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TL-VAGUE MODULES

Dilek Bayrak and Sultan Yamak

Abstract. In this paper, we investigated concept of TL-vague module and

obtained some basic properties of this concept.

1. Introduction

Main notions on fuzzy relations were introduced by Zadeh [15, 16]. Simul-
taneously, Goguen [7] introduced L-fuzzy relations on complete lattice. Rosenfeld
[10] applied this concept to the theory of groupoid and groups. Many authors
have worked to present the fuzzy setting of various algebraic concepts based on
his approach. In the fuzzy set theory there were many different approaches to the
concept of a fuzzy function.

In a number of papers, various kinds of fuzzy functions based on fuzzy equiv-
alence relations have been studied. In particular, such approach has been used in
definitions of strong fuzzy functions and perfect fuzzy functions, given by Demirci in
[4, 5, 6]. Fuzzy functions based on fuzzy equivalence relations have shown oneself to
be very useful in many applications in approximate reasoning, fuzzy control,vague
algebra and other fields.

In [3], Demirci introduced the notion of a vague group based on fuzzy binary
relations and concept of fuzzy equality. Later, the concept of vague ring was in-
troduced [13]. In this paper, by the use of strong TL-fuzzy function, a new kind
of TL-fuzzy modules based on TL-equivalence relation is introduced. The funda-
mental properties of TL-fuzzy equivalence relation, strong TL-fuzzy function and
TL-vague binary operation are presented in Section 2.

Concepts of vague group and ring are given in Section 3. Finally, in Section 4,
we focuses on the concept of TL-vague module and investigated some properties.
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2. Preliminaries

Let (L,6) be a complete lattice with with maximal element 1 and minimal
element 0. In this section, we give some definitions and preliminaries, most of
them are well known, which will be used in the next sections. Some of them were
in[1, 2, 11, 14].

By an L-subset of X, we mean a mapping from X into L. The set of all L-
subsets of X is called the L-power set of X and denoted by LX . When L = [0, 1]
the L-subsets of X are known as fuzzy subsets of X. By an L-relation from X to Y
(or an L-relation between X and Y ), we mean an L-subset of X×Y . An L-relation
from X to X is called a binary L-relation on X, or an L-relation on X for short.

A t-norm on L is a commutative, associative mapping T : L× L → L which is
increasing in both arguments and for which T (x, 1) = x for all x ∈ L. In the future
text T will be a t-norm on L.

An L-relation E on a set X is called a TL-equivalence relation on X if, for all
a, b, c ∈ X,

(i) E(a, a) = 1,

(ii) E(a, b) = E(b, a),

(iii) E(a, b)TE(b, c) 6 E(a, c). (T -transitivity)

E is called a separable TL-equivalence relation or a TL-equality if, moreover,

(iv) E(a, b) = 1 ⇔ a = b.

Let E and F be two TL-equivalence relations on X and Y , respectively. An
ordinary mapping f : X → Y is called extensional w.r.t. E and F if, for all
x, x′ ∈ X,

E(x, x′) 6 F (f(x), f(x′)).

Let F be a TL-equivalence relation on Y and f : X → Y . we define an L-fuzzy
relation from X to Y as follows:

Rf (x, y) = F (f(x), y) ∀x ∈ X,∀y ∈ Y.

Proposition 2.1. Let E,F be two TL-equivalence relations on X,Y , respec-
tively. Then the L-relation E × F on X × Y defined by

E × F : (X × Y )× (X × Y ) → L,

and
E × F ((x1, y1), (x2, y2)) = T (E(x1, x2), F (y1, y2))

is a TL-equivalence relation.

Let E, F be two TL-equivalence relations onX, Y , respectively and R ∈ LX×Y .
Then,

(i) R is called extensional w.r.t. E if, for all x, x′ ∈ X and y ∈ Y ,

T (R(x, y), E(x, x′)) 6 R(x′, y).

