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ir-EXCELLENT GRAPHS

I.Kulrekha Mudartha, R.Sundareswaran, and V.Swaminathan

ABSTRACT. Terasa W. Haynes et. al. [7], introduced the concept of irredun-
dance in graphs. A subset S of V(Q) is called an irredundant set of G if for
every vertex u € S, pn[u, S] # ¢. The minimum (maximum)cardinality of a
maximal irredundant set of G is called the irredundance number of G (upper
irredundance number of G) and is denoted by ir(G)(IR(G)). A subset V(G)
is called an ir-set if it is an irredundant set of G of cardinality ir(G). A vertex
u € V(G) is called ir-good if u belongs to an ir-set of G. G is said to be ir-
excellent if every vertex of G is ir-good. In this paper, a study of the excellent
graphs with respect to irredundance is initiated.

1. Introduction

We consider the graphs which are finite, undirected, non - trivial without loops
or multiple edges. Let G = (V, E) be a simple graph. For graph theoretic termi-
nology, we refer to [1]. A subset S of V is a dominating set of G if every vertex in
V — S is adjacent to some vertex in S. The domination number v(G) of G is the
minimum cardinality of a dominating set of G. For a set S of vertices in a graph
G, the closed neighborhood N[S] of S is defined N[S] = |J N[v]. Each vertex

veS
in N[v|N[Sv] is referred to as a private neighbour of v € G and is denoted by
pn(v, S). In [7], a subset S of V(G) is called an ir-set if it is an irredundant set of
cardinality ir(G) (ir(G) is the minimum cardinality of a maximal irredundant set).
Any non empty subset of an irredundant set is irredundant. Hence, the property
of irredundance is hereditary.

Let i be a parameter of a graph. A vertex v € V(G) is said to be u-good if v
belongs to a g-minimum (g-maximum) set of G according as p is a super hereditary
(hereditary) parameter. v is said to be -bad if it is not pu-good. A graph G is said to
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be p-excellent if every vertex of G is u-good. Excellence with respect to domination
and total domination were studied in [2]. In a social network , we may exchange
any node inside the network by a node in outside the network, gives a better status
in the form of a new group. Such a situation can be modelled as a set S of vertices
in the graph G representing the social network such that for every y € V(G) — S
there exists « € S such that the new social group S = (S — {z}) U{y} has the same
property as that of S and is possibly better in terms of external connections as well
as its internal organization. This is the motivation for studying excellent graphs
with various graph parameters.N. Sridharan and Yamuna [4, 5, 6], have defined
various types of excellence.

2. ir-excellent graphs

In this section, we define and study a new type of graph, namely ir-excellent
graph.

DEFINITION 2.1. Let G = (V, E) be a simple graph. Then G is said to be an
ir-excellent graph if every vertex belongs to an ir-set of G.

EXAMPLE 2.1. ir-excellent graphs.

=2

2 K,
3) C,

4) Kypy, n
5) Kimn, m,n =22, m<n

6) D, is ir-excellent if r = s = 1.

ExAMPLE 2.2. Graphs which are not ir-excellent

1. Ky,
2. D, s forr,s 2 2(ir(Dys) =2, IR(Dys) =1+ 5).

Let V(Dy,s) = {u1,u2, -+, ur, u, v, 1, v2, s } where u is the support of the pendent

vertices uy, ug, -+ ,u,} and v is the support of the pendent vertices {vy,va, -, vs}.

Let S = {u,v}. Then S the only ir-set of D, s, since all the pendent vertices are
not in any ir-set of D, ;.

ProproOSITION 2.1. If G is vertex transitive then G is ir-excellent.

PROOF. Let D be an ir-set of G. Let u ¢ D. Let v € D. Then there exists an
automorphism ¢ such that ¢(v) = u. Then u € ¢(D).
Claim 1: ¢(D) is irredundant.

