentricity. The Inj-neighborhood of a vertex u ∈ V (G) denoted by
Nin(u) is defined as Nin(u) = {v ∈ V (G) : |Γ(u, v)| > 1}, where |Γ(u, v)| is the
number of common neighborhood between the vertices u and v. The cardinality
of Nin(u) is called injective degree of the vertex u and is denoted by degin(u) in
G and Nin[u] = Nin(u) ∪ {u}. Let G and H be any two graphs with vertex sets
V (G), V (H) and edge sets E(G), E(H), respectively. Then the union G∪H is the
graph with vertex set V (G)∪ V (H) and edge set E(G)∪E(H). The join G∨H, is
the graph obtained by taking the disjoint union of G and H and adding all edges
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{uv : u ∈ V (G), v ∈ V (H)}. The corona product G ◦H is obtained by taking one
copy of G and |V (G)| copies of H and by joining each vertex of the i-th copy of H to
the i-th vertex of G, where 1 6 i 6 |V (G)| . The cartesian product G×H is a graph

with vertex set V (G) × V (H) and edge set E(G ×H) = {((u, u′
), (v, v

′
)) : u = v

and u
′
, v

′
) ∈ E(H), or u

′
= v

′
and (u, v) ∈ E(G)}. For more terminologies and

notations, we refer the reader to [2], [4], [6] and [8]. A strongly regular graph
with parameters (n, k, λ, µ) is a k-regular graph with n vertices such that any two
adjacent vertices have λ common neighbors, and any two non-adjacent vertices have
µ common neighbors, [5].

Definition 1.1 ([1]). Let G = (V,E) be a graph. The inherent injective equi-
table graph of G, denoted by IIE(G) is defined as the graph with vertex set V (G)
and two vertices u and v are adjacent in IIE(G) if and only if they are adjacent in
G and |degin(u)− degin(v)| 6 1. An edge e = uv ∈ G is called injective equitable
edge if |degin(u)− degin(v)| 6 1 and we say that u and v are Inj-equitable adjacent.

The adjacency matrix of the graph G is the symmetric square matrix A =
A(G) = ∥aij∥ of order n whose (i, j)-entry is defined as:

(1.1) aij =

{
1 if the vertices vi and vj are adjacent;

0 otherwise.

The equitable graph of a graph G is the graph with vertex set V (G) and two vertices
u, v are adjacent if and only if |deg(u)− deg(v)| 6 1, [7]. The adjacency matrix
of equitable graph is the symmetric square matrix Ae = Ae(G) = ∥bij∥ whose
(i, j)-entry is defined as:

(1.2) bij =

{
1 if vi and vj are adjacent and |deg(vi)− deg(vj)| 6 1;

0 otherwise.

The adjacency matrix of the congraph, defined in [3], is the symmetric matrix∥∥∥a′

ij

∥∥∥ whose (i, j)-entry is defined as:

(1.3) a
′

ij =

{
1 if |Γ(vi, vj)| > 1;

0 otherwise.

Where Γ(vi, vj) is the set of vertices, different from vi and vj , that are adjacent to
both vi and vj .

Bearing in mind equations 1.2 and 1.3 as a sort of compromise, we introduce a
new symmetric square matrix AIIE = ∥dij∥ of order n, whose (i, j)-entry is defined
as:

dij =

{
1 ifvi and vj are adjacent and |degin(vi)− degin(vj)| 6 1;

0 otherwise.

This matrix can be viewed as the adjacency matrix of the inherent injective eq-
uitable graph. In this paper, the benefit of graph characterization to study the
properties and the structure of graphs motivated us to introduce and study new
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graphs called inherent injective equitable graph and complete inherent injective
equitable graph.

2. The Inherent Inj-equitable Graph of a Graph

In this section, we discuss some properties of the inherent injective equitable
graph of a graph and the inherent injective equitable graph of some graph’s families
is found.

Proposition 2.1. For any graph G, G ∼= IIE(G) if and only if every edge is
an Inj-equitable edge.

Theorem 2.1. Let G be a complete graph or k-regular triangle-free graph with
diameter 2, then IIE(G) ∼= G.

Proof. If G is complete graph, then obviously IIE(G) ∼= G. Suppose that
G is k-regular triangle-free graph with diameter 2. We know that IIE(G) is a
subgraph of G for any graph G. Since G is k-regular with diameter 2, then for any
vertex v, deg(v) = k and degin(v) = n − k − 1. So, any adjacent vertices in G is
also Inj-equitable adjacent. Hence, IIE(G) ∼= G. �

Corollary 2.1. For any strongly regular graph without triangle G, IIE(G) ∼=
G.

