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NORMAL FILTERS IN

ALMOST DISTRIBUTIVE LATTICES

Ramesh Sirisetti and G. Jogarao

Abstract. In this paper we introduce normal filters and normlets in an almost
distributive lattice with dense elements and reinforce them in both algebraical

and topological aspects.

1. Introduction and Preliminaries

The structure of distributive lattice is exponentially enrich and has smooth
nature. A vast number of researchers broadly studied the class of distributive lattice
in different aspects. In [7, 8, 9, 15, 16, 17, 18], the authors initiated the ideal/ filter/
congruence theory in a distributive lattice and they have showed some special class
of distributive lattices like normal lattices, quasi complemented distributive lattices
etc. Some of the authors take a broad view of the structure of distributive lattice
in different aspects. In this context, U.M. Swamy and G.C. Rao [16] generalized
the structure of distributive lattice as a common abstraction of lattice theoretic
and ring theoretic aspects called as almost distributive lattice in 1981. Later, the
authors [2, 3, 4, 5, 6, 12, 19, 20] analogously extended some concepts to almost
distributive lattices which are in distributive lattices.

In this paper we mainly concentrate on filters in an almost distributive lattice
with dense elements. In this first section, we collect some preliminary results on
almost distributive lattices which are useful in the sequent sections. In second
section, we introduce normal filters in an almost distributive lattice and certain
examples are given and derive some properties on the class of normal filters. In
third section, we study the class of normlets in an almost distributive lattice and
obtain several equivalent conditions for a filter to become a normlet. In fourth
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38 RAMESH SIRISETTI AND G. JOGARAO

section, we discuss the class of normal prime filters and obtain certain results on
them. In last section, we deliberate the space of normal prime filters with the Hull-
kernel topology and obtain a good number of equivalent conditions for the space
of normal prime filters to become Hausdorff.

Let us first recall the notion of an almost distributive lattice and certain nec-
essary results which are required in consequent sections.

Definition 1.1. ([16]) By an almost distributive lattice (abbreviated: ADL), we
mean an algebra (L,∧,∨, 0) of type (2, 2, 0), if it satisfies the following conditions;

(i) 0 ∧ a = 0
(ii) a ∨ 0 = a
(iii) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(iv) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
(v) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(vi) (a ∨ b) ∧ b = b, for all a, b, c ∈ L.

Throughout this paper by L mean an almost distributive lattice (L,∧,∨, 0)
unless otherwise mentioned.

For any a, b ∈ L, we say that a is less than or equal to b and write a 6 b, if
a ∧ b = a or a ∨ b = b. It can be easy to prove that 6 is a partial ordering on L.

Lemma 1.1. ([16]) For any a, b, c ∈ L, we have

(i) a ∧ 0 = 0 and 0 ∨ a = a
(ii) a ∧ a = a ∨ a = a
(iii) a ∨ (b ∨ a) = a ∨ b
(iv) ∧ is associative
(v) a ∧ b ∧ c = b ∧ a ∧ c
(vi) a ∧ b = 0 ⇐⇒ b ∧ a = 0
(vii) a ∧ b 6 b and a 6 a ∨ b
(viii) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(ix) a ∨ b = b ∨ a⇐⇒ a ∧ b = b ∧ a.

A non-empty subset F of L is said to be a filter of L, if for any a, b ∈ F and

x ∈ L, a ∧ b, x ∨ a ∈ F . For any non-empty subset S of L, [S) = {x ∨ (
n∧

i=1

si) |

s1, s2, ........, sn ∈ S, x ∈ L, n is a positive integer} is the smallest filter of L
containing S. In particular, for any a ∈ L, [a) = {x ∨ a | x ∈ L} is the principal
filter generated by a. The set F(L) filters of L forms a bounded distributive lattice,
where F ∩G is the infimum and F ∨G = {f∧g | f ∈ F and g ∈ G} is the supremum
of F and G in F(L). The set PF(L) principal filters of L forms a sublattice of
F(L), where [a)∧ [b) = [a∨ b) and [a)∨ [b) = [a∧ b), for any a, b ∈ L. A non-empty
subset I of L is said to be an ideal of L, if for any a, b ∈ I and x ∈ L, a∨b, a∧x ∈ I.
In particular, for any a ∈ L, (a] = {a ∧ x | x ∈ L} is the principal ideal generated
by a. The set I(L) of ideals of L forms a bounded distributive lattice, where I ∩ J
is the infimum and I ∨ J = {i ∨ j | i ∈ I and j ∈ J} is the supremum of I and
J in I(L). The set PI(L) principal ideals of L forms a sublattice of I(L), where
(a] ∧ (b] = (a ∧ b] and (a] ∨ (b] = (a ∨ b], for any a, b ∈ L.
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For any non-empty subset A of L, the set A∗ = {x ∈ L | a ∧ x = 0, for all
a ∈ A} is an ideal of L. In particular, for any a ∈ L, {a}∗ = (a)∗, where (a) = (a]
is the principal ideal generated by a.

Lemma 1.2. ([4]) For any a, b ∈ L, we have

(i) a 6 b =⇒ (b)∗ ⊆ (a)∗

(ii) (a)∗∗∗ = (a)∗

(iii) (a ∨ b)∗ = (a)∗ ∩ (b)∗

(iv) (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗

(v) (a)∗ ⊆ (b)∗ ⇐⇒ (b)∗∗ ⊆ (a)∗∗

(vi) a ∈ (a)∗∗.

An element d ∈ L is said to be dense, if (d)∗ = {0}. The set D denotes the set
of dense elements of L. It is a filter of L, provided D is non-empty. An element
m ∈ L is said to be a maximal element if for any a ∈ L, m 6 a implies m = a. It
is easy to observe that every maximal element is dense. The set M denotes the set
of maximal elements of L. It is also a filter of L, provided M is non-empty.

