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RAINBOW CONNECTION

IN BRICK PRODUCT GRAPHS

K.Srinivasa Rao, R.Murali, and S.K.Rajendra

Abstract. Let G be a nontrivial connected graph on which is defined a color-
ing c : E(G) → {1, 2, · · · , k}, k ∈ N , of the edges of G, where adjacent edges

may be colored the same. A path in G is called a rainbow path if no two edges
of it are colored the same. G is rainbow connected if G contains a rainbow
u − v path for every two vertices u and v in it. The minimum k for which
there exists such a k-edge coloring is called the rainbow connection number

of G, denoted by rc(G). In this paper we determine rc(G) of brick product
graphs associated with even cycles. We also discuss the critical property of
these graphs with respect to rainbow coloring.

1. Introduction

Connectivity is perhaps the most fundamental graph-theoretic property, both
in the combinatorial sense and the algorithmic sense. There are many ways to
strengthen the connectivity property, such as requiring hamiltonicity, k-connectivity,
imposing bounds on the diameter, requiring the existence of edge-disjoint spanning
trees and so on. One among them is rainbow connectivity that strengthens the
connectivity requirement, introduced by Chartrand et. al. in 2008 [2].

Let G be a nontrivial connected graph with an edge coloring c : E(G) →
{1, 2, · · · , k}, k ∈ N , where adjacent edges may be colored the same. A path in
G is called a rainbow path if no two edges of it are colored the same. An edge
colored graph G is said to be rainbow connected if for any two vertices in G, there
is a rainbow path in G connecting them. Clearly, if a graph is rainbow connected,
it must be connected. Conversely, any connected graph has a trivial edge coloring
that makes it rainbow connected. i.e., a coloring such that each edge has a distinct
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color. The minimum k for which there exist a rainbow k-coloring of G is called the
rainbow connection number of G, denoted by rc(G).

For any two vertices u and v in G, d(u, v) is the distance between u and v. Let c
be a rainbow coloring of G. For any two vertices u and v of a rainbow u−v geodesic
in G is a rainbow u− v path of length G is termed strongly rainbow connected if G
contains a rainbow u − v geodesic for every two vertices u and v in G and in this
case the coloring c is called a strong rainbow coloring of G. The minimum k for
which there exists a coloring c : E(G) → {1, 2, · · · , k}, k ∈ N , of the edges of G
such that G is strongly rainbow connected is called the strong rainbow connection
number of G, denoted by src(G). Thus rc(G) 6 src(G) for every connected graph
G.

The rainbow connection number and the strong rainbow connection number
are defined for every connected graph G, since every coloring that assigns distinct
colors to the edges of G is both a rainbow coloring and a strong rainbow coloring
and G is rainbow connected and strongly rainbow connected with respect to some
coloring of the edges of G.

In [2], Chartrand et.al. determined rc(G) for some classes of graphs like, the
cycle graph, the wheel graph etc., and src(G) for complete multipartite graphs.
In [5] and [6] K.Srinivasa Rao and R.Murali, determined rc(G) and src(G) of the
stacked book graph, the grid graph, the prism graph etc. Authors also discussed
the critical property of these graphs with respect to rainbow coloring. An overview
about rainbow connection number can be found in a book of Li and Sun in [4] and
a survey by Li et.al. in [3].

1.1. Definition. A graph G is said to be rainbow critical if the removal of
any edge from G increases the rainbow connection number of G, i.e. if rc(G) = k
for some positive integer k, then rc(G− e) > k for any edge e in G.

The brick product of even cycles was introduced in a paper by B.Alspach et.al.
[1] in which the Hamiltonian laceability properties of brick products was explored.
In this paper we determine rc(G) of brick product graphs associated with even
cycles. We also discuss the critical property of these graphs with respect to rainbow
coloring.

1.2. Definition. Letm, n and r be positive integers. Let C2n = v0, v1, v2, · · · ,
v(2n−1), v0 denote a cycle of order 2n. The (m, r)-brick product of C2n denoted by
C(2n,m, r) is defined as follows:

For m = 1, we require that r be odd and greater than 1. Then, C(2n,m, r) is
obtained from C2n by adding chords v2k(v2k+r), k = 1, 2, · · · , n, where the com-
putation is performed under modulo 2n.