Proposition 2.2. For any strongly regular graph with parameters (n, k, λ, η) ,
IIE(G) is also a strongly regular graph with the same parameters.

Proof. Let G be a strongly regular graph with parameters (n, k, λ, η). Then
for any two adjacent vertices u and v, degin(u) = degin(v) = λ. Therefore,

|degin(u)− degin(v)| = 0.

Hence IIE(G) ∼= G. �
Remark 2.1. It is not true in general that for any regular graph G, IIE(G) ∼=

G. For example, one can see Figure 1.

G IIE(G)

Figure 1. A regular graph G with IIE(G) � G

Proposition 2.3. The following holds:

(i) For any path Pn, IIE(Pn) ∼= Pn.
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(ii) For any cycle Cn, IIE(Cn) ∼= Cn.
(iii) For any wheel Wn, IIE(Wn) ∼= Wn.

Proposition 2.4. For any complete bipartite graph Kr,s, where r + s > 4,

IIE(Kr,s) ∼=

{
Kr,s if |r − s| 6 1;

Kr+s if |r − s| > 2.

Proof. Let G ∼= Kr,s be a complete bipartite graph with partite sets A and
B such that |A| = r, |B| = s. Clearly for any vertex v from A, degin(v) = r−1 and
for any vertex u from B, degin(u) = s − 1. Therefore, u and v are Inj-equitable
adjacent if |(s− 1)− (r − 1)| = |r − s| 6 1. Otherwise, they are not Inj-equitable
adjacent. Hence,

IIE(Kr,s) ∼=

{
Kr,s if |r − s| 6 1;

Kr+s if |r − s| > 2.

�

A firefly graph Fr,s,t is a graph on 2r + 2s + t + 1 vertices that consists of
r triangles, s pendant paths of length 2 and t pendant edges sharing a common
vertex.

Figure 2. Firefly Graph

Theorem 2.2. For any firefly graph Fr,s,t, where r, s, t > 1,

IIE(Fr,s,t) ∼=


Fr,0,s+1 ∪Ks if t = 1;

rK2 ∪K1,s+2 ∪Ks if t = 2;

K2s+t+1 ∪ rK2 if t > 2.
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Proof. Let G be a firefly graph Fr,s,t as in Figure 2., where r > 1, s > 1 and
t > 1. Let v be the center vertex, vi where i = 1, 2, ...2r be any vertex from the
triangle other than v, wi where i = 1, 2, ...t be any end vertex in the pendant edge,
ui and u8

i where i = 1, 2, ..., s be any end vertex and internal vertex respectively in
the pendant path. Then, degin(v) = 2r + s, degin(vi) = 2r + s + t, degin(wi) =
2r + s+ t− 1, degin(u

8
i) = 2r + s+ t −1 and degin(ui) = 1. We have three cases:

Case 1. Suppose that, t = 1. Since |degin(v)− degin(vi)| = 1 and∣∣degin(u8
i)− degin(wi)

∣∣ = 0,

then IIE(Fr,s,t) ∼= Fr,o,s+1 ∪Ks.

Case 2. Suppose that, t = 2. Then, degin(v) = 2r+ s, degin(vi) = 2r+ s+ 2,
degin(wi) = 2r+s+1, degin(u

8
i) = 2r+s+1. Hence, IIE(Fr,s,t) ∼= rK2∪K1,s+2∪Ks.

Case 3. Suppose that t > 2. , then the only injective edges are e1 = v1v2,
e2 = v2v3...er = v2r−1v2r. Hence, IIE(Fr,s,t) ∼= K2s+t+1 ∪ rK2. �

Proposition 2.5.

(i) For any firefly graph G ∼= Fr,0,0, IIE(G) ∼= G.
(ii) For any firefly graph F0,s,0,

IIE(F0,s,0) ∼=

{
F0,2,0 if s = 2;

K1,s ∪Ks if s > 2.

(iii) For any firefly graph Fr,s,t, where r = s = 0

IIE(Fr,s,t) ∼=

{
F0,0,t if t 6 2;

Kt+1 if t > 3.

(iv) For any firefly graph Fr,s,t, where r = 0, s > 1, t > 1,

IIE(Fr,s,t) ∼=


P4 if s = t = 1;

Kt+s ∪Ks if t 6 2;

Kt+2s+1 if t > 3.