(ii) R is called extensional w.r.t. F if, for all x ∈ X and y, y′ ∈ Y ,

T (R(x, y), F (y, y′)) 6 R(x, y′).
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Let E, F be two TL-equivalence relations onX, Y , respectively and R ∈ LX×Y ,
which is extensional w.r.t. E and F . Then R is called a strong TL-fuzzy function
from X to Y

(i) For all x ∈ X there exists y ∈ Y such that R(x, y) = 1;

(ii) For all x, x′ ∈ X and for all y, y′ ∈ Y ,

R(x, y)TR(x′, y′)TE(x, x′) 6 F (y, y′).

Theorem 2.1 ([5]). Let E, F be two TL-equivalence relations on X, Y , re-
spectively. Then:

(i) If f : X → Y is a ordinary extensional function w.r.t. E and F , then the
L-relation Rf ∈ LX×Y is a strong TL-fuzzy function.

(ii) If R ∈ LX×Y is a TL-fuzzy function, then there exists an ordinary function
f : X → Y extensional such that R(x, f(x)) = 1 and R(x, y) 6 F (f(x), y) for all
x ∈ X, y ∈ Y .

Let F , E be two TL-equivalence relations on X ×X, X, respectively.

(i) A strong TL-fuzzy function from X ×X to X is said to be a TL-vague binary
operation on X.

(ii) A TL-vague binary operation õ on X is said to be transitive of first order iff

õ(a, b, c)TE(c, d) 6 õ(a, b, d) for all a, b, c, d ∈ X

(iii) A TL-vague binary operation õ on X is said to be transitive of second order iff

õ(a, b, c)TE(b, d) 6 õ(a, d, c) for all a, b, c, d ∈ X

(iv) A TL-vague binary operation õ on X is said to be transitive of third order iff

õ(a, b, c)TE(a, d) 6 õ(d, b, c) for all a, b, c, d ∈ X.

3. TL-vague groups and TL-vague rings

In this section, some new properties are explained about TL-vague groups and
TL-vague rings. Although the definitions in this paper are explained on any t-norm
and any complete lattice, it seems that they can be restated for the minimum t-norm
∧ and [0,1] instead of any t-norm and any complete lattice, as in [3, 8, 12, 13].

Definition 3.1. ([3]) Let õ be TL-vague binary operation on G with respect
to a TL-fuzzy equivalence relation F on G×G and a TL-fuzzy equivalence relation
E on G. Then

(i) G is a TL- vague semigroup iff for all a, b, c, d,m,w, q ∈ G

õ(b, c, d)T õ(a, d,m)T õ(a, b, q)T õ(q, c, w) 6 E(m,w).

(ii) G is a TL- vague monoid iff G is a TL-vague semigroup and there exists
e ∈ G such that for all a ∈ G õ(e, a, a)T õ(a, e, a) = 1.

(iii) G is a TL- vague group iff G is a TL-vague monoid and for all a ∈ G
there exists b ∈ G such that õ(b, a, e)T õ(a, b, e) = 1.
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(iv) G is a TL-vague commutative group iff G is a TL-vague group and for all
a, b,m,w ∈ G õ(a, b,m)T õ(b, a, w) 6 E(m,w).

Theorem 3.1 ([3]). For a given vague group (G, õ), there exists a binary op-
eration in the classical sense, denoted by o, on G such that (G, o) is a group in the
classical sense. On the other hand, for a given group (G, o), it may be obtained a
vague group (G, õ).

Lemma 3.1. Let (G,õ) be TL-vague group. If õ(c, c, c) = 1 for c ∈ G, then
E(e,c)=1.

Definition 3.2. ([3]) Let (G,õ) be a vague group and A be a nonempty and
crisp subset of G. A is called TL-vague closed under õ TL-vague binary operation,
if õ(a, b, c) = 1 for a, b ∈ A and c ∈ G, then c ∈ A.

Theorem 3.2 ([12]). Let (G,õ) be TL-vague group. Then, a nonempty and
crisp subset A of G is a TL-vague subgroup of G iff

(i) A is TL-vague closed under õ
(ii) For each a ∈ A, a−1 ∈ A

Theorem 3.3 ([3]). Let (G,õ) be a vague group and E be a separable TL-fuzzy
equivalence relations on G. Then, the set of TL-vague subgroup of G is a complete
lattice according to ⊆ relation.