For m > 1, we require that m + r be even. Then, C(2n,m, r) is obtained by
first taking disjoint union of m copies of C2n namely, C2n(1), C2n(2), C2n(3), · · · ,
C2n(m) where for each i = 1, 2, · · · ,m, C2n(i) = vi1, vi2, vi3, , · · · , vi(2n). Next, for
each odd i = 1, 2, · · · ,m − 1 and each even k = 0, 1, · · · , 2n − 2, an edge(called a
brick edge) drawn to join vik to v(i+1)k, whereas, for each even i = 1, 2, · · · ,m− 1
and each odd k = 1, 2, · · · , 2n − 1, an edge (also called a brick edge) is drawn to
join vik to v(i+1)k.
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Finally, for each odd k = 1, 2, · · · , 2n − 1, an edge (called a hooking edge)is
drawn to join v1k to vm(k+r). An edge in C(2n,m, r) which is neither a brick edge
nor a hooking edge is called a flat edge.

The brick products C(10, 1, 5), C(10, 2, 4) and C(10, 3, 5) are shown in figures
1, 2 and 3.

9

8

7

6

5 4

3

2

1

0

Figure 1. The brick product C(10, 1, 5)
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Figure 2. The brick product C(10, 2, 4)
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Figure 3. The brick product C(10, 3, 5)
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In the next section, we determine the values of rc(G) for the brick product
graph C(2n,m, r) for m = 1, n > 3, r = n and for m = 1, n > 4, r = 3. In our
results, we denote the vertices of the cycle C2n as v0, v1, · · · , v2n−1, v2n = v0.

2. Main Results

Theorem 2.1. Let G = C(2n,m, r). Then for m = 1, n > 3 and r = n,

rc(G) =


2 for n = 3

3 for n = 5

⌈n
2 ⌉+ 1 for n > 7 and odd

Proof. We consider the vertex set of G as V (G) = {v0, v1, · · · , v2n−1, v2n =

v0} and the edge set of G as E(G) = {ei : 1 6 i 6 2n} ∪ {e′

i : 1 6 i 6 n}, where ei
is the edge (vi−1, vi) and e

′

i is the edge (v2k, v2k+r), k = 0, 1, · · · , n. Here 2k + r is
computed modulo 2n.

We prove this theorem in different cases as follows.
Case 1: n = 3.

Since diam(G) = 2, it follows that rc(G) > 2. It remains to show that rc(G) 6
2. Define a coloring c : E(G) → {1, 2} and consider the assignment of colors to the
edges of G as

c(e) =

{
1 if e = v0v1 = v2v3 = v4v5 = v0v3 = v2v5

2 if e = v1v2 = v3v4 = v5v0 = v1v4

Then, for any two vertices x, y ∈ V (G), the above assignment gives a rainbow
x− y path in G.

Hence rc(G) 6 2.
This proves rc(G) = 2.

(An illustration for the assignment of colors in C(6, 1, 3) is provided in figure 4).
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Figure 4. Assignment of colors in C(6, 1, 3)
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Case 2: n = 5.
Since diam(G) = 3, it follows that rc(G) > 3. It remains to show that rc(G) 6

3. Define a coloring c : E(G) → {1, 2, 3} and consider the assignment of colors to
the edges of G as

c(e) =


1 if e = v0v1 = v2v3 = v4v5 = v6v7 = v8v9

2 if e = v1v2 = v3v4 = v5v6 = v7v8 = v9v0

3 if e = v2kv2k+r where k = 0, 1, · · · , n
For any two vertices x, y ∈ V (G), the above assignment gives a rainbow x− y

path in G. Hence rc(G) 6 3.
This proves rc(G) = 3.

(An illustration for the assignment of colors in C(10, 1, 5) is provided in figure 5).
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Figure 5. Assignment of colors in C(10, 1, 5)

Case 3: n > 7 and odd.
In this case diam(G) = ⌈n

2 ⌉ and hence it follows that rc(G) > ⌈n
2 ⌉. But, as in

case 2, if we assign the colors to the edges of G, we fail to obtain a rainbow path
between the vertices v1 − v 3(n+1)

2
∀n. (This is illustrated in figure 6).