For: Let w € ¢(D). Then w = ¢(y) for some y € D. If y is the private neighbour-
hood of itself with respect to D, then y is an isolate of D, which implies ¢(y) is
an isolate of ¢(D). Therefore w is a private neighbourhood of itself with respect
to ¢(D). If y; is a private neighbourhood of y with respect to D, then y; is not
adjacent to any vertex of D other than y. Therefore ¢(y;) is not adjacent to any
vertex of ¢(D) other than ¢(y) = w. Hence w has a private neighbourhood ¢(y)
with respect to ¢(D). Therefore ¢(D) is irredundant.
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Claim 2: ¢(D) is a maximal irredundant set.
Suppose not. Then there exists S C V(G) such that ¢(D) & S and S is irredundant.
Let € S — ¢(D). Let ¢~'(x) =t. Then t € ¢$~'(S) and t ¢ D. Therefore D &
¢~1(S) and ¢~1(9) is irredundant, a contradiction to maximality of D. Therefore
¢(D) is a maximal irredundant set of G. |D| = |¢(D)| = ir(G) and hence ¢(D) is
an ir-set of G containing u. Therefore u is ir-good and G is ir-excellent. O

OBSERVATION 2.1. Let v(G) = ir(G). If G is y-excellent, then G is ir-
excellent.

OBSERVATION 2.2. There exists a graph G in which v(G) = ir(G), G is ir-
excellent but not y-excellent.

ExXAMPLE 2.3.

v-sets of G are: {2,3,4},{2,4,6},{2,6,7},{4,5,6},{5,3,7}
ir-sets of G are: {1,3,4},{1,2,3},{1,2,4},{1,5,7},{1,5,6},{1,6, 7},
(3,5, 7},{2,3,4},{2,3, 7}, {3,4,5}, {2,4,6}, {5,6, 7}
1 does not belong to any 7-set. Therefore G is not y-excellent. But G is
ir-excellent.

OBSERVATION 2.3. There exists a graph G in which ir(G) < v(G), G is not
ir-excellent but y-excellent.

Consider the Allan Laskar graph(A. L. graph), which is shown below:

1 o o 7

ir-set: {3,5}
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~v-sets : {1,3,7},{2,4,6},{5,2,7}.
The graph is y-excellent but not ir-excellent.

In general the above type of graphs with a subgraph as a complete graph have
the property ir < -y, ir = 2 and v = 3. Such type of graphs are ~y-excellent graphs
but not ir-excellent.

PROPOSITION 2.2. For any path Py, ir(P,) = v(FPy).

PrOOF. A(P,) = 2. From [1], we have Bae— S ir(G). Therefore 2% <
ir(P,), that is 2 < ir(P,). Therefore [2] < ir(P,), which means v(P,) < ir(P,).
U

But ir(P,) < y(Py). Therefore v(P,) = ir(P,).
ProproOSITION 2.3.
(1) Pspy1 is ir-excellent for all n.
(2) Pspyo is notir-excellent for n > 3.
(3) Psy, is not ir-excellent for all n.
PrOOF. (1) Let V(P3n+1) = {ul,u2,~-~ ,U3n+1}. ’Y(P?m-&-l) = iT(Pgn_H) =
n+ 1.
Dy = {uy,ug,uz, - ,usny1}, Do = {ug,us, -+ ,u3p—1, U35 OF Usny1},
D3 = {u17u37u67 e 7u3n}
are minimum dominating sets and hence also ir-sets of Ps,y1. Therefore Ps, 41 is
ir-excellent.

(2). Let V(Psp42) = {u1,u2, - ,usni2}, n = 3. y(Pspy2) = ir(Pang2) =
n+ 1.

Dy = {uy,ug, - ;usny1}, Do = {ug, us, ug, -+, u3ny2},
D3 = {us, ug,uz, - ,uzny1}, Dy = {ug, us, ug, -, us3n_1,u3n}
are all ir-sets and hence u;, i # 6,9,--- ,3n — 3 are not ir-good.

When n = 2, both uz and ug will be ir-good and hence Pg is ir-excellent.

When n = 1, ug is ir-good and hence Ps is ir-excellent. Therefore P, is not
ir-excellent if n > 3.