Theorem 3.4 ([3]). Let (G,õ) be a vague group and õ TL-vague binary opera-
tion be transitive of first order. If õ(a, b, c) = 1 for a, b, c ∈ G, õ(b−1, a−1, c−1) = 1.

Definition 3.3. ([13]) Let E be TL-fuzzy equivalence relations on R. (R, +̃, ∗̃)
is called TL-vague ring if and only if

(i) (R, +̃) is commutative TL-vague group,

(ii) (R, ∗̃) TL-vague semigroup,

(iii) (R, +̃, ∗̃) satisfies distributive laws, for ∀x, y, z, t, a, b, c, d ∈ R

∗̃ (x, y, a)T ∗̃ (x, z, b)T +̃ (a, b, c)T +̃ (y, z, d)T ∗̃ (x, d, t) 6 E (t, c)

∗̃ (x, z, a)T ∗̃ (y, z, b)T +̃ (a, b, c)T +̃ (x, y, d)T ∗̃ (d, z, t) 6 E (t, c) .

A TL-vague ring (R, +̃, ∗̃) is said to be a TL-vague ring with identity if there exists
e ∈ R such that

∗̃ (x, e, x)T∗̃ (e, x, x) = 1

for each x ∈ R.
A TL-vague ring (R, +̃, ∗̃) is said to be a commutative if for ∀x, y, a, b ∈ R such

that
∗̃ (x, y, a)T∗̃ (y, x, b) 6 E (a, b) .

In the rest of this paper, the notation (R, +̃, ∗̃) always stands for the TL-vague
ring with respect to a TL-fuzzy equivalence relation F on R × R and a TL-fuzzy
equivalence relation E on R. If (R, +̃, ∗̃) is a TL-vague ring, then we denote the
inverse of a by −a respect to (R, +̃), additionally if (R, ∗̃) is a TL-vague group,
then we denote the inverse of a a by a−1 respect to (R, ∗̃).
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Theorem 3.5. ([13]) Let (R, +̃, ∗̃) be TL-vague ring having e+̃ identity el-

ement and +̃, ∗̃ TL-vague binary operations be transitive of first order. Then,
∗̃(x, e+̃, e+̃) = 1 for all x ∈ R .

Theorem 3.6. For a given TL-vague ring (R, +̃, ∗̃), there exists two operations
in the classical sense, denoted by + and ∗, on R such that (R,+, ∗) is a ring in the
classical sense. On the other hand, for a given group (R,+, ∗), it may be obtained
a TL-vague ring (R, +̃, ∗̃).

Proof. As in Theorem 3.1, it may be seen easily. �
Theorem 3.7 ([13]). Let (R, +̃, ∗̃) be TL-vague ring . Then, a nonempty and

crisp subset A of R is a TL-vague subring of R iff

(i) A is TL-vague subgroup of R,
(ii) A is TL-vague closed under ∗̃ TL-vague binary operation.

Theorem 3.8. Let (R, +̃, ∗̃) be TL-vague ring and E be separable TL-fuzzy
equivalence relations on R. Then, the set of TL-vague subring of R is a complete
lattice according to ⊆ relation.

Proof. As in Theorem 3.3, we can easily obtain that the set of TL-vague
subring of R is a complete lattice according to ⊆ relation. �

Definition 3.4. ([8]) Let (R, +̃, ∗̃) be TL-vague ring and I be a nonempty and
crisp subset of R. I, TL-vague subring is called left (right) TL-vague ideal iff for all
a ∈ I for all x ∈ R there exists b ∈ I such that ∗̃(x, a, b) = 1 (∗̃(a, x, b) = 1).

Proposition 3.1. Let E be seperable TL-fuzzy equivalence relation on R,
(R, +̃, ∗̃) be TL-vague ring, I and J be left TL-vague ideals of R. Then, I ∩ J
is left TL-vague ideal of R.

