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GENERALIZED FUZZY RIGHT h-IDEALS OF
HEMIRINGS REDEFINED BY FUZZY SUMS
AND FUZZY PRODUCTS

G. Mohanraj and E. Prabu

ABSTRACT. In this paper, we redefine the concepts of (), p)-fuzzy right [left]
ideals of hemirings by using the notions of fuzzy sum and fuzzy product. And
also the notions of (A, u)-fuzzy right [left] h-ideals of hemirings are redefined
by fuzzy sum, fuzzy closure and fuzzy product. Further, using the notions
of fuzzy h-sum and fuzzy h-product, we characterize (A, u)-fuzzy right [left]
h-ideals. In particular, we investigate (A, pu)-fuzzy right [left] h-ideals by using
fuzzy h-sum and fuzzy h-intrinsic product.

1. Introduction

The notion of a fuzzy set, which was firstly proposed by Lotfi Aliasker
Zadeh [20], provides a natural framework for generalizing many of the concepts of
mathematics. Rosenfeld [14] combined fuzzy sets and groups in a fruitful way by
defining fuzzy groups. Since then, the fuzzy set theory have been applied to many
branch of mathematics and engineering. The notion of h-ideals of hemirings was
initiated by Torre [6]. Young Bae Jun [5] introduced the concepts of fuzzy h-ideals
of hemirings. In [2], Bhakat and Das introduced the concept of redefined fuzzy
subrings and ideals. M. Shabir and W.A. Dudek explored the concepts of fuzzy h-
ideals and (a, 8)-fuzzy ideals of hemirings in [15, 16]. Yao initiated the notions of
(A, p)-fuzzy groups [18] and (A, p)-fuzzy subrings [19]. Moharaj et al. introduced
(A, pu)-fuzzy ideals and (A, p)-fuzzy prime ideals of semirings [4, 3] and generalized
fuzzy weakly interior ideals of ordered semigroups [13]. Recently, G.Mohanra]
and E.Prabu investigated the concepts of redefined generalized L-h-bi-ideals of
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hemirings [11] and characterizations of generalized fuzzy h-bi-ideals of hemirings
[12].

In this paper, the concepts of (A, p)-fuzzy right [left] h-ideals are redefined
by the notions of fuzzy sum, fuzzy closure and fuzzy product. Moreover, using
the notions of fuzzy h-sum and fuzzy h-product, the concept of (A, u)-fuzzy right
[left] h-ideals is redefined. In particular using the notions of fuzzy h-sum and fuzzy
h-intrinsic product, the concept of (A, p)-fuzzy right [left] h-ideals are characterized.

2. Preliminaries

An algebraic structure (R, +,-) in which (R,+) and (R, -) are semigroups
that satisfy both distributive laws is called a hemiring if “ 47 is commutative and
there is an absorbing element 0 € R such that 0+z =2z =2x+0and 0-x2 =0=z-0
for all x € R.

A subset A # ) of a hemiring R which is closed under addition is called a right
[left] ideal of R if ar € A [ra € A] for all a € A, r € R. A right [left] ideal A of R
is called a right [left] h-ideal of Rif pg € Aand y+p+2z=qg+z implyy € A
for y, z € R. Further the h-closure of a subset A of R denoted by A is defined as
A={yeRly+p+z=q+zforsomep,q€ Az € R}.

An element “1” is called an unity of a hemiring R, if 1-a =a -1 = a for all
a € R. Recall that a mapping f : R — [0,1] is called a fuzzy set of a hemiring R.
The level set of a fuzzy set f denoted by f; of R is defined as f: = {a € R|f(a) >t}
for all t € [0,1]. The fuzzy set “1” is defined as 1 = 1(x) = xgr(z) for every x € R.
The intersection of fuzzy sets f and g of R, denoted by f N g and is defined as
(fNng)(x) = min{f(z),g(x)} for all x € R. For fuzzy sets f and g of R, we denote
fCgifg(z) > f(x) for all x € R.

DEFINITION 2.1. [16] The fuzzy sum f + g and the fuzzy h-sum f 4y g of the
fuzzy sets f and g are defined respectively as follows

(f+9@) =\ [f)Ag2)
T=yY+z
for x,y,z € R.
(f +n9)(x) = \V [f(a1) A flaz) A g(br) A g(b2)]
r+a1+bi+z=ax+ba+z
for x,a1,b1,a2,bs,z € R.