Proposition 2.6. For any bipartite graph G, IIE(G) is also bipartite graph.

Proof. Let G be a bipartite graph. Suppose that IIE(G) is not bipartite
graph. Then it contains at least one odd cycle say Cm. Since IIE(G) is a subgraph
of G, then G contains odd cycle which contradicts that G is bipartite graph. Hence
IIE(G) is bipartite graph. �

Proposition 2.7. Let G be a graph such that G ∼= Pm × P2. Then IIE(G) ∼=
Pm × P2.
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Figure 3. Pm × P2.

Proof. Let G be a graph such that G ∼= Pm × P2 . Then we have four cases:
Case 1. If m = 2, then G ∼= C4. Therefore, IIE(G) ∼= G.

Case 2. If m = 3, then degin(v) = 2 for all v ∈ V (G). Therefore, for any
adjacent vertices u and v, |degin(u)− degin(v)| = 0. Hence, IIE(G) ∼= Pm × P2.

Case 3. If m = 4, then for all v ∈ V (G), either degin(v) = 2 or degin(v) = 3.
Therefore, for any two adjacent vertices u and v, |degin(u)− degin(v)| 6 1. Hence,
IIE(G) ∼= Pm × P2.

Case 4. If m > 5, let G be labeling as in Figure 3. Then, degin(v1) =
degin(vm) = degin(u1) = degin(um) = 2, degin(v2) = degin(vm−1) = degin(u2) =
degin(um−1) = 3 and for i = 3, 4, ...m − 2, degin(vi) = degin(ui) = 4. Therefore,
for any two adjacent vertices u and v in G, |degin(u)− degin(v)| 6 1. Hence,
IIE(G) ∼= Pm × P2.

�

Proposition 2.8. Let G be a graph such that G ∼= Pm × P3, where m > 4.
Then IIE(G) ∼= Pm × P3 − {e1, e2}, where e1 and e2 are the edges which are not
Inj-equitable edges in G.

Figure 4. Pm × P3

Proof. Suppose that, G ∼= Pm ×P3 be labeling as in Figure 4. Then we have
two cases:

Case 1. If m = 4, then all the vertices have Inj-degree 3 or 4 or 5 except v22
and v23 have Inj-degree 5. Therefore all the edges are Inj-equitable edges except
e1 = v21v22 and e2 = v23v24. Hence, IIE(G) ∼= Pm × P3 − {e1, e2}.
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Case 2. If m > 5, then all the edges are Inj-equitable edges except e1 = v21v22
and e2 = v2m−1v2m. Hence, IIE(G) ∼= Pm × P3 − {e1, e2}.

�

For the generalized case, we have the following result:

Proposition 2.9. Let G be a graph such that G ∼= Pm × Pn, where m,n > 5.
Then IIE(G) ∼= C2m+2n−4 ∪ (Pm−2 × Pn−2).

Figure 5. Pm × Pn

Proof. Suppose that G ∼= Pm × Pn be labeling as in Figure 5. Then

degin(v11) = degin(v1m) = degin(vn1) = degin(vnm) = 3

and

degin(v12) = degin(v(1)(m−1)) = degin(v21) = degin(v2m) = degin(v(n−1)(1)) =
degin(v(n−1)(m)) = degin(vn2) = degin(v(n)(m−2)) = 4.

Also, for i = 3, 4, ...m− 2,

degin(v1i) = degin(vni) = 5

and for i = 3, 4, ...m,

degin(vi1) = degin(vim) = 5.

For i, j = 2,m− 1,

degin(vij) = 6.

For i = 3, 4, ...m− 2,

degin(v2i) = degin(v(n−1)(i)) = 7

and for i = 3, 4, ...n− 1,

degin(vi2) = degin(v(i)(m−1)) = 7.
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For i, j = 3, 4, ...m− 2,

degin(vij) = 8.

Therefore, all the edges are Inj-equitable edges except

v21v22, v(2)(m−1)v2m, v(n−1)(1)v(n−1)(2), v(n−1)(m−1)v(n−1)(m)

and for j = 2, 3, ...m− 1, v1jv2j , vnjv(n−1)(j). Hence IIE(Pm × Pn) ∼= C2m+2n−4 ∪
(Pm−2 × Pn−2).