A proper filter (ideal) F (I) of L is said to be a prime, if for any a, b ∈ L, a ∨
b (a ∧ b) ∈ F (I), then a ∈ F (I) or b ∈ F (I). For any prime filter F of L is said to
be a minimal, if there is no prime filter Q such that Q $ F .

Here onwards L stands for an ADL with dense elements unless otherwise men-
tioned.

Lemma 1.3. ([5]) Every maximal ideal is prime.

Lemma 1.4. ([5]) P is a prime filter (ideal) of L if and only if L\P is a prime
ideal (filter) of L.

Lemma 1.5. ([5]) P is a minimal (maximal) prime filter (ideal) of L if and
only if L\P is a maximal (minimal) prime ideal (filter) of L.

Lemma 1.6. ([5]) Let I be an ideal and F be a filter of L such that I ∩ F = ϕ.
Then there exists a prime filter P such that F ⊆ P and P ∩ I = ϕ.

Lemma 1.7. ([5]) A prime ideal P of L is minimal prime ideal if and only if
for each x ∈ P , there exists y /∈ P such that x ∧ y = 0.

Lemma 1.8. ([19]) Let L be an ADL with maximal element. Then every prime
ideal is minimal if and only if every prime ideal is maximal.

Definition 1.2. ([12]) L is said to be weak relatively complemented if for any
a, b ∈ L, there exists x ∈ L such that a ∧ x = 0 and (a ∨ x)∗ = (a ∨ b)∗.

2. Normal Filters

In this section we define a normal filter and provide certain examples for it.
We observe that the set of normal filters forms a distributive lattice which is not a
sub distributive lattice of the set of filters in an almost distributive lattice.

For any filter F of L, let us denote F+ = {x ∈ L | (x)∗ ⊆ (a)∗, for some
a ∈ F}. In particular, for any a ∈ L, [a)+ = {x ∈ L | (x)∗ ⊆ (a)∗}, where [a) is a
principal filter of L.
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Lemma 2.1. We have

(i) L+ = L = [0)+

(ii) D+ = D =M+

(iii) For any d ∈ D, [d)+ = D
(iv) For any filter F of L, F ⊆ F+ and D ⊆ F+.

Lemma 2.2. For any filters F,G of L, we have

(i) F ⊆ G implies F+ ⊆ G+

(ii) F++ = F+

(iii) (F ∩G)+ = F+ ∩G+

(iv) (F ∨G)+ = (F+ ∨G+)+.

Proof. (i) Let x ∈ F+. Then (x)∗ ⊆ (a)∗ for some a ∈ F ⊆ G. Therefore
x ∈ G+ and hence F+ ⊆ G+.

(ii) It is clear that F+ ⊆ F++. Let x ∈ F++. Then (x)∗ ⊆ (a)∗ for some
a ∈ F+. For this a ∈ F+, (a)∗ ⊆ (b)∗ for some b ∈ F . Therefore (x)∗ ⊆ (b)∗ for
some b ∈ F . Hence x ∈ F+. Thus F++ = F+.

(iii) Since (F ∩ G)+ ⊆ F+, G+ and (F ∩ G)+ ⊆ F+ ∩ G+. Let x ∈ F+ ∩
G+. Then (x)∗ ⊆ (a)∗ and (x)∗ ⊆ (b)∗ for some a ∈ F and b ∈ G. Therefore
(x)∗ ⊆ (a)∗ ∩ (b)∗ = (a ∨ b)∗, where a ∨ b ∈ F ∩ G. Hence x ∈ (F ∩ G)+. Thus
(F ∩G)+ = F+ ∩G+.

(iv) Clearly we have F ∨ G ⊆ F+ ∨ G+ and (F ∨ G)+ ⊆ (F+ ∨ G+)+. On
the other hand, let x ∈ (F+ ∨G+)+, then there exists a ∧ b ∈ F+ ∨G+ such that
(x)∗ ⊆ (a ∧ b)∗, where a ∈ F+ and b ∈ G+. For a ∈ F+ and b ∈ G+, there exist
f ∈ F and g ∈ G such that (a)∗ ⊆ (f)∗ and (b)∗ ⊆ (g)∗. Therefore (f)∗∗ ⊆ (a)∗∗,
(g)∗∗ ⊆ (b)∗∗ and (f)∗∗ ∩ (g)∗∗ ⊆ (a)∗∗, (b)∗∗. We get (f ∧ g)∗∗ ⊆ (a ∧ b)∗∗. So
that (x)∗ ⊆ (a ∧ b)∗ ⊆ (f ∧ g)∗, where f ∧ g ∈ F ∨G. Hence x ∈ (F ∨G)+. Thus
(F+ ∨G+)+ = (F ∨G)+. �

Definition 2.1. A filter F of L is said to be a normal filter, if F+ = F .

It can be easily observe that F+ is the smallest normal filter containing F , for
any filter F of L. In this regard, we have

Lemma 2.3. For any proper filter F of L, F+ is always a proper normal filter.

Proof. Let F be a proper filter of L. Suppose F+ is not proper. It means
that F+ = L. Since 0 ∈ L = F+, there exists a ∈ F such that L = (0)∗ ⊆ (a)∗.
Therefore a = 0 and 0 ∈ F . Hence F = L. Which is a contradiction to our
assumption. Thus F+ is proper. �

Theorem 2.1. Every maximal filter is a normal filter.