(3) Let V(Pg,n) = {ul,u2, te ,u;)m}.
When n =1, Pj is not ir-excellent since ir(P;) = 1 and w; is not in any ir-set.

When n = 2, we get Ps. Again up is not in any #r-set, since the minimum
cardinality of an irredundant set containing wu; is 3 and ir(Fs) = 2. ir(Ps,) =
n and the minimum cardinality of an irredundant set containing w; is n + 1.
({u1,usz,ug, -+ ,usnt or {uy,uq,ur, -+ ,Usp_2,Us,} are irredundant sets contain-
ing w1 of minimum cardinality). Therefore P, is not ir-excellent. [l

PROPOSITION 2.4. Ifir(G) < v(G), then any independent set is not an ir-set.

PROOF. Let S be an independent set of G. Suppose S is an ir-set of G. Then
S is a maximal independent set of G. Therefore S is a minimal dominating set of
G. Therefore ir(G) < v(G) < |S| = ir(G), a contradiction. Therefore S is not an
ir-set of G. O
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COROLLARY 2.1. If ir(G) < v(G), then for any ir-set S of G, number of
private neighbours of S lying in V — S is greater than or equal to 2.

PROPOSITION 2.5. For any graph G, GT is both ir-excellent and v-excellent.

PROOF. Let S be an ir-set of GT. Suppose |S| < n. Then there exists u €
V(G) such that u,u’ ¢ S where u' is the pendent of u. Then S U {u} is an
irredundant set of G, since «' is the private neighbour of u, a contradiction.
Therefore |S| > n. Since v(G1) = n, |S| = n. Since any y-set of GT is also an
ir-set of G, G is ir-excellent. O

OBSERVATION 2.4. Any graph G is an induced graph of an ir-excellent graph.

PROPOSITION 2.6. Let G be a non-ir-excellent graph with a unique ir-bad ver-
tex. Then there exists an ir-excellent graph H such that

(i). G is an induced subgraph of H.

(i1). ir(H) = ir(G) + 1.

PROOF. Let u be the unique ir-bad vertex of G. Let H be the graph obtained
from G by adding a new vertex v and making it adjacent with only w in G.

Claim: ir(H) = ir(G) + 1.
Let ir(G) = k. Note that for any ir-set S of G, u ¢ S. Hence S U {v} is an
irredundant set of H. Clearly it is a maximal irredundant set of H.

Suppose ir(H) = k' < k. Let T be an ir-set of H. If v ¢ T, then T'U{v} is an
irredundant set of H if u ¢ T, a contradiction. Since T is a maximal irredundant
set of H, u € T. Since T C V(G), T is a maximal irredundant set of G and
k= ir(G) < |T| = k¥ < k. Therefore |T| = k. T is an irredundant set of G
containing u, a contradiction, since u is an ir-bad vertex of G. Therefore v € T.
Let Ty =T — {v}. Then Ty C V(G). |T1| = k' — 1 < k. Clearly T1 being a subset
of an irredundant set of H is irredundant in H.

Case 1: u ¢ T1. Then T; is an irredundant set of G. Suppose T} is a maximal
irredundant set of G. Then k = ir(G) < |T1] < k, a contradiction. Therefore
T} is not a maximal irredundant set of G. Therefore there exists w € G such that
Ty, U{w} is an irredundant set of G. Suppose w # u. Then TU{w} = Ty U{w}U{v}
is an irredundant set of H contradicting the maximality of 7. Therefore w = w.
Therefore Ty U{u} is an irredundant set of G. If T3 U{u} is a maximal irredundant
set of G, Then k = ir(G) < |T1| + 1 = k' < k. Therefore |T1| + 1 = k and hence
Ty U{u} is an ir-set of G implying w is ir-good, a contradiction. Therefore Ty U{u}
is not a maximal irredundant set of G. Thus there exists z € V(G) — (T1 U {u})
Such that 77 U {u} U {2z} is an irredundant set of G. Therefore T3 U {z} is an
irredundant set of G. Therefore T1 U {z} U {v} is an irredundant set of H. Thus
T U{z} is an irredundant set of H.