�

Proposition 2.10. Let G be a generalized petersen graph GP (m, 1). Then
IIE(G) ∼= GP (m, 1).

Figure 6. GP (m, 1)

Proof. Let G be a generalized petersen graph GP (m, 1). Then G ∼= Cm×P2.
We have three cases:

Case 1. If m = 3, then for all v ∈ V (G), degin(v) = 4. Therefore, all the edges
are Inj-equitable edge. Hence, IIE(G) ∼= Cm × P2.

Case 2. If m = 4, then for all v ∈ V (G), degin(v) = 3. Therefore, all the edges
are Inj-equitable edge. Hence, IIE(G) ∼= Cm × P2.

Case 3. If m > 5, let G ∼= Cm × P2 be labeling as in Figure 6. Then
degin(vi) = 4 and degin(ui) = 4, for i = 1, 2, ...m. Therefore, for any adjacent
vertices u and v in G, |degin(u)− degin(v)| = 0. Therefore, IIE(G) ∼= Cm × P2.
Hence, IIE(GP (m, 1)) ∼= GP (m, 1). �

Proposition 2.11. Let G ∼= Cm × P3. Then IIE(G) ∼= Cm × P3.

Proof. Let G ∼= Cm × P3 be labeling as in Figure 7. We have three cases:

Case 1. If m = 3, then for all v ∈ V (G), degin(v) = 5. Therefore, all the edges
are Inj-equitable edges. Hence, IIE(G) ∼= Cm × P3.
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Figure 7. Cm × P3

Case 2. If m = 4, then for i = 1, 2, ...4, degin(v1i) = degin(v3i) = 4 and
degin(v2i) = 5. Therefore, all the edges are Inj-equitable edges. Hence, IIE(G) ∼=
Cm × P3.

Case 3. If m > 5, then for i = 1, 2, ...m, degin(v1i) = degin(v3i) = 5 and
degin(v2i) = 6. Therefore, for any adjacent vertices u and v in G,
|degin(u)− degin(v)| = 0. Hence, IIE(G) ∼= Cm × P3. �

Theorem 2.3. For any graph G such that G ∼= Cm × Pn,
IIE(G) ∼= 2Cm ∪ (Cm × Pn−2), where n > 5.

Figure 8. Cm × Pn
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Proof. Suppose that G ∼= Cm ×Pn be labeling as in Figure 8. We have three
cases:

Case 1. Ifm = 3, then for i = 1, 2, 3, degin(v1i) = degin(vni) = 5, degin(v2i) =
degin(vn−1 i) = 7 and for i = 3, 4, ..n − 2, j = 1, 2, 3, degin(vij) = 8. Hence
IIE(G) ∼= 2Cm ∪ (Cm × Pn−2).

Case 2. If m = 4, then for i = 1, 2, ...4, degin(v1i) = degin(vni) = 4,
degin(v2i) = degin(vn−1 i) = 6 and for i = 3, 4, ..n− 2, j = 1, 2, ...4, degin(vij) = 7.
IIE(G) ∼= 2Cm ∪ (Cm × Pn−2).

Case 3. if m > 5, then as in Figure 8., for i = 1, 2, ..m, degin(v1i) =
degin(vni) = 5, degin(v2i) = degin(vn−1 i) = 7 and for i = 3, 4, ..n−2, j = 1, 2, ..m,
degin(vij) = 8. IIE(G) ∼= 2Cm ∪ (Cm × Pn−2). �

Theorem 2.4. For any graph G, such that G ∼= Cn×Cm, IIE(G) ∼= Cn×Cm.

Figure 9. Cn × Cm

Proof. Let G be any graph such that G ∼= Cn × Cm. From Figure 9., for all
v ∈ V (G), degin(v) = 8. Therefore, all the edges are Inj-equitable edges. Hence
IIE(G) ∼= Cn × Cm. �

Proposition 2.12. For any two graphs G1 and G2, IIE(G1 ∨G2) = G1 ∨G2.

Proof. Let G1 and G2 be any two graphs. Since every edge in G1 ∨ G2 is
injective equitable edge, then IIE(G1 ∨G2) = G1 ∨G2. �

Proposition 2.13. For any cycle graph Cn and any totally disconnected graph
Km, where m > 2, IIE(Cn ◦Km) ∼= Cn ∪Knm .