Remark 2.1. The converse of above theorem need not be true. For, see the
following example.
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Example 2.1. Let L = {0, b1, b2, b3, b4, b5, b6, b7, d,m} with the operations ∧
and ∨ defined as follows:

∧ 0 b1 b2 b3 b4 b5 b6 b7 d m
0 0 0 0 0 0 0 0 0 0 0
b1 0 b1 0 b1 b1 0 b1 0 b1 b1
b2 0 0 b2 b2 b2 0 0 b2 b2 b2
b3 0 b1 b2 b3 b3 0 b1 b2 b3 b3
b4 0 b1 b2 b3 b4 0 b1 b2 b3 b4
b5 0 0 0 0 0 b5 b5 b5 b5 b5
b6 0 b1 0 b1 b1 b5 b6 b5 b6 b6
b7 0 0 b2 b2 b2 b5 b5 b7 b7 b7
d 0 b1 b2 b3 b3 b5 b6 b7 d d
m 0 b1 b2 b3 b4 b5 b6 b7 d m

∨ 0 b1 b2 b3 b4 b5 b6 b7 d m
0 0 b1 b2 b3 b4 b5 b6 b7 d m
b1 b1 b1 b3 b3 b4 b6 b6 d d m
b2 b2 b3 b2 b3 b4 b7 d b7 d m
b3 b3 b3 b3 b3 b4 d d d d m
b4 b4 b4 b4 b4 b4 m m m m m
b5 b5 b6 b7 d m b5 b6 b7 d m
b6 b6 b6 d d m b6 b6 d d m
b7 b7 d b7 d m b7 d b7 d m
d d d d d m d d d d m
m m m m m m m m m m m

Then (L,∧,∨, 0) is an ADL in which [b3) is a normal filter but not maximal.

From the above example we have the following

Remark 2.2. Every minimal filter need not be normal. For, see example 2.1.,
[m) = {m} is a minimal filter but not normal (because [m)+ = {d,m} ̸= [m)).

Remark 2.3. Every normal filter need not be prime. For, see example 2.1.,
[b3) = {b3, b4, d,m} is a normal filter but not a prime (because b3 = b1 ∨ b2 ∈ [b3),
but b1 /∈ [b3) and b2 /∈ [b3)).

Remark 2.4. Every prime filter need not be normal. For, see example 2.1.,
[b4) = {b4,m} is a prime filter but not normal
(because [b4)

+ = {b3, b4, d,m} ≠ [b4)).

Remark 2.5. Every minimal prime filter need not be normal. For, see example
2.1., [b4) = {b4,m} is a minimal prime filter but not normal (because [b4)

+ =
{b3, b4, d,m} ̸= [b4)).

Let us denote the set of normal filters of L as NF(L). It can be observe that
NF(L) is a distributive lattice.
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Theorem 2.2. NF(L) can be a distributive lattice with the operations F+ ∩
G+ = (F ∩G)+ and F ⊔G = (F ∨G)+, for any F,G ∈ NF(L).

Proof. Let F,G ∈ NF(L). By lemma 2.2., (F ∩G)+ is the infimum of F and
G in NF(L). Also (F ∨G)+ is an upper bound of F and G. Let H ∈ NF(L) such
that F+ ⊆ H, G+ ⊆ H and x ∈ (F ∨G)+. Then (x)∗ ⊆ (a)∗ for some a ∈ F ∨G ⊆
H. Therefore x ∈ H+ = H (since H ∈ NF(L)). Thus (F ∨ G)+ = F ⊔ G is the
supremum of F and G in NF(L). Let F,G,H ∈ NF(L). Then F ∩ (G ⊔ H) =
F+ ∩ (G ∨H)+ = (F ∩ (G ∨H))+ = {(F ∩G) ∨ (F ∩H)}+ = (F ∩G) ⊔ (F ∩H)
(since F(L) is a distributive lattice). Therefore (NF(L),∧,⊔) is a distributive
lattice with the greatest element L+ = L = [0)+. �

Theorem 2.3. There is an epimorphism from F(L) onto NF(L).

Proof. Let F,G ∈ F(L). Define a map Φ: F(L) −→ NF(L) by Φ(F ) = F+.
Then Φ(F ∧G) = (F ∧G)+ = F+∩G+ = Φ(F )∩Φ(G) and Φ(F ∨G) = (F ∨G)+ =
(F+ ∨ G+)+ (by lemma 2.2(iv)) = F+ ⊔ G+ = Φ(F ) ⊔ Φ(G). Therefore Φ is a
homomorphism. Since NF(L) ⊆ F(L), Φ is an onto homomorphism. �

3. Normlets

In this section, we define normlets in an almost distributive lattice. We obtain
necessary and sufficient conditions for a filter to become normal in terms of norm-
lets. Finally we obtain necessary and sufficient conditions for an almost distributive
lattice to become weak relatively complemented.

Definition 3.1. A filter F of L is said to be a normlet, if F = [a)+, for some
a ∈ L.

Theorem 3.1. Every normlet is a normal filter.

Proof. Let x ∈ L and t ∈ [x)++. Then (t)∗ ⊆ (a)∗, for some a ∈ [x)+ and
(a)∗ ⊆ (x)∗. Therefore (t)∗ ⊆ (x)∗ and hence t ∈ [x)+. Thus [x)+ is a normal
filter. �

Lemma 3.1. For any a, b ∈ L, we have

(i) a 6 b implies [b)+ ⊆ [a)+

(ii) a ∈ [b)+ implies [a)+ ⊆ [b)+

(iii) [a)+ = D if and only if a ∈ D
(iv) [a)+ = L if and only if a = 0
(v) For any maximal element m of L, [m)+ = D
(vi) [a)+ ∩ [b)+ = [a ∨ b)+.

Proof. (i) Suppose that a 6 b. Then [b) ⊆ [a). Therefore [b)+ ⊆ [a)+ (by
lemma 2.2(i)).