Case 2: u € Ty. Then Tj is an irredundant set of GG. If T} is maximal, then
k =1ir(G) < |Ti| < k, a contradiction. Therefore T; is not a maximal irredundant
set of G. Therefore there exists © € V(G) — T1 such that 77 U {z} is irredundant
in G. Since u € Ty, we get that x # u. Therefore Ty U {x} U {v} is an irredundant
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set in H. That is T U {z} is irredundant in H, a contradiction to the maximality
of T. Therefore ir(H) > k. That is ir(H) > k+ 1. But S U {v} for any ir-set
S of G is a maximal irredundant set of H. Therefore ir(H) < [SU{v}| =k + 1.
Therefore ir(H) = k + 1. Therefore SU {v} is an ir-set of H for any ir-set S of G.
Therefore every ir-good vertex in G as well as v is ir-good in H. Moreover for any
ir-set S of G, S U {u} is irredundant in H since u has a private neighbour v in H.
Therefore SU{u} is an ir-set of H, which implies v is also ir-good in H. Therefore
H is ir-excellent. G is an induced subgraph of H. Further, ir(H) = ir(G) +1. O

Conjecture. There does not exist any graph G which is both y-excellent and
ir-excellent and ir(G) < v(G).

COROLLARY 2.2. If G1, G4 areir-excellent, then G1+ G5 is ir-excellent if and
only if ir(G1) = ir(Gs).
3. Definition and Properties of just ir-excellent graphs

In this section, we introduce the concept of just ir-excellent graphs and study
its properties.

DEFINITION 3.1. A graph G is said to be just ir-excellent graph, if every vertex
of G belongs to exactly one ir-set of G.

REMARK 3.1. If G is just ir-excellent then G admits a partition where each
element of the partition is an ir-set of G.

EXAMPLE 3.1.
C3n, K, Hs 10.

REMARK 3.2. Every just ir-excellent graph is ir-excellent graph.
REMARK 3.3. If v(G) = 2, then ir(G) = 2.

PROOF. Suppose ir(G) = 1. Then G has a full degree vertex. Hence v(G) = 1,
a contradiction. Therefore ir(G) > 2. But ir(G) < 7(G) = 2. Therefore ir(G) = 2.
The converse is not true, since in A.L graph v(G) = 3 and ir(G) = 2. O

PROPOSITION 3.1. It has been proved in [3] that if G is a graph containing no
induced subgraph isomorphic to K13, or A.L graph, then ir(G) = v(G) = i(G).
Since Cy, and P, does not contain Ky 3 or A.L graph as an induced subgraph,
ir(Cp) =v(Cy) = i(Cy) and ir(P,) = v(P,) = i(Py).

OBSERVATION 3.1. C,, is y-excellent if and only if n = 0(mod 3). Therefore
C,, is ir-excellent if and only if n = 0(mod 3).

PROPOSITION 3.2. Every just ir-excellent graph G(# K,,) ,is connected.

PROOF. Let G be a disconnected graph, G # K,,. Let G1 be a component of
G. It |[V(G1)| =1, then G is not just ir-excellent. Hence |V (G1)| > 2.

Claim: G is just ir-excellent.
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Let S be an ir-set of G. Let S; = SNV(Gy). Clearly S; is non-empty. Since S
is an ir-set, Sy is an irredundant set of G; and clearly it is a maximal irredundant
set of G.

Suppose |S1| > ir(G). Let S’ be an ir-set of G;. Then S" U (S — S1) is an
irredundant set of G of cardinality greater than |S|, a contradiction (since S is an
ir-set of G). Therefore S is an ir-set of G1. Since G is just ir-excellent, G is also
just ir-excellent. Since G is connected, ir(G1) < v(G1) < §. As Gy is just ir-
excellent, G1 has at least two ir-sets, say 17 and T5. Let Dy be an ir-set of G — G;.
Then D; # ¢ and T1 U D1, To U Dy are ir-sets of G with non-empty intersection,

a contradiction, since G is just ir-excellent. Therefore G is connected. O

PROPOSITION 3.3. Let G # K, is just ir-excellent. Then for any ir-set D of
G, |pnju, D]| = 2 for all u € D.