Proof. Let {u1, u2, ...un} be the vertex set of the cycle graph Cn and let
{v1,v2, ...vm} be the vertex set of Km. Then for i = 1, 2, ...n, degin(ui) = 2(m+ 1)
and for j = 1, 2, ...m, degin(vj) = m + 1. Therefore, |degin(ui)− degin(vj)| =

m+ 1 > 1. Hence, IIE(Cn ◦Km) ∼= Cn ∪Knm . �
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Theorem 2.5. For any graph G with δ > 2, if G is k−regular or (k, k +
1)−biregular, then

IIE(G ◦Km) = IIE(G) ∪Knm.

where n is the number of vertices in G.

Proof. Let G be a k−regular graph with n vertices and δ > 2. Suppose
that {u1, u2, ...un} and {v1,v2, ...vm} is the vertex set of G and Km, respectively.
Therefore, Then for i = 1, 2, ...n, degin(ui) = k(m + 1) and for j = 1, 2, ...m,
degin(vj) = k + m − 1. Therefore, |degin(ui)− degin(vj)| = m(k − 1) + 1 > 1.

Hence, IIE(G ◦Km) = IIE(G) ∪Knm. Similarly, we can prove if G is (k, k + 1)-
biregular, then IIE(G ◦Km) = IIE(G) ∪Knm. �

3. Complete inherent Inj-equitable graphs

Definition 3.1. A graph G is called complete inherent injective equitable graph
(CIIE−graph) if for any two adjacent vertices u and v, |degin(u)− degin(v)| 6 1.

Example 3.1. Cn × Cm is CIIE-graph.

Proposition 3.1. Any complete graph is CIIE-graph but the converse is not
always true. For example, paths and cycles are CIIE-graph but not complete.

Proposition 3.2. Let G be any graph. IIE(G) ∼= G if and only if G is CIIE-
graph.

Proposition 3.3. Let H be a CIIE-graph and let G be a subgraph of H. Then
IIE(G) is a subgraph of IIE(H).

Proof. Let H be a CIIE-graph and let G be a subgraph of H. Let e be an
edge in IIE(G). Then e ∈ G. Therefore e ∈ H. So, e ∈ IIE(H). Hence, IIE(G)
is a subgraph of IIE(H).

�

Proposition 3.4. For any CIIE-graph G, IIE(G) is also CIIE-graph.

Proof. Let e = uv be any edge in IIE(G). Then e is an edge in G. Since G is
CIIE−graph, then |degin(u)− degin(v)| 6 1 inG. Therefore, |degin(u)− degin(v)| 6
1 in IIE(G). So, IIE(G) is CIIE-graph. �

Theorem 3.1. A graph G is CIIE−graph if and only if A(G) = AIIE(G),
where A(G) and AIIE(G) are the adjacency matrix of G and adjacency matrix of
the inherent injective equitable graph of G respectively.

Proof. Suppose that G is CIIE−graph. Then for any two adjacent vertices
vi and vj , |degin(vi)− degin(vj)| 6 1. Therefore, A(G) = AIIE(G). Similarly, if
A(G) = AIIE(G) then G is CIIE−graph. �

Proposition 3.5. Let G ∼=
m∪
i=1

Gi. If Gi, i = 1, 2, ...m, are CIIE−graphs, then

G is CIIE−graph.
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Proof. Let u and v be any two adjacent vertices in G. Therefore, u and v
are adjacent vertices in a graph Gi, i = 1, 2, ...n. But Gi is CIIE−graph. Then,
|degin(u)− degin(v)| 6 1. Hence, G is CIIE−graph. �

Definition 3.2. A graph G which is CIIE−graph is called strong CIIE−graph
if G is also CIIE−graph.

Example 3.2. Any cycle Cn with n vertices is strong CIIE−graphs. Similarly,
any path Pn with n vertices is strong CIIE−graphs.

Proposition 3.6. For any graph G ∼= Km,n such that |m− n| 6 1, G is strong
CIIE−graph.

Proof. Let u and v be any two adjacent vertices in G ∼= Km,n. Then

|degin(u)− degin(v)| 6 1. Therefore, G is CIIE−graph. Also, since G ∼= Km∪Kn,

then |degin(u)− degin(v)| 6 1 for any two adjacent vertices u and v. Hence, G is
strong CIIE−graph. �

Proposition 3.7. For any graph G, IIE(G) is a subgraph of IIE(G).

Proof. Let e be any edge in IIE(G). Then, e ∈ G. Therefore, e /∈ G. So,

e /∈ IIE(G). Then, e ∈ IIE(G). Hence IIE(G) is a subgraph of IIE(G). �

Proposition 3.8. IIE(G) is subgraph of G.