Accordingly, we define a coloring c : E(G) → {1, 2, · · · , ⌈n
2 ⌉+1} and assign the

colors to the edges of G as

c(ei) =


i if 1 6 i 6 ⌈n

2 ⌉
i− ⌈n

2 ⌉ if ⌈n
2 ⌉+ 1 6 i 6 n+ 1

i− (n+ 1) if n+ 2 6 i 6 ⌈ 3n
2 ⌉+ 1

i− (⌈ 3n
2 ⌉+ 1) if ⌈ 3n

2 ⌉+ 2 6 i 6 2n

and
c(e

′

i) = ⌈n
2 ⌉+ 1

From the above assignment, it is easy to verify that for every two distinct
vertices x, y ∈ V (G), there exists an x − y rainbow path with coloring c. Hence
rc(G) 6 ⌈n

2 ⌉+ 1.
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Figure 6. Assignment of colors in C(14, 1, 7)

This proves rc(G) = ⌈n
2 ⌉+ 1.

Hence the proof.
(An illustration for the assignment of colors in C(14, 1, 7) is provided in figure 7).

5

5

5

5

5

5
5

3

3
4

4

4

2

2

2

2

1

1 1

1

3

v
13

v
12

v
11

v
9

v
8

v v

v
5

v
4

v
3

v
2

v
1

10
v

0
v

67

Figure 7. Assignment of colors in C(14, 1, 7)

�
The critical nature of the brick product graph in theorem 2.1 has been observed.

This is illustrated in our next result.

Lemma 2.1. Let G = C(2n,m, r), where m = 1 and r = n. Then G is rainbow
critical for n = 3.

i.e., rc(G− e) = 3 for n = 3
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Proof. Since diam(G) = 2, deletion of any edge in G, increases the diameter
by 1. i.e., diam(G − e) = 3 and therefore rc(G − e) > 3. It remains to show that
rc(G− e) 6 3.

Define a coloring c : E(G) → {1, 2, 3} and consider the assignment of colors to
the edges of G as

c(e) =


1 if e = v0v1 = v4v5 = v2v5

2 if e = v1v2 = v3v4 = v5v0 = v1v4

3 if e = v2v3

From the above assignment, for any two vertices x, y ∈ V (G− e), we obtain a
rainbow x− y path in G− e. This holds ∀e ∈ E(G).

Hence rc(G− e) 6 3.
This proves rc(G− e) = 3.
Hence the proof.

�

Remark 2.1. Let G = C(2n,m, r) where m = 1 and r = n. Then, for n > 5
and odd, G is not rainbow critical, since, from theorem 2.1, we have,

rc(G) =

{
3 for n = 5

⌈n
2 ⌉+ 1 for n > 7 and odd

If we delete of any brick edge v2kv2k+r, where k = 0, 1, · · · , n, we immediately
obtain the rainbow path between the selected vertices.
(For illustration see figure 8).
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Figure 8. Assignment of colors in C(10, 1, 5)

When m = 1 and r = 3, we have the following result.
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Theorem 2.2. Let G = C(2n,m, r). Then for m = 1 and r = 3,

rc(G) =


n
2 + 1 for n > 4 and even

3 for n = 5

⌈n
2 ⌉+ 1 for n > 7 and odd

Proof. We consider the vertex set V (G) and the edge set E(G) defined in
Theorem 2.1. We prove this result in different cases as follows.
Case 1: n = 5.

Since diam(G) = 3, it follows that rc(G) > 3. It remains to show that rc(G) 6
3. Define a coloring c : E(G) → {1, 2, 3} and consider the assignment of colors to
the edges of G as

c(e) =


1 if e = v0v1 = v2v3 = v0v3 = v5v6 = v7v8

2 if e = v1v2 = v3v4 = v6v7 = v6v9 = v8v9

3 if e = v0v9 = v1v8 = v2v5 = v4v5 = v4v7

It is easy to verify that for any two vertices x, y ∈ V (G), the above assignment
gives a rainbow x− y path in G. Hence rc(G) 6 3.