(ii) Suppose that a ∈ [b)+. Then [a) ⊆ [b)+. Therefore [a)+ ⊆ [b)++ = [b)+

(since [b)+ is normlet).
(iii) Suppose that [a)+ = D. Then a ∈ [a)+ = D. On the other hand, let

d ∈ D, then [d)+ = {x ∈ L | (x)∗ ⊆ (d)∗ = {0}} = D.
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(iv) Suppose that [a)+ = L. Then 0 ∈ L = [a)+. Therefore L = (0)∗ ⊆ (a)∗.
Hence a = 0. The converse is trivial.

(v) Since every maximal element is dense and from (iii), we have [m)+ = D.
(vi) [a)+ ∩ [b)+ = ([a) ∩ [b))+ = [a ∨ b)+ (by lemma 2.2). �

Lemma 3.2. For any a, b ∈ L, we have

(i) a ∧ b = 0 implies [a)+ ∨ [b)+ = L
(ii) a ∨ b ∈ D if and only if [a)+ ∩ [b)+ = D
(iii) If a ̸= 0, then (a)∗ ∩ [a)+ = ϕ
(iv) (a)∗ = (b)∗ if and only if [a)+ = [b)+

(v) [a)+ = [b)+ implies [a ∧ c)+ = [b ∧ c)+ for all c ∈ L
(vi) [a)+ = [b)+ implies [a ∨ c)+ = [b ∨ c)+ for all c ∈ L.

Proof. (i) Suppose that a ∧ b = 0. Then L = [0) = [a ∧ b) = [a) ∨ [b) ⊆
[a)+ ∨ [b)+ ⊆ L. Therefore [a)+ ∨ [b)+ = L.

(ii) It can be obtained by Lemma 3.1. (iii) Suppose that a ̸= 0. Let x ∈
(a)∗ ∩ [a)+. Then (x)∗ ⊆ (a)∗ and a ∧ x = 0. Therefore a ∈ (x)∗ ⊆ (a)∗. Hence
a ∧ a = 0. Which is a contradiction. Thus (a)∗ ∩ [a)+ = ϕ.

(iv) Suppose that (a)∗ = (b)∗. Then a ∈ [b)+ and b ∈ [a)+. Therefore [a)+ ⊆
[b)+ and [b)+ ⊆ [a)+. Hence [a)+ = [b)+. On the other hand, suppose that
[a)+ = [b)+. Then a ∈ [b)+ and b ∈ [a)+. Therefore (a)∗ ⊆ (b)∗ and (b)∗ ⊆ (a)∗

and hence (a)∗ = (b)∗.
(v) Suppose that [a)+ = [b)+. For any t ∈ L,

t ∈ (a ∧ c)∗ ⇐⇒ t ∧ a ∧ c = 0
⇐⇒ t ∧ c ∈ (a)∗ = (b)∗ (from (iv))
⇐⇒ t ∧ b ∧ c = 0
⇐⇒ t ∈ (b ∧ c)∗.

By (iv), we get [a ∧ c)+ = [b ∧ c)+.
(vi) It can be obtained from (v). �

Theorem 3.2. For any filter F of L, the following are equivalent;

(i) F is normal
(ii) For x ∈ L, x ∈ F implies [x)+ ⊆ F
(iii) For x, y ∈ L, (x)∗ = (y)∗ and x ∈ F implies y ∈ F
(iv) For x, y ∈ L, [x)+ = [y)+ and x ∈ F implies y ∈ F
(v) F =

∪
x∈F

[x)+.

Proof. (i) =⇒ (ii) Assume(i). Let x ∈ F . Then [x) ⊆ F . Therefore [x)+ ⊆
F+ = F . Thus [x)+ ⊆ F .

(ii) =⇒ (iii) Assume(ii). Let x, y ∈ L such that (x)∗ = (y)∗ and x ∈ F . Then
[y)+ = [x)+ ⊆ F (by our assumption). Therefore y ∈ F .

(iii) =⇒ (iv) It is clear by lemma 3.2.
(iv) =⇒ (v) Assume(iv). Let x ∈ F . Then x ∈ [x)+. Hence F ⊆

∪
x∈F

[x)+.

On the other hand, let x ∈ F and y ∈ [x)+, then [y)+ ⊆ [x)+. Therefore [y)+ =
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[y)+ ∩ [x)+ = [y ∨ x)+ and y ∨ x ∈ F . By our assumption, y ∈ F . Therefore
[x)+ ⊆ F and hence

∪
x∈F

[x)+ ⊆ F .

(v) =⇒ (i) Assume(v). Let x ∈ F+. Then there exists a ∈ F such that
(x)∗ ⊆ (a)∗. Therefore x ∈ [a)+ and hence x ∈

∪
y∈F

[y)+ = F (by our assumption).

Thus F is normal. �

Let us denote the set of normlets of L as N+F(L). Then we have the following;

Theorem 3.3. (N+F(L),∩,⊔) is a sublattice of NF(L) in which [0)+ is the
greatest element in N+F(L). Moreover N+F(L) has the smallest element if and
only if L has dense element.

Proof. It can be observed that by theorem 2.2., (N+F(L),∩,⊔) is a sublattice
of a distributive lattice (NF(L),∩,⊔) with the greatest element [0)+ = L. Now,
suppose that L has a dense element, say d and let x ∈ [d)+, then (x)∗ ⊆ (d)∗ =
{0} ⊆ (a)∗ for all a ∈ L . Therefore d ∈ [a)+ for all a ∈ L. Hence [d)+ ⊆ [a)+ for
all a ∈ L. Thus [d)+ is the smallest element in N+F(L). Conversely suppose that
N+F(L) has the smallest element, say [a)+ for some a ∈ L. Let x ∈ (a)∗. Then
x ∧ a = 0. Therefore [x ∧ a)+ = [x)+ ⊔ [a)+ = [x)+ = L. Hence x = 0. Thus a is
dense in L. �

Definition 3.2. [2] : L is said to be disjunctive, if for any x, y ∈ L, x ̸= y
implies (x)∗ ̸= (y)∗.