Theorem 3.2. For any strong CIIE−graph G, IIE(G) = IIE(G).

Proof. Let e be any edge in IIE(G). Then e /∈ IIE(G). Since G is strong
CIIE−graph, then e /∈ G. Therefore, e ∈ G which implies that e ∈ IIE(G),

since G is strong CIIE−graph . So, IIE(G) ⊆ IIE(G). Henc by propostion 3.7 ,

IIE(G) = IIE(G). �

Theorem 3.3. Let G be a graph with adjacency matrix A = ∥aij∥ . Let BIIE =

∥bij∥ , where bij =

{
1 if |degin(vi)− degin(vj)| 6 1;

0 otherwise.

Then

AIIE = ∥hij∥ =


a11b11 a12b12 ... a1nb1n

.

.
an1bn1 an2bn2 ... annbnn

 ,

where AIIE is the adjacency matrix of the inherent injective equitable graph of G.

Proof. Suppose that G is a graph with adjacency matrix A and suppose

BIIE = ∥bij∥ , where bij =

{
1 if |degin(vi)− degin(vj)| 6 1;

0 otherwise.

Let
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CIIE =


a11b11 a12b12 ... a1nb1n

.

.
an1bn1 an2bn2 ... annbnn

 .

Then for i, j = 1, 2, ...m, aijbij = 0 if aij = 0 or bij = 0, i.e, vi and vj are not
adjacent or |degin(vi)− degin(vj)| > 1. For i, j = 1, 2, ...m, aijbij = 1 if aij = bij =
1, i.e, vi and vj are Inj-equitable adjacent. Therefore,

CIIE =

{
1 if vi and vj are Inj-equitable adjacent;

0 otherwise.

Hence CIIE = AIIE . �

4. Iterated inherent Inj-equitable graphs

Definition 4.1. We consider iterated inherent Inj-equitable graph, i.e., those
obtained from a graph G as follows: IIE0(G) = G and IIEk = IIE(IIEk−1(G)),
for k ∈ N.

Theorem 4.1. For any graph G, there exists a positive integer k such that
IIEk(G) is CIIE−graph for some k.

Proof. If G is CIIE−graph, then IIE(G) ∼= G and then, IIE(G) is
CIIE−graph. If G is not CIIE−graph, then there exists an edge e = uv such that
|degin(u)− degin(v)| > 1. Therefore e /∈ IIE(G) and all the edges in IIE(G) are
Inj-equitable edge in G. If IIE(G) is CIIE−graph, then IIE2(G) is CIIE-graph.
If it is not CIIE−graph, then there exist an edge e in IIE(G) such that e is not
Inj-equitable edge and therefore, e /∈ IIE2(G) and all the edges in IIE2(G) are Inj-
equitable edge in IIE(G). Continues in the same way until we get CIIE−graph
or totally disconnected graph. Hence there exists k > 1 such that IIEk(G) is
CIIE−graph. �

Definition 4.2. For any graph G, the completeness injective inherent equitable
number is the smallest postive integer k such that IIEk(G) is CIIE-graph and
denoted by ciie(G).

Proposition 4.1.

(i) If G is CIIE-graph, then ciie(G) = 0.
(ii) If G ∼= Cm × Cn, then ciie(G) = 0.

5. Inherent Inj-equitable graphs

Definition 5.1. A graph G is said to be inherent Inj-equitable graph (IIE-
graph) if there exists a graph H such that IIE(H) ∼= G.

For example, any path, cycle and complete graph are IIE-graph. The family
of graphs H which satisfy the condition IIE(H) ∼= G is called the inherent Inj-
equitable family of G and denoted by

GIIE = {H : IIE(H) ∼= G}.
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Remark 5.1. The inherent Inj-equitable graph is not unique.

Theorem 5.1. For any Complete bipartite graph G ∼= K1,p, G is not IIE-
graph, where p > 3.

Proof. Suppose to the contrary that G ∼= K1,p is IIE-graph. So, there exists
at least a graph H such that IIE(H) ∼= G. Therefore, H contains at least the same
number of edges as G or more. Clearly H � K1,p and the number of edges in H
will be more than the number of edges in K1,p. So any edge in H other than the
edges of K1,p is Inj-equitable edge which is contradiction to IIE(H) ∼= G. Hence
G is not IIE-graph. �
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