DEFINITION 2.2. [12] (i)The fuzzy product f - g of the fuzzy sets f and g of R
is defined as

V Ifw)rg(z)] ife=yz
(- )(x) = { a=us
0 if x cannot be expressible as x = yz.
(i) The fuzzy h-product f o g of the fuzzy sets f and g of R is defined as
% [f(a1) A flaz) A g(b1) A g(b2)]
(fog)(x) =< zt+aribi+z=azbz+2
0 if x cannot be expressible as © + a1by + z = asbs + 2.



GENERALIZED FUZZY RIGHT h-IDEALS REDEFINED 529

DEFINITION 2.3. [16] For a fuzzy sets f and g of R, the h-intrinsic product
f©®g of fand g of R is defined as
\% A [f(a) A gl A A [f(a)) A g(b))]

m n i—=1 i=1
(f O g)(x) = { o+ T aibte= T ajts L ’

m n o
0 if x cannot be expressible as x + ) ab;+z= ) a;b; + z.
i=1 j=1

DEFINITION 2.4. [12] The fuzzy h-closure f of fuzzy set f of R is defined by
P@y= '\ [f@)Af@)

r+a+z=b+z
for x,a,b,z € R.

DEFINITION 2.5. [13] Let f and g be two fuzzy sets of R. We write f Ql/) g, if
g@)VAZ fx)Ap forallz € Rand 0 < A< p <1

REMARK 2.6. If A\ =0 and p =1, then f gﬁ g coincides with f C g.

THEOREM 2.7. [15] The fuzzy set f of R is an (€, € Vqyi)-fuzzy right [left] ideal
of R if and only if
L flz+y) > fz) A fly) AFE
2. fzy) = fl2) ANA5E [fay) = fly) NS5 for allz,y € R.

3. Redefined (), 1)—fuzzy right [left] h-ideals
Throughout this paper, we represents R as a hemiring and 0 < A < p < 1.

DEFINITION 3.1. The fuzzy set f is called a (A, u)—fuzzy right [left] ideal of R
if for all xz,y € R
Fla. f(x+y) VA= f(x) A fly) Ap,
F1b. f(zy) VA Z f(z) Ap [flzy) VA= fy) A

REMARK 3.2. 1. By taking A = 0 and p = 1 in Definition 3.1, f is known as
a fuzzy right [left] ideal of a hemiring R.
2. By taking A\ =0 and p = % in Definition 3.1, f coincides with (€, € Vqy)-fuzzy
right [left] ideal of a hemiring R.
3. Therefore (X, u)—fuzzy right [left] ideal of R is a generalization of fuzzy right
[left] ideal and (€, € Vqi)-fuzzy right [left] ideal of R.

Now, using fuzzy sum and fuzzy product, (X, u)—fuzzy right [left] ideals of
R are redefined.

THEOREM 3.3. The fuzzy set f of R is a (A, p)—fuzzy right [left] ideal of R if
and only if
F2a) f+fC) f
F2b) f-1C) f [1-f S f]
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PROOF. Let f be a (A, u)—fuzzy right [left] h-ideal of R and for every x € R.
Ifx=y+2z then f(x) VA= fy+2) VA= f(y) A f(2) A p. Thus,
f@vax =\ fAfE) AR

r=y+z

[ \V f(y)Af(Z)] A

T=y+z

(f+H@)Ap

Therefore f + f gﬁ f
If x cannot be expressible as x = yz, then 0= (f-1)(z) = (f- D) (z) Ap < f(z) VA
If x = yz, then f(x) VA= f(yz) VA= f(y) A p. Thus,

f@va =\ fy)au

T=yz

[ \V rwa 1(2)] Ap
T=yz

= (/- D)Ap
Therefore f -1 Q;} f. Similarly, we prove that f + f gﬁ fand 1-f Ql/) fif fisa
(A, p)—tfuzzy left ideal of R.

Conversely, for 2,y € R, flx +y) VAZ (f+ lz+y) Ap = f(@)A fly) Ap
and f(zy) VA = (f-1)(zy) Ap > f(x) Ap. Therefore f is a (A, p)—fuzzy right ideal
of R. Similarly, we prove that f is a (A, u)—fuzzy left ideal of R if f + f Qf; f and
1.fCAf. O

Now, the concept of (A, p)—fuzzy right [left] h-ideals of R are redefined by
using the notions of fuzzy sum, fuzzy product and fuzzy closure.

DEFINITION 3.4. The (A, p)-fuzzy right [left] ideal f of R is called a (X, p)—fuzzy
right [left] h-ideal of R if
(Flc) for any x,a,b,z € R, x + a+ z = b+ z implies f(x) VA = f(a) A f(b) A p.