Proof. Since I and J are TL-vague subring of R, with theorem 3.8, I ∩ J is
TL-vague subring of R. For a ∈ I ∩ J and x ∈ R, there exists b ∈ I such that
∗̃(x, a, b) = 1 and there exists c ∈ J such that ∗̃(x, a, c) = 1. Since ∗̃ is a strong
TL-fuzzy function,

1 = ∗̃(x, a, b)T ∗̃(x, a, c)TER×R((x, a), (x, a)) 6 E(b, c)
1 = E(b, c)

Since E is a separable TL-fuzzy equivalence relation, b=c. Thus, b ∈ I ∩ J . So,
I ∩ J is left TL-vague ideal of R. �

Proposition 3.2. Let (R, +̃, ∗̃) be TL-vague ring having identity element and
E be separable TL-fuzzy equivalence relation on R. If I including identity element
is a left TL- vague ideal of R, I=R.

4. TL-Vague Module

In a similar fashion to classical algebra, the notion of TL-vague module can
be given in the following way: In the rest of the study,it will be assumed that F
and E are TL-fuzzy equivalence relations on R and M , respectively and F ×E is
TL-fuzzy equivalence relation on R×M .
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Definition 4.1. Let (R, ⊕̃, ∗̃) be TL-vague ring. Let (M, +̃) be TL-vague
group. Then •̃ is called TL-vague scaler product if •̃ a function of (R ×M) to M
is a strong TL-fuzzy function

Definition 4.2. Let (R, ⊕̃, ∗̃) be TL-vague ring. Let (M, +̃) be TL-vague
group. Then M is called a TL-R-vague module if the following three conditions
are satisfied ∀a, b, b1, b2, c, d, d1, k, l,m,m1,m2, n, n1, n2 ∈ M and ∀p, r, r1, r2, s ∈R

(i) ⊕̃(m1,m2, n)T •̃(r, n, k)T •̃(r,m1, n1)T •̃(r,m2, n2)T ⊕̃(n1, n2, l) 6 E(k, l);
(ii) +̃(r1, r2, s)T •̃(s,m, a)T •̃(r1,m, b1)T •̃(r2,m, b2)T ⊕̃(b1, b2, b) 6 E(a, b);
(iii) ∗̃(r1, r2, p)T •̃(p,m, c)T •̃(r2,m, d1)T •̃(r1, d1, d) 6 E(c, d)

Acording to ⊕̃ TL-vague binary operation adverse of m ∈ M will show as −m.

Example 4.1. If I is a left TL-vague ideal of a R TL-vague ring, then I is a
left TL-R-vague module with being the ordinary vague binary operation ∗̃ in R. In
particular, {e+̃} and R are TL-R-vague modules.

Proposition 4.1. Let M be TL-R-vague module and ⊕̃ TL-vague binary op-
eration, •̃ TL-vague skaler product be transitive of the first order. Then

(i) •̃(e+̃,m, e⊕̃) = 1
(ii) •̃(r, e⊕̃, e⊕̃) = 1

Proof. (i) Since •̃ is strong a TL-fuzzy function, there exists l ∈ M form ∈ M
such that •̃(e+̃,m, l) = 1. Since ⊕̃ is strong a TL-fuzzy function, there exists t ∈ M

for l ∈ M such that ⊕̃(l, l, t) = 1. As (M, ⊕̃) is TL-vague semigroup

1 = +̃(e+̃, e+̃, e+̃)T •̃(e+̃,m, l)T •̃(e+̃,m, l)T •̃(e+̃,m, l)T ⊕̃(l, l, t) 6 E(l, t).

Since ⊕̃ is transitive of the first order.

1 = ⊕̃(l, l, t)TE(l, t) 6 ⊕̃(l, l, l).

By Lemma 3.1 E(e⊕̃, l) = 1. Since •̃ is transitive of the first order.

1 = •̃(e+̃,m, l)TE(e⊕̃, l) 6 •̃(e+̃,m, e⊕̃).