This proves rc(G) = 3.
(An illustration for the assignment of colors in C(10, 1, 3) is provided in figure 9).
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Figure 9. Assignment of colors in C(10, 1, 3)

Case 2: n > 4 and even.
Since diam(G) = n

2 + 1, it follows that rc(G) > n
2 + 1. In order to show that

rc(G) 6 n
2 + 1, we construct an edge coloring c : E(G) → {1, 2, · · · , n

2 + 1} as
follows

c(ei) =


i
2 if i is even and 2 6 i 6 n
i−n
2 if i is even and n+ 2 6 i 6 2n

n
2 + 1 if i is odd and 1 6 i 6 2n

and

c(e
′

i) =

{
i if 1 6 i 6 n

2

i− n
2 if n

2 + 1 6 i 6 n
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It is easy to verify that for any two vertices x, y ∈ V (G), the above assignment
gives a rainbow x− y path in G. Hence rc(G) 6 n

2 + 1.
This proves rc(G) = n

2 + 1.
(An illustration for the assignment of colors in C(16, 1, 3) is provided in figure 10).
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Figure 10. Assignment of colors in C(16, 1, 3)

Case 3: n > 7 and odd.
In this case, diam(G) = ⌈n

2 ⌉ and hence it follows that rc(G) > ⌈n
2 ⌉. Suppose

that c is a ⌈n
2 ⌉ rainbow coloring, if we color the edges as in case 2, this will not give

a rainbow v2 − vn+2 path ∀n. (See figure 11).
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Figure 11. Assignment of colors in C(14, 1, 3)

Accordingly, we construct an edge coloring c : E(G) → {1, 2, · · · , ⌈n
2 ⌉+1} and

assign the colors to the edges of G as

c(ei) =


i
2 if i is even and 2 6 i 6 n− 1

⌈ i−n
2 ⌉ if i is even and n+ 1 6 i 6 2n− 2

⌈n
2 ⌉+ 1 if i is odd 1 6 i 6 n− 2 and n+ 2 6 i 6 2n− 1

⌈n
2 ⌉ elsewhere
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and

c(e
′

i) =


i if 1 6 i 6 ⌊n

2 ⌋ − 1

i− n+ ⌊n
2 ⌋+ 1 if ⌈n

2 ⌉+ 1 6 i 6 n− 1

⌈n
2 ⌉ elsewhere

From the above assignment, it is easy to verify that for every two distinct
vertices x, y ∈ V (G), there exists an x− y rainbow path with coloring c.

Hence rc(G) 6 ⌈n
2 ⌉+ 1.

This proves rc(G) = ⌈n
2 ⌉+ 1.

Hence the proof.
(An illustration for the assignment of colors in C(14, 1, 3) is provided in figure 12).
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Figure 12. Assignment of colors in C(14, 1, 3)

�
The critical nature of the brick product graph in theorem 2.2 has been observed

for even n > 4. This is illustrated in our next result.

Lemma 2.2. Let G = C(2n,m, r), where m = 1 and r = 3. Then G is rainbow
critical for even n > 4.

i.e., rc(G− e) = n
2 + 2 for n > 4 and even

Proof. Let e
′′
= (x, y) be any edge in G (edge in cycle or brick edge). Then

every e′′ is an edge of some sub graph H = C4 in G. If we follow a coloring as
in Theorem 2.2, it is clear that the edges of this sub graph can be colored by two
colors. Deletion of e′′ from any sub graph H = C4 will give d(x, y) = 3. Let P
be the path from x to y in H. Then, since two edges in P have the same color,
a x − y rainbow path in G is not possible. This holds for every e′′ in G. Hence,
to obtain a rainbow path, one more color is required other than the n

2 + 1 colors
already assigned in G.

This proves rc(G− e′′) = n
2 + 2.

(An illustration for the assignment of colors in C(16, 1, 3) is provided in figure 13).
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Figure 13. Assignment of colors in C(16, 1, 3)

�
Remark 2.2. Let G = C(2n,m, r) where m = 1 and r = 3. Then, for n > 5

and odd, G is not rainbow critical graph, since, from theorem 2.2, we have,

rc(G) =

{
3 for n = 5

⌈n
2 ⌉+ 1 for n > 7 and odd

If we delete of any brick edge v⌊n
2 ⌋vn, we immediately obtain the rainbow path

between the selected vertices. This holds for vn−1− vn+2 also. (For illustration see
figure 14).
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Figure 14. Assignment of colors in C(10, 1, 3)

3. Conclusion

In this paper, we have determined the rainbow connection number of brick
product graphs C(2n,m, r) associated with even cycles. In some cases, the critical
property of brick product graphs with respect to rainbow coloring is also investi-
gated.
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