Theorem 3.4. If L is a disjunctive ADL, then every filter is normal.

Proof. Suppose that a filter F of L is not normal. Then there exist x, y ∈ L
such that [x)+ = [y)+, x ∈ F and y /∈ F . Therefore (x)∗ = (y)∗. Since L is
disjunctive, x = y. Hence y ∈ F . Which is a contradiction. Thus F is normal. �

Remark 3.1. The converse of above theorem need not be true. For, see the
following example;

Example 3.1. Let L = {0, d1, d2, d3,m1,m2} with the operations ∧ and ∨
defined as follows

∧ 0 d1 d2 d3 m1 m2

0 0 0 0 0 0 0
d1 0 d1 d2 0 d1 d2
d2 0 d1 d2 0 d1 d2
d3 0 0 0 d3 d3 d3
m1 0 d1 d2 d3 m1 m2

m2 0 d1 d2 d3 m1 m2

∨ 0 d1 d2 d3 m1 m2

0 0 d1 d2 d3 m1 m2

d1 d1 d1 d1 m1 m1 m1

d2 d2 d2 d2 m2 m2 m2

d3 d3 m1 m2 d3 m1 m2

m1 m1 m1 m1 m1 m1 m1

m2 m2 m2 m2 m2 m2 m2

Then (L,∧,∨, 0) is an ADL in which every filter is normal but it is not a disjunctive
ADL (because (m1)

∗ = (m2)
∗ but m1 ̸= m2).
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Define a relation ψ on L by ψ = {(x, y) ∈ L × L | [x)+ = [y)+}. It is easy to
observe that ψ is a congruence relation on L(By lemma 3.2).

Theorem 3.5. The quotient lattice L/ψ forms a distributive lattice with the
operations x/ψ ∧ y/ψ = (x ∧ y)/ψ and x/ψ ∨ y/ψ = (x ∨ y)/ψ. Moreover the least
element is 0/ψ = {0} and the greatest element is d/ψ = D.

S. Ramesh and G. Jogarao [12] introduced the concept of dense complemented
ideal in ADL. An ideal I of L is said to be a dense complemented in L, if there
exists an ideal J in L such that I ∧ J = {0} and I ∨ J is an ideal generated by a
dense element in L.

Theorem 3.6. The following are equivalent;

(i) L is a weak relatively complemented
(ii) (N+F(L),∩,⊔, D, L) is a Boolean algebra
(iii) (L/ψ,∧,∨, 0/ψ, d/ψ) is a Boolean algebra
(iv) Every principal ideal of L is dense complemented.

Proof. (i) =⇒ (ii) Suppose that L is a weak relatively complemented ADL.
Let x ∈ L and d is a dense element in L. Then by our assumption, there exists
y ∈ L such that x ∧ y = 0 and (x ∨ y)∗ = (x ∨ d)∗ = {0}. Therefore x ∨ y is dense.
Now, [x)+ ∩ [y)+ = ([x) ∩ [y))+ = [x ∨ y)+ = D and [x)+ ⊔ [y)+ = ([x) ∨ [y))+ =
[x ∧ y)+ = [0)+ = L. Therefore N+F(L) is a Boolean algebra.

(ii) =⇒ (iii) Suppose that (N+F(L),∩,⊔) is a Boolean algebra. Let x ∈
L. Then by our assumption, there exists y ∈ L such that [x)+ ∩ [y)+ = D and
[x)+ ⊔ [y)+ = L. That is [x ∨ y)+ = D and L = [x ∧ y)+. Therefore x ∨ y
is dense and x ∧ y = 0 and hence x/ψ ∧ y/ψ = (x ∧ y)/ψ = 0/ψ = {0} and
x/ψ ∨ y/ψ = (x ∨ y)/ψ = D. Thus L/ψ is a Boolean algebra.

(iii) =⇒ (iv) Suppose that (L/ψ,∧,∨) is a Boolean algebra. Let x ∈ L. Then
by our assumption, there exists y ∈ L such that x/ψ ∧ y/ψ = (x∧ y)/ψ = 0/ψ and
x/ψ ∨ y/ψ = (x ∨ y)/ψ = d/ψ . Therefore x ∧ y = 0 and x ∨ y is dense and hence
(x] ∩ (y] = (x ∧ y] = (0] and (x] ∨ (y] = (x ∨ y] is an ideal generated by a dense
element x ∨ y. Thus (x] is a dense complemented ideal.

(iv) =⇒ (i) Let a, b ∈ L. Then there exist c, d ∈ L such that (a] ∧ (c] =
{0} = (b]∧ (d] and (a]∨ (c] and (b]∨ (d] are the principal ideals generated by dense
elements. Thus a∧ c = 0 = b∧d and a∨ c, b∨d are dense elements. Take x = c∧ b.
Then a ∧ x = a ∧ c ∧ b = 0 (since a ∧ c = 0) and (a ∨ x) ∧ (a ∨ b) = a ∨ (x ∧ b) =
a ∨ (c ∧ b ∧ b) = a ∨ x. So that (a ∨ b)∗ ⊆ (a ∨ x)∗. Now, for t ∈ L,

t ∈ (a ∨ x)∗ ⇒ t ∧ (a ∨ x) = 0
⇒ t ∧ a = 0 and t ∧ c ∧ b = 0
⇒ t ∧ b ∧ (a ∨ c) = 0
⇒ t ∧ b = 0 (since a ∨ c is dense)
⇒ t ∧ (a ∨ b) = 0
⇒ t ∈ (a ∨ b)∗.