Thus •̃(e+̃,m, e⊕̃) = 1

(ii) Since •̃ is strong a TL-fuzzy function, there exists k ∈ M for r ∈ R
•̃(r, e+̃, k) = 1. Since ⊕̃ is strong a TL-fuzzy function, there is s ∈ M for k ∈ M

⊕̃(k, k, s) = 1 In this situation

1 = ⊕̃(e⊕̃, e⊕̃, e⊕̃)T •̃(r, e⊕̃, k)T •̃(r, e⊕̃, k)T •̃(r, e⊕̃, k)T ⊕̃(k, k, s) 6 E(k, s).

Since ⊕̃ is transitive of the first order, then 1 = ⊕̃(k, k, s)TE(k, s) 6 ⊕̃(k, k, k).
Thus by Lemma 3.1 E(e⊕̃, k) = 1

Since •̃ is transitive of the first order, then

1 = •̃(r, e⊕̃, k)TE(e⊕̃, k) 6 •̃(r, e⊕̃, e⊕̃).

Thus •̃(r, e⊕̃, e⊕̃) = 1. �
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Theorem 4.1. Let M be a R-module F and E be a regular TL-fuzzy equivalence
relations on R and M , respectively, and ⊕̃, +̃, ∗̃ be TL-vague binary operations and
•̃ be TL-vague scaler product are denoted by following:

⊕̃(a, b, c) = E(a⊕ b, c); •̃(r, b, c) = E(r • b, c) for all r ∈ R for all a, b, c ∈ M

+̃(r, s, p) = F (r + s, p); ∗̃(r, s, p) = F (r ∗ s, p) for all r, p, s ∈ R

If F (r, s) 6 E(r • m, s • m) for all r, s ∈ R and for all m ∈ M , then M is a
TL-R-vague module.

Proof. Since M is a commutative group, M is a TL-vague commutative group
by theorem 3.1. Accordingly, since R is a TL-vague ring, R is a TL-vague ring by
theorem 3.6. For all r, r1, r2, s, p ∈ R, for all m,m1,m2, k, l, t, y, z ∈ M we have:

⊕̃(m1,m2, k)T •̃(r, k, l)T •̃(r,m1, t)T •̃(r,m2, y)T ⊕̃(t, y, z)
= E(m1 ⊕m2, k)TE(r • k, l)TE(r •m1, t)TE(r •m2, y)TE(t⊕ y, z)
6 E(r • (m1 ⊕m2), r • k)TE(r • k, l)TE((r •m1)⊕ (r •m2), t⊕ y)TE(t⊕ y, z)
6 E(r • (m1 ⊕m2), l)TE(r • (m1 ⊕m2), z)
6 E(l, z).

+̃(r1, r2, s)T •̃(s,m, l)T •̃(r1,m, t)T •̃(r2,m, y)T ⊕̃(t, y, z)
= F (r1 + r2, s)TE(s •m, l)TE(r1 •m, t)TE(r2 •m, y)TE(t⊕ y, z)
6 E((r1 + r2) •m, s •m)TE(s •m, l)TE((r1 •m)⊕ (r2 •m), t⊕ y)TE(t⊕ y, z)
6 E(l, t⊕ y)TE(t⊕ y, z)
6 E(l, z).
Also we obtain
∗̃(r1, r2, p)T •̃(p,m, l)T •̃(r2,m, t)T •̃(r1, t, y)
= F (r1 ∗ r2, p)T (p •m, l)TE(r2 •m, t)TE(r1 • t, y)
6 E((r1 ∗ r2) •m, p •m)T (p •m, l)TE(r1 • (r2 •m), r1 • t)TE(r1 • t, y)
6 E((r1 ∗ r2) •m, l)TE((r1 • r2) •m, y) = E((r1 • r2) •m, l)TE((r1 • r2) •m, y)
6 E(l, y).
Consequently, M is a TL-vague module. �

Definition 4.3. Let M be a TL-R-vague module and A be a nonempty, crisp
subset of M . Then A is a TL-R-vague submodule of M if and only if there exists
a, b ∈ A such that ⊕̃(x,−y, a) = 1 and •̃(r, x, b) = 1 for all r ∈ R and for all
x, y ∈ A.