THEOREM 3.5. The (\, pu)—fuzzy right [left] ideal f of R is a (A, p)—fuzzy right
[left] h-ideal of R if and only if
F2c) fC) f
PROOF. Let f be a (A, u)—fuzzy right [left] h-ideal of R and for all € R. By
Theorem 3.3, f+ f C), fand f-1C) f[1-f <) f]
Ifx+a+2=>b+z then f(z) VA= f(a) A f(b) A u. Thus,
Feva >\ @A) A

r+a+z=b+z

\V @A f)| Ap

r+a+z=b+z

fl@)Ap
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Therefore f QI); I

Conversely, by Theorem 3.3, f is a (A, u)—fuzzy right [left] ideal of R. Now
r+a+z=>b+zimplies f(x) VA > f(x) Au > f(a) A f(b) A u. Therefore f is a
(A, p)—fuzzy right [left] h-ideal of R. O

THEOREM 3.6. A fuzzy set [ is a (A, u)—fuzzy right [left] h-ideal of R if and
only if
F2a) f+fC) f
F2b) f-1C) f[1-FC)f]
F2c) f < f
PRrROOF. By Theorem 3.3 and 3.5, the proof follows. O

Now, we redefine (\, pu)—fuzzy right [left] h-ideal of R by using fuzzy h-sum
and fuzzy product.
LEMMA 3.7. [12] If f is a fuzzy set of R such that f + f gﬁ f and f Qﬁ /s
then f+pn f Qf; I

LEMMA 3.8. [12] If f is a fuzzy set of R such that f(0) VA > f(z) A p for all
xERandf—i—hfg;\Lf, thenfgﬁfandf—i—fgﬁf.

LEMMA 3.9. If f-1C) forl-f C f for a fuzzy set f of R, then f+f C f+if.

=un =un =u
PRrROOF. Let f be a fuzzy set of R such that f-1 Qﬁ forl-f gﬁ f- Then for

allz e R, fO)VAZ (f-1)(0)Ap = f(z)AL(0)Ap = f(x) Ap. Similarly, 1- f Qf; I
implies f(0) VA > f(z) A u for all z € R. Now,

(f+n ) VA = < V f(a1)/\f(02)/\f(bl)Af(b2)>\/>\

r+a1+bi+z=azx+ba+z

WV

< V f(O)/\f(a)/\f(O)Af(b)>v>\

z4+0+0+z2=a+b+z2

V (FO) V) A (fa) VA) A (F(0) V) A (f(B) VA)

r=a+b

> \/ fl@ApAfO)Ap

r=a-+b

< V f(a)/\f(b)>/\u

r=a-+b
= (f+NHE)Ap
Therefore f + f gﬁ f+nf. O

REMARK 3.10. Let f be a (X, u)—fuzzy left or right ideal of R, then by Lemma
3.9, f+fCh f+nlf
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LEMMA 3.11. Iff+hfgﬁf andf~1§;>f orf—l—hfgﬁf andl-fgﬁffor
a fuzzy set f of R, then?@i‘b I

PROOF. Let f be a fuzzy set of R such that f +j, f Q;} fand f-1 gﬁ for
f4nfC) fand1-fC) f Thenforallz € R, f(O) VA f(z-0)Ap > f(z)Ap.
Now,

(f@) VA VA = ((f+hf)(:v)Au> VA

> K \V f(a)Af(O)Af(O)Af(b)) VA] Ap
r+a+0+2=0+b+z2
= ( \/  (F@) VA A(F0)VA) A (£(0) V A)
r+at+z=b+z
A (f(b)VA)> A
> ( )Au)Af(a)A(f(b)/\u)Af(b)>Mt
rtatz= b+z
> ( (a) A f(b) A )Au
rtatz= b+z
= ( )AfU>
r+a+z=b+z
= [
Therefore f gﬁ f O

THEOREM 3.12. The fuzzy set f of R is a (\, u)—fuzzy right [left] h-ideal of R
if and only if
F3a) f+n fC) f
F2b) f-1C) f1-FC)f]

PrOOF. Now, f is a (A, u)—fuzzy right [left] h-ideal of R then by Theorem 3.6
and Lemma 3.7, we have F'3a and F'2b.