Therefore (a ∨ x)∗ ⊆ (a ∨ b)∗ and hence (a ∨ x)∗ = (a ∨ b)∗. Thus L is a weak
relatively complemented. �
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Theorem 3.7. If L is an ADL in which every dense element is maximal, then
the following are equivalent;

(i) L is quasi complemented
(ii) L is a relatively complemented
(iii) (N+F(L),∩,⊔,M,L) is a Boolean algebra
(iv) (L/ψ,∧,∨, 0/ψ,m/ψ) is a Boolean algebra
(v) Every principal ideal of L is complemented.

Theorem 3.8. L is weak relatively complemented if and only if for any a, b ∈ L,
there exists x ∈ L such that a ∧ x = 0 and [a ∨ x)+ = [a ∨ b)+.

4. Normal Prime filters

In this section, we study the class of normal prime filters in an almost distribu-
tive lattice with dense elements.

Theorem 4.1. Let F be a filter of L and for any chain of filters C1, C2, C3, .....
of L such that F ⊆ C1 ⊆ C2 ⊆ C3 ⊆ .... ⊆ F+. Then C+

1 = C+
2 = C+

3 = .... = F+.

Proof. Suppose that F be a filter of L and for any chain of filters C1, C2, C3, ..
of L such that F ⊆ C1 ⊆ C2 ⊆ C3 ⊆ .... ⊆ F+. Then F+ ⊆ C+

1 ⊆ C+
2 ⊆ C+

3 ⊆
.... ⊆ F++ = F+ (since F+ is normal). Therefore C+

1 = C+
2 = C+

3 = .... = F+. �
Theorem 4.2. Let F be a proper filter of L. Then there exists a normal prime

filter containing F .

Proof. Let F be a proper filter of L. Take P = {G | G is a proper normal
filter of L and F ⊆ G}. By lemma 2.3., F+ is a proper normal filter containing F .
Therefore F+ ∈ P and P satisfies the hypothesis of Zorn’s lemma. Hence P has a
maximal element, say P . Let a, b ∈ L such that a /∈ P and b /∈ P . Then P ⊔ [a)+

and P ⊔ [b)+ are normal filters, which containing P properly. By the maximality
of P , L = P ⊔ [a)+ = P ⊔ [b)+. Therefore L = {P ⊔ [a)+} ∩ {P ⊔ [b)+} =
{(P ⊔ [a)) ∩ (P ⊔ [b))}+ = {P ∨ [a ∨ b)}+. If a ∨ b ∈ P , then L = P+ = P . Which
is a contradiction. Hence a ∨ b /∈ P . Thus P is prime. �

Theorem 4.3. If P is a minimal in the class of prime filters containing a
normal filter F , then P is normal.

Proof. Let F be a normal filter of L and P is minimal in the class of prime
filters of L containing F . Suppose that P is not a normal. Then there exist x, y ∈ L
such that [x)+ = [y)+, x ∈ P and y /∈ P . Take I = L − P ∨ (x ∨ y] is an ideal of
L. Then I ∩ F = ϕ. If I ∩ F ̸= ϕ, then a ∈ I ∩ F . Therefore a = r ∨ s for some
r ∈ L− P and s ∈ (x ∨ y]. So that r ∨ s = r ∨ {(x ∨ y) ∧ s} = r ∨ {(y ∨ x) ∧ s} =
{r ∨ (y ∨ x)} ∧ (r ∨ s) ∈ F (since r ∨ s = a ∈ F ). So that r ∨ (y ∨ x) ∈ F . We
have [x)+ = [y)+. Then [r ∨ y ∨ x)+ = [r ∨ y ∨ y)+ = [r ∨ y)+. Since F is normal,
r ∨ y ∈ P . Which is a contradiction. Therefore I ∩ F = ϕ. So that there exists
a prime filter Q such that I ∩ Q = ϕ, F ⊆ Q and Q ⊆ P . Also x ∨ y /∈ Q and
x ∨ y ∈ P . We get Q $ P . Hence P is not minimal. Which is a contradiction.
Thus P is normal prime filter. �
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Corollary 4.1. Every minimal prime filter containing D is normal.

Proof. Let P be the minimal prime filter of L and D ⊆ P . That is P is the
minimal in the class of prime filters containing (the normal filter) D. By the above
theorem, P is normal. �

Theorem 4.4. Let F be a normal filter and I is an ideal of L such that F ∩I =
ϕ. Then there exists a normal prime filter P such that F ⊆ P and P ∩ I = ϕ.

Proof. Let F be a normal filter and I is an ideal of L such that F ∩ I = ϕ.
Take P = {G | G is a normal filter, F ⊆ G and G ∩ I = ϕ}. Clearly F ∈ P and it
satisfies the hypothesis of Zorn’s Lemma. Therefore P has a maximal element, say
P . Choose x, y ∈ L such that x /∈ P and y /∈ P . Then P ⊆ P ⊔ [x)+ = {P ∨ [x)}+
and P ⊆ P ⊔ [y)+ = {P ∨ [y)}+. By the maximality of P , {P ∨ [x)}+ ∩ I ̸= ϕ and
{P ∨ [y)}+ ∩ I ̸= ϕ. Let a ∈ {P ∨ [x)}+ ∩ I and b ∈ {P ∨ [y)}+ ∩ I. Then a∨ b ∈ I
and a ∨ b ∈ {P ∨ [x)}+ ∩ {P ∨ [y)}+ = {{P ∨ [x)} ∩ {P ∨ [y)}}+ = {P ∨ [x ∨ y)}+.
If x ∨ y ∈ P, then a ∨ b ∈ P+ = P (since P is normal) and a ∨ b ∈ I. Therefore
P ∩ I ̸= ϕ. Which is a contradiction. So that x ∨ y /∈ P . Hence P is prime. Thus
P is a normal prime filter of L such that F ⊆ P and P ∩ I = ϕ. �

Remark 4.1. If F is not a normal filter, then the above theorem need not be
true.
For, see the example 2.1., let F = [b4) and I = (d], then F ∩ I = ϕ. But there is
no normal prime filter P such that P ∩ I = ϕ and F ⊆ P .