PRrOOF. Case A: Since G # K,,, order of G is greater than or equal to 2.

Since D is an ir-set of G, [pn[u, D]| > 1 for all uw € D. Suppose |pn[u, D]| = 1.

Case (i): |pn[u,D]| = 1. Let pn(u, D) = {v} where v € V — D. Let D; =
(D—{u}U{v}. Then v being not adjacent to any vertex of D —{u}, v € pn[v, (D —
{u})U{v}]. Also, if x € D — {u}, then pnlz, D] = pn[z, (D — {u}) U {v}], since v is
not adjacent with z. Therefore D; is an irredundant set of G of cardinality ir(G).

Suppose Dy is not a maximal irredundant set of G. Then there exists a maximal
irredundant set say Dy of G such that D1 C Ds. Let w € Dy — D;.

Subcase (i): w = w. In this case Dy C Dy and v € Dy. Since u and v are
adjacent and D5 is irredundant, w = u has a private neighbour say = with respect
to Dy outside Ds. Clearly « ¢ D. Therefore x and v are two private neighbours of

u with respect to D belonging to V' — D, a contradiction since |pn(u, D)| = 1.

Subcase (ii): w # u. Clearly w # v. Since u is adjacent with v € Da, u
cannot be a private neighbour of w with respect to Ds. Therefore w is a private
neighbour of u with respect to D. Hence |pn(u, D)| > 2, a contradiction.

Subcase (iii): Suppose u is not a private neighbour of w with respect to Ds.
Then either w is an isolate of Dy or there exists y € V' — Dy such that y € pn(w, Da).
Let w be an isolate of Dy. Consider D' = DU{w}. If w is not adjacent with v then w
is an isolate of D’ and hence D’ is an irredundant set containing D, a contradiction
to maximality of D. If w is adjacent with wu, then w being not adjacent with any
vertex of D — {u}, is a private neighbour of u with respect to D in V' — D. That
is u has two private neighbours v, w with respect to D in V — D, a contradiction
since |pn(u, D)| = 1. Suppose there exists y € V — Dy such that y € pn(w, Ds).
Let w be a private neighbour of some x € D with respect to D. If x = u, then u
has two private neighbours with respect to D, a contradiction. If x # w, then as
x, w € Do, x has a private neighbour say z outside Dy with respect to Dy. Then
z is a private neighbour of = with respect to D. Hence D U {w} is an irredundant
set of G, containing D, a contradiction to the maximality of D.

Case (ii): u is an isolate of D. Since u is not an isolate of G (if v is an isolate
of G, then u belongs to every irredundant set contradicting just ir-excellent), there
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exists v € V — D such that u and v are adjacent. Since pnf[u, D] = {u}, v is not a
private neighbour of u with respect to D. Therefore v is adjacent to some vertex
say w # u € D. Consider D; = (D — {u}) U {v}. Since u is a private neighbour
of v with respect to Dy and since every vertex of D — {u} has a private neighbour
not equal to v with respect to D, D is an irredundant set of G strictly containing
D;. Let w € Dy — Dy. Suppose w = u. Since u is adjacent with v, w in Dy is
not an isolate of Ds. w = u has a private neighbour in V' — D with respect to D.
Therefore |pn[u, D]| > 2, a contradiction.

Suppose w # u.

Subcase (i): w is an isolate of Dy. Then w is not adjacent with any vertex
of (D — {u}) U {v}. (If wis adjacent with u then w is a private neighbour of u
in V — D with respect to D a contradiction). Therefore w is not adjacent with w.
w is an isolate of D U {w}. Hence D U {w} is an irredundant set containing D, a
contradiction to the maximality of D.