Conversely, by Lemma 3.9, f + f Qf; f+n f implies f+ f Qf; f and by Lemma
3.11, we have f gﬁ f. Then by Theorem 3.6, f is a (A, u)—fuzzy right [left] h-ideal
of R. (]

4. Fuzzy h-product and (\, u)—fuzzy right [left] h-ideals

In this section, using fuzzy h-sum and fuzzy h-product, the concept of (A, u)-
fuzzy right [left] h-ideal of R is characterized.
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LEMMA 4.1. If f is a (A, p)-fuzzy right [left] ideals of R, then f -1 Qf; fol
A-fC)lof].

Proor. By Theorem 3.6, we have f-1C;, f [1- f € f]. For each z € R,
FO)VAZ (F-1)(@0) Ap = fz) A p.
If fis a (A, pu)-fuzzy left ideal of R, then for each z € R,
FO)VAS (1 ))(02) A > (@) A

Now z = ab implies z + 0b + z = ab + z. Then,

(feD)(z)vA = [f(0)A f(a) A1(b) AL(D)] VA
z (fla) Ap) A(f(a) v A) A (L) A p) A (L(D) V A)
=z fla) A1) A p
Thus,
Fol)@) v >\ @) ALd) A
r=ab
- [ Y, f<a>A1<b>] A
r=ab
= (/- D) Ap
Therefore f -1 gﬁ fol. Similarly we prove that 1- f Qﬁ lo fif fisa (A w)-fuzzy
left ideal of R. U

THEOREM 4.2. A fuzzy set f of R is a (A, p)—fuzzy right [left] h-ideal of R if
and only if
F2a) f+fC) f
F4b) folCp f flof Cy f]
F2c) fC) f

PROOF. Let f be a (A, u)—fuzzy right [left] h-ideal of R. By Theorem 3.6, we
have F2a, F2b and F2c. If £ + a1b1 + z = asbs + z, then by F2c and F'2b,

f@yvx = (f@)Apv
= (flarb) A f(a2b2) Ap) VA
= (f(a1b1) VA) A (flazb2) VA) A p
z  ((f - D(arbr) Ap) A((f - 1)(azb) A p) A p
= fla) A fla2) AL(b1) A1(ba) A i
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Now z + a1b1 + z = asbe + z implies f(z) VA = f(a1) A f(az) A1(b1) A 1(b2) A p.
Thus,

fl@va > V Flar) A flaz) A1(by) Al(bs) A p

r+a1b1+z=asbs+z

= \ flar) A flag) A1(by) Al(ba)| A p
T+arbi+z=a2ba+2

— (fol)@)An
Therefore fol gﬁ f. Similarly, we prove that f + f gﬁ f,lof Q;} fand f gﬁ f
it fis a (A, p)—fuzzy left h-ideal of R.

Conversely, by Lemma 4.1, f -1 QZ\L fol gﬁ f implies f -1 Ql/) fand 1-f Qi‘t

lof g;} f implies 1 - f Qf; f. Therefore by Theorem 3.6, f is a (A, u)—fuzzy right
[left] h-ideal of R. O

THEOREM 4.3. If R has an unity, then the fuzzy set [ is a (A, p)-fuzzy right
[left] h-ideal of R if and only if
F2a) f+[C) f
F4b) fol Cp f Lo f S f]

PROOF. Let f be a (A, u)—fuzzy right [left] h-ideal of R. By Theorem 4.2, we
have f+f ) f, fol S f [Lof S} f].

Conversely, t +a+ 2z =0+ z impliesx +a-1+ 2 =0b-1+ z. Now,

flmyva > (_fol)(x)/\,u
. \ f(al)/\f(az)/\l(bl)Al(bz)]/\/~L

Lz+a1b1+z=asbs+2z

WV

\ f(a)/\f(b)/\l/\l]/\u

Lx+a-1+z=b-1+2

= \V  f@ Af(b)] Ap

Lxta+z=b+z

= f@)Ap
Thus f gg f and by Theorem 4.2, f is a (A, p)-fuzzy right [left] h-ideal of R. O

THEOREM 4.4. A fuzzy set f of R is a (A, pu)—fuzzy right [left] h-ideal of R if
and only if
F3a) f+n fC) f
Fib) fol Chf [Lof S f]

PRrROOF. Let f be a (A, u)—fuzzy right [left] h-ideal of R. Then by Theorem 4.2
and by Lemma 3.7, we have F3a and F4b.

Conversely, by Lemma 4.1, 3.9, 3.11 and by Theorem 4.2, f is a (\, u)—fuzzy
right [left] h-ideal of R. O
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5. Fuzzy h-intrinsic product and (A, u)-fuzzy right [left] h-ideal

In this section, using the notion of fuzzy h-sum and fuzzy h-intrinsic
product, we establish a necessary and sufficient condition for a fuzzy set to be
a (A, p)—tuzzy right [left] h-ideal of R.