Corollary 4.2. Let F be a normal filter of L and x /∈ F . Then there exists
a normal prime filter P of L such that F ⊆ P and x /∈ P .

Proof. Let F be a normal filter of L and x /∈ F . Then (x]∩F = ϕ. Therefore
by theorem 4.4., there exists a normal prime filter P such that F ⊆ P and (x]∩P =
ϕ. Thus x /∈ P . �

Theorem 4.5. For any filter F ,

F+ = ∩{P | P is a normal prime filter of L and F ⊆ P}.

Proof. Let F be a filter of L and x /∈ F+. Put P = {G | G is a normal
filter of L and x /∈ G and F ⊆ G}. Clearly F+ ∈ P and it satisfies the hypothesis
of Zorn’s Lemma. Therefore P has a maximal element, say P . Let a, b ∈ L such
that a /∈ P and b /∈ P . Then x ∈ P ⊔ [a)+ = {P ∨ [a)+}+ = {P ∨ [a)}+ and
x ∈ P ⊔ [b)+ = {P ∨ [b)+}+ = {P ∨ [b)}+. Thus x ∈ {P ∨ [a)}+ ∩ {P ∨ [b)}+ =
{P ∨ [a∨ b)}+. Suppose that a∨ b ∈ P . Then x ∈ P+ = P (since P is normal). So
that x ∈ P . Which is a contradiction. Therefore P is prime. Hence P is normal
prime filter containing F and x /∈ P . Thus F+ = ∩{P | P is a normal prime filter
of L and F ⊆ P}. �

Corollary 4.3. The intersection of normal prime filters of L is equals to D.

Proof. We have every normal filter of L containing the filter D. Hence from
the above theorem it is obvious. �
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Corollary 4.4. For any a ∈ L and a /∈ D, there exists a normal prime filter
P of L such that a /∈ P .

Theorem 4.6. For any filter F of L, F+ ∩ F ∗ = ϕ.

Proof. Let F be a filter of L. Suppose that F+ ∩ F ∗ ̸= ϕ. Let t ∈ F+ ∩ F ∗.
Then there exists a ∈ F such that (t)∗ ⊆ (a)∗ and t∧f = 0 for all f ∈ F . Therefore
a ∈ (t)∗(since t ∧ a = 0). Hence a = 0 and a ∈ F . Which is a contradiction. Thus
F+ ∩ F ∗ = ϕ. �

Corollary 4.5. For any filter F of L, there exists a normal prime filter P of
L such that F ⊆ P and P ∩ F ∗ = ϕ.

Proof. Let F be a filter of L. Then by above theorem, F+ ∩ F ∗ = ϕ. By
theorem 4.4., there exists a normal prime filter P of L such that F+ ⊆ P and
P ∩ F ∗ = ϕ. Thus F ⊆ P and P ∩ F ∗ = ϕ. �

5. The Space of Normal Prime Filters in
Almost Distributive Lattices

In this section, we discuss the space of normal prime filters in an almost dis-
tributive lattice with the Hull-kernel topology. Finally we obtain necessary and
sufficient conditions for the space of normal prime filters to become Hausdorff.

Let us denote SpecL the set of normal prime filters of L. For any A ⊆ L,
K(A) = {P ∈ SpecL | A * P}. In particular, for a ∈ L, K(a) = {P ∈ SpecL | a /∈
P}.

Lemma 5.1. For any a, b ∈ L, we have

(i)
∪
a∈L

K(a) = SpecL

(ii) K(a) ∩K(b) = K(a ∨ b)
(iii) K(a) ∪K(b) = K(a ∧ b)
(iv) K(a) = ϕ if and only if a ∈ D.
(v) K(a) = SpecL if and only if a = 0.

From the above lemma, it can be easy to observe that {K(a)}, a ∈ L forms a
base for a topology on SpecL.

Theorem 5.1. We have the following

(i) For any a ∈ L, K(a) is compact
(ii) If C is a compact open subset of SpecL, then C = K(a)

for some a ∈ L.

Proof. (i) Let a ∈ L and B ⊆ L such that K(a) ⊆
∪
b∈B

K(b) and F = [B) is

a normal filter of L generated by B. If a /∈ F , by the corollary 4.2., there exists a
normal prime filter P such that F ⊆ P and a /∈ P . Therefore P ∈ K(a) ⊆

∪
b∈B

K(b).

Hence b /∈ P for some b ∈ B. Which is a contradiction. So that a ∈ F = [B)

and a = x ∨ (
n∧

i=1

bi) for some b1, b2, b3, ...., bn ∈ B and x ∈ L. By lemma 5.1.,
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K(a) = K(x ∨ (
n∧

i=1

bi)) = K(x) ∩ K(
n∧

i=1

bi)) ⊆ K(
n∧

i=1

bi) =
n∪

i=1

K(bi) and hence

K(a) is compact in SpecL.
(ii) Let C is a compact open subset of SpecL. Then C = K(A), for some A ⊆ L

(since C is open). Therefore C =
∪

a∈A

K(a). Therefore there exist a1, a2, ...an ∈ A

such that C =
n∪

i=1

K(ai) = K(a) for some a ∈ L (since C is compact).