Subcase (ii): w is not an isolate of Dy. Then w has a private neighbour say
z1in V. — Dy. If z = u, then z is not adjacent with any vertex in Dy — w. But u
is adjacent with v in Ds, a contradiction. Therefore z # u. Consider D U {w}. If
w is not a private neighbour of any vertex of D with respect to D, then D U {w}
is irredundant. If w is a private neighbour of some x € D with respect to D,
then x # u (since pnlu, D] = 1). As = and w are adjacent in Ds, x has a private
neighbour say y in V' — Dy with respect to Dy. That is x has a private neighbour
y in V — D with respect to D. Therefore D U {w} is an irredundant set of G is
a contradiction to the maximality of D. Therefore D; = (D — {u}) U {v} is a
maximal irredundant set of G. |D| = 1 implies ir(G) = 1. As G is just excellent
and ir(G) = 1, G = K, a contradiction. Therefore |D| > 2. Hence ¢ # D — {u},
is contained in two ir-sets namely D and D, a contradiction to just excellence.
Therefore |pn[u, D]| > 2 for all u € D.

Case B: G = K,,, n > 2. Here ir(G) = 1 and every verex constitutes an
ir-set of G. Let D be any ir-set of G. Then D = {u} for some u € V(G).
|pnfu, D]| = n = 2. O

REMARK 3.4. Let G be the graph obtained from K, ,, by removing a 1-factor.
Then G is just ir-excellent.

Proor. If V; and V5 are the partite sets and if Vi = {uy,ug, - ,un}, Vo =
{v1,v9, - ,v,} and u; and v; are not adjacent (1 < i < n), then the ir-sets are
{ulavl}v{u271}2}v"' 7{unvvn}~ D

THEOREM 3.1. Let G be a graph of order n. Then G is ir-excellent if and only
if the following conditions hold.

(i) ir(G) divides n.

(i) G has exactly ey distinct ir-sets.

PROOF. (i) Let G be just ir-excellent. Then G can be partitioned into ¢ sets each
of which is an ir-set. Therefore ¢ ir(G) = n. Therefore ir(G) divides n.
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(ii): V(G) = 51U S2U, -+ ,US,, where each S; is an ir-set of G and these sets
are pairwise disjoint. Therefore there are m distinct ir-sets of G where m =
%. Suppose there exists a ir-set T different from Sy, S, - ,S,,. Since S; U
SoU, -+ ,US,, = V(G) D T, every element x € T belongs to some S;, 1 <i < m.
Therefore = belongs to two ir-sets of G, a contradiction.

Conversely, suppose the three conditions hold. Let m = ﬁ By (iii) G has
exactly m distinct ir-sets. Suppose V = 51 U SeU, -+ ,US,, is a decomposition of

m
V(G) where each S; is a maximal irredundant set, 1 < i < m. Thenn = |S;| >
i=1

m ir(G). But n = m ir(G). Therefore each S; is an ir-set of G. Since G has
exactly m distinct ir-sets, Sy, 59, - ,S;, are the distinct ir-sets of G and hence
V =51 USU, - ,US,, is a partition into disjoint ir-sets of G. Therefore each
vertex v belongs to exactly one S;, for some i, 1 < i < m. Therefore G is just
ir-excellent. O

THEOREM 3.2. Every graph is an induced subgraph of a just ir-excellent graph.

PROOF. Let G be a given graph. If G is just ir-excellent, then there is nothing
to prove. Assume that G is not just ir-excellent. Let V(G) = {v1,va, -+ ,vpn}.
Consider the cycle Cf,,. It is just ir-excellent. Let S1, S2,S3 be the distinct ir-sets
of C3,. Label the vertices of S; by wuy,us,us, - ,u,. Now in C3, we add edges
u;u; if and only if v;v; is an edge in G. Let the resulting graph be H. Then the
induced subgraph (S;) in H is isomorphic to G. By theorem 4.12 in [6], H is just
ir-excellent and ir(H) = n. Every ir-set is a v set. Thus the given graph G is an
induced subgraph of a just ir-excellent graph H. O

U1

V4 V5  vg w7

EXAMPLE 3.2.

G

G is an induced subgraph of H which is a just ir-excellent graph.
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