Example 4.2. Let ⊕̃ TL-vague binary operation and •̃ TL-vague scaler prod-
uct be first transitive. Then {e⊕̃} and M are TL-R-vague submodules of M .

Proposition 4.2. Let M be a TL-R-vague module and A be a TL-R-vague
submodule of M . If E is a separable TL-fuzzy equivalence relation, then e⊕̃ ∈ A

Proof. Let x ∈ A. Since A is TL-vague submodule of M,for all r ∈ R there
exists c ∈ A such that •̃(r, x, c) = 1. Especially for e+̃ ∈ R there exists k ∈ A
such that •̃(e+̃, x, k) = 1. Also with Proposition 4.1(i) •̃(e+̃, x, e⊕̃) = 1 and since •̃
is strong TL-fuzzy function, we obtain E(e⊕̃, k) = 1. As E is separable TL-fuzzy
equivalence relation, k = e⊕̃ ∈ A. �
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Definition 4.4. Let M and N be two TL-R-vague modules. A function ϕ :
M → N is called TL-R-vague module homomorphism iff ∀a, b, c ∈ M and ∀r ∈ R

⊕̃(a, b, c) 6 ⊖̃(ϕ(a), ϕ(b), ϕ(c)) and •̃(r, b, c) 6 ⊖̃(r, ϕ(b), ϕ(c)).

In the classical algebra we know that if ϕ and φ are module homomorphisms
then φ ◦ϕ is a module homomorphism. This statement is true for vague algebra as
follows.

Proposition 4.3. Let (M, ⊕̃), (N, ⊖̃) and (K, ⊙̃) be TL-R-vague modules. If
ϕ : M → N and φ : N → K are a TL-R-vague module homomorphism, then
φ ◦ ϕ : M → K is a TL-R-vague module homomorphism.

Proof. The proof can be easily seen. �

Definition 4.5. Let M be a TL-R-vague module and A be a crisp subset of
M . {r ∈ R|•̃(r, a, e⊕̃) = 1 for all a ∈ A} is called the TL-vague annihilator of A
and this set is denoted by V Ann(A).

Theorem 4.2. Let M be a TL-R-vague module, A be a crisp subset of M and
⊕̃ TL-vague binary operation, •̃ TL-vague scaler product be transitive of the first
order. Then,

(i) V Ann(A) is TL-vague left ideal of R.
(ii) If A is a TL-vague submodule then V Ann(A) is TL-vague ideal of R.

Proof. (i) Let a, b ∈ V Ann(A). Since +̃ is a strong TL-fuzzy function, there
exists c ∈ R such that +̃(a, b, c) = 1. Then •̃(a,m, e⊕̃) = 1 and •̃(b,m, e⊕̃) = 1
for all m ∈ A. Also there exists l ∈ M such that •̃(c,m, l) = 1 as •̃ is a strong
TL-fuzzy function. Then

1 = +̃(a, b, c)T •̃(c,m, l)T •̃(a,m, e⊕̃)T •̃(b,m, e⊕̃)T ⊕̃(e⊕̃, e⊕̃, e⊕̃)
6 E(l, e⊕̃).

Since •̃ is transitive of the first order, then

1 = •̃(c,m, l)TE(l, e⊕̃) 6 •̃(c,m, e⊕̃).

Therefore we get c ∈ V Ann(A). Thus V Ann(A) is TL-vague closed under +̃ TL-
vague binary operation.

Let a ∈ V Ann(A). Since •̃ is strong TL-fuzzy function, there exists t ∈ M
such that •̃(−a,m, t) = 1.Then

1 = ⊕̃(−a, a, e+̃)T •̃(e+̃,m, e⊕̃)T •̃(−a,m, t)T •̃(a,m, e⊕̃)T ⊕̃(t, e⊕̃, t) 6 E(t, e⊕̃).
Since •̃ is transitive of the first order,

1 = •̃(−a,m, t)TE(t, e⊕̃) 6 •̃(−a,m, e⊕̃).