�

Theorem 5.2. Let L be an ADL in which every prime filter is normal. Then
L is a distributive lattice if and only if the map a 7−→ K(a) is an injection.

Proof. Suppose that L is a distributive lattice in which every prime filter is
normal. Let a, b ∈ L such that a ̸= b. Then there exists a prime filter P such that
a ∈ P and b /∈ P . Hence K(a) ̸= K(b). Thus the map is injunction. Conversely
suppose that the map is injunction. Let a, b ∈ L. Then K(a ∨ b) = K(b ∨ a).
Therefore a ∨ b = b ∨ a. Hence L is a distributive lattice. �

Lemma 5.2. Let L be an ADL with maximal elements. Let P be a normal
prime filter of L. Then P is minimal if and only if for each x ∈ P there exists
y /∈ P such that x ∨ y is maximal.

Proof. Let L be an ADL with maximal elements. Let P be a normal prime
filter of L. Suppose that P is a minimal prime filter of L. Let x ∈ P . Then
L\P ∨ (x] = L (since L\P is maximal ideal). Therefore there exists a maximal
element m ∈ L such that m = x ∨ y, x ∈ P and y /∈ P . On the other hand, clearly
we have L\P is a prime ideal of L. Then there exists x ∈ L such that x /∈ L\P .
Therefore by our assumption there exists y /∈ P such that x∨ y is maximal. Hence
L\P is maximal. Thus P is minimal prime filter of L. �

For any A ⊆ L, denote H(A) = {P ∈ SpecL | A ⊆ P}. Then H(A) =
SpecL\K(A). Therefore H(A) is a closed set in SpecL and hence every closed set
in SpecL is of the form H(A) for some A ⊆ L. Thus we have the following;

Theorem 5.3. For any Y ⊆ SpecL, the closure of Y is given by Y = H(
∩

P∈Y

P ).

Proof. Let Y ⊆ SpecL. Let Q ∈ Y . Then
∩

P∈Y

P ⊆ Q. Therefore Q ∈

H(Q) ⊆ H(
∩

P∈Y

P ). Hence H(
∩

P∈Y

P ) is a closed set containing Y . Let C be a

closed set in SpecL containing Y . Then C = H(A), for some A ⊆ L. Therefore
A ⊆

∩
P∈Y

P . Hence H(
∩

P∈Y

P ) ⊆ H(A) = C. Thus Y = H(
∩

P∈Y

P ). �

Theorem 5.4. Let L be an ADL in which every dense element is maximal.
Then the following are equivalent;

(i) Every normal prime filter is maximal
(ii) Every normal prime filter is minimal
(iii) SpecL is a T1− space
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(iv) SpecL is a Hausdorff space
(v) For any x, y ∈ L, there exists z ∈ L such that x∨z is maximal and K(y)∩

{SpecL−K(x)} = K(y ∨ z).

Proof. (i) =⇒ (ii) Let P be a normal prime filter of L. If Q is a normal
prime filter of L such that Q ⊆ P , then by our assumption Q = P . Therefore every
normal prime filter is minimal.
(ii) =⇒ (i) Let P be a normal prime filter of L. If Q is a normal prime filter of L
such that P ⊆ Q, then P = Q (by our assumption ). Therefore P is maximal.

(ii) =⇒ (iii) Let P and Q are two distinct normal prime filters of L. Then
P * Q and Q * P (since P and Q are minimal). Take x ∈ P/Q and y ∈ Q/P .
Then Q ∈ K(x)/K(y) and P ∈ K(y)/K(x). Therefore SpecL is T1− space.

(iii) =⇒ (iv) Suppose that SpecL is T1− space. Let P ∈ SpecL. Then P =
{P} = H(P ) = {Q ∈ SpecL | P ⊆ Q}. Therefore P is maximal. Hence every
normal prime filter is maximal. Let P,Q ∈ SpecL such that P ̸= Q. Choose x ∈ P
and x /∈ Q. Then there exists y /∈ P such that x∨y is maximal. Therefore P ∈ K(y)
and Q ∈ K(x) and K(x∨ y) = K(x)∩K(y) = ϕ. Hence SpecL is Hausdorff space.

(iv) =⇒ (v) Let a ∈ L. Then K(a) is a compact subset of the Hausdorff space
SpecL. Then K(a) is clopen subset of SpecL. Let x, y ∈ L such that x ̸= y. Then
K(y) ∩ {SpecL\K(x)} is also a compact open subset of a compact space K(y).
Hence K(y) ∩ {SpecL\K(x)} is a compact open subset of SpecL. By lemma 5.1.,
there exists z ∈ L such that K(z) = K(y) ∩ {SpecL\K(x)}. So that K(y ∨ z) =
K(y) ∩K(z) = K(y) ∩ {SpecL\K(x)} = K(z) and K(x ∨ z) = K(x) ∩K(z) = ϕ.
By lemma 5.1., x∨z is dense. Thus x∨z is maximal (since every dense is maximal).

(v) =⇒ (ii) Let P is a normal prime filter of L. Let x, y ∈ L such that x ∈ P
and y /∈ P . Then by our assumption there exists z ∈ L such that x ∨ z is maximal
and K(y ∨ z) = K(y) ∩ {SpecL\K(x)}, P /∈ K(x) and P ∈ K(y). Therefore
P ∈ K(y) ∩ {SpecL\K(x)} = K(y ∨ z). If z ∈ P , then y ∨ z ∈ P , which is
a contradiction. Hence for each x ∈ L, there exists a normal prime filter P and
z /∈ P such that x ∨ z is maximal. Thus P is minimal (by lemma 5.2). �
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