LEMMA 5.1. If f and g are fuzzy sets of R, then fogC f®g.

PrROOF. Let f and g be fuzzy sets of R. Now, for all z € R,

(fog(z) = K/\ (a; /\gb)))/\
I+Zab+z7 nab+z =1
( Ay
j=1
> \ ) A glba) A F(ah) A g(0)
z+a1b1+z7a1b1+z
= \V flax) A flay) Ag(b) A g(br)
a:+a1b1+z:a/1b/1+z
= (fog)(x)
Therefore fog C f©g. u

THEOREM 5.2. The fuzzy set f of R is a (A, u)—fuzzy right [left] h-ideal of R
if and only if
F2a) f+fC) f
F5b) fol1Cy f Lo fCyf]
F2c) fC) f

PROOF. Let f be a (A, u)—fuzzy rlght [left] h- 1deal of R. By Theorem 3.6, we
have F2a, F2c and F2b. Now, = + Z aib; + z = Z a; b + z, then by F2a, F2b

and F2c,

f@)v A

Il
—

WV

WV
=
NE
5;
kﬁ
]
QQ
o
>
>~
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> ((f+ 4+ NO_abi) Ap)

i=1

A+ F A+t HQab) Ap) A
Jj=1

(5.1) > (/\(f(aibz—)> A (/\ f(a}b})) Ap
i=1 j=1

Now by Equation 5.1,

f@VA = (Fl@) VA VA
> (7\1<f<aib'> vA) A (/\ (b)) vx) A
Then by F2b, ) :
f@yva > (7\1<f-1><aib-> Au) A (;\1(f~1)(a}b}) Au) Ap
- (7\1]0(%) /\1(bi)> A (;\lf(a])/\ 1(bj)> Ap
Thus, ) :

<_/\(f(a})A1(b}))>] Ap
= (fol)Ap

Therefore f © 1 Qﬁ f. Similarly we prove that f + f QZ\L LH1of gﬁ fand f Qf; f
if fis (A, p)-fuzzy left h-ideal of R.

Conversely, by Lemma 5.1, fol C fo1 gﬁ f implies fol gﬁ f- Similarly
lofClof Qf; f implies 1o f Q;} f. By Theorem 4.2, f is (X, u)—fuzzy right [left]
h-ideal of R. (]
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THEOREM 5.3. If R has an unity, then the fuzzy set f is a (A, u)-fuzzy right
[left] h-ideal of R if and only if
F2a) f+ f g;, f .
F5b) folCy f Lo f S f]

PROOF. Let f be a (A, u)—fuzzy right [left] h-ideal of R. By Theorem 5.2, we
havef—i—fgﬁfandf@lgﬁf[1®f§ﬁf}.

n ;o
Conversely,  + ) a;b; + 2z = ) a;b; + z implies
i=1 j=1

f@yva = (Fol)) A

[ \V f(a)Af(b)]Au

r+a-1+z=b-14+2

WV

[ \V o flan f(b)] A

r+a+z=b+z
= f(@)Ap
Thus f Qf; f and by Theorem 5.2, f is a (A, p)-fuzzy right [left] h-ideal of R. O
THEOREM 5.4. A fuzzy set f of R is a (A, u)—fuzzy right [left] h-ideal of R if
and only if
F3a) f+n fC) f
F5b) fO1C, f Lo fC)f]

PRrROOF. Now, f is a (A, u)—fuzzy right [left] h-ideal of R and by Theorem 5.2
and by Lemma 3.7, we have F3a and F5b.

Conversely, by Lemma 5.1 and by Theorem 4.4, f is a (A, u)—fuzzy right [left]
h-ideal of R. (]

THEOREM 5.5. If f and g are (A, p)-fuzzy right h-ideal and (A, p)-fuzzy left
h-ideal of R respectively, then f ® g gﬁ fng.

PROOF. Let f and g be (A, u)-fuzzy right h-ideal and (A, p)-fuzzy left h-ideal
of R respectively.

Then, fGg < fol

Therefore f © g QI); fng. O

COROLLARY 5.6. If f and g are (A, pu)-fuzzy h-ideals of a hemiring R, then
fogc) fng.

PROOF. Straightforward o
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COROLLARY 5.7. [16] If f and g are fuzzy h-ideals of a hemiring R, then
g< fng.
PrOOF. By taking A =0 and g =1 in Corollary 5.6, we get the result. (]
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