We obtain −a ∈ V Ann(A). Hence V Ann(A) is TL-vague subgroup of R.
Let a, b ∈ V Ann(A) and ∗̃(a, b, c) = 1. Since •̃ is strong TL-fuzzy function,

there exists l ∈ M such that •̃(c,m, l) = 1. Then

1 = ∗̃(a, b, c)T •̃(c,m, l)T •̃(b,m, e⊕̃)T •̃(a, e⊕̃, e⊕̃) 6 E(l, e⊕̃)

1 = •̃(c,m, l)TE(l, e⊕̃) 6 •̃(c,m, e⊕̃).
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Hence we obtain c ∈ V Ann(A). Then V Ann(A) is TL-vague closed under ∗̃ TL-
vague binary operation. Let a ∈ V Ann(A), for r ∈ R •̃(r, a, x) = 1. Since •̃ is a
strong TL-fuzzy function, there exists t ∈ M such that •̃(x,m, t) = 1. Then

1 = ∗̃(r, a, x)T •̃(x,m, t)T •̃(a,m, e⊕̃)T •̃(r, e⊕̃, e⊕̃) 6 E(t, e⊕̃),

1 = •̃(x,m, t)TE(t, e⊕̃) 6 •̃(x,m, e⊕̃).

Hence x ∈ V Ann(A) is obtained. That is, V Ann(A) is a TL-vague left ideal of R.

(ii) Let a ∈ V Ann(A) and r ∈ R. Since A is TL-vague submodule of M, for
m ∈ A there exists c ∈ A such that •̃(r,m, c) = 1. We can write •̃(a, c, e⊕̃) because
of a ∈ V Ann(A). Let ∗̃(a, r, x) = 1. Since •̃ is strong TL-fuzzy function there
exists n ∈ M such that •̃(x,m, n) = 1. Then

1 = ∗̃(a, r, x)T •̃(x,m, n)T •̃(r,m, c)T •̃(a, c, e⊕̃) 6 E(n, e⊕̃),

1 = •̃(x,m, n)TE(n, e⊕̃) 6 •̃(x,m, e⊕̃).

Therefore x ∈ V Ann(A) is obtained. Thus V Ann(A) is TL-vague right ideal of R.
Hence V Ann(A) is TL-vague ideal of R. �

Example 4.3. Let M be a TL-R-vague module and •̃ TL-vague scaler product
be transitive of the first order. The set B denoted by

B = {x ∈ M |∃m ∈ M •̃(e∗̃,m, x) = 1}

is a TL-vague submodule of M .

Proof. Let x, y ∈ B. There exists m1,m2 ∈ M such that •̃(e∗̃,m1, x) = 1
and •̃(e∗̃,m2, y) = 1. Then •̃(e∗̃,−m2,−y) = 1. Since •̃ and ⊕̃ are strong TL-fuzzy
functions, there exists k, q ∈ M such that •̃(e∗̃, l, q) = 1 and ⊕̃(x,−y, k) = 1. Thus

1 = ⊕̃(m1,−m2, l)T •̃(e∗̃, l, q)T •̃(e∗̃,m1, x)T •̃(e∗̃,−m2,−y)T ⊕̃(x,−y, k)) 6 E(q, k)

and

1 = •̃(e∗̃, l, q)TE(q, k) 6 •̃(e∗̃, l, k).

We obtained that k ∈ B. For all x, y ∈ B, there exists k ∈ B such that
⊕̃(x,−y, k) = 1.

On the other hand, there exists a ∈ M for all r ∈ R and x ∈ B such that
•̃(r, x, a) = 1. Since x ∈ B, there exists m ∈ M such that •̃(e∗̃,m, x) = 1. Since •̃
is a strong TL-fuzzy function, there exists s ∈ M such that •̃(e∗̃, a, s) = 1.Thus

1 = ∗̃(e∗̃, r, r)T •̃(r, x, a)T •̃(r, x, a)T •̃(e∗̃, a, s) 6 E(a, s)

and

1 = •̃(e∗̃, a, s)TE(a, s) 6 •̃(e∗̃, a, a).

Thus, for all r ∈ R and x ∈ B, there exists a ∈ B such that •̃(r, x, a) = 1. As a
result B is a TL-vague submodule of M . �
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