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ON BANHATTI AND ZAGREB INDICES

I. Gutman, V. R. Kulli, B. Chaluvaraju, and H. S. Boregowda

ABSTRACT. Let G = (V, E) be a connected graph. The Zagreb indices were in-
troduced as early as in 1972. They are defined as M1(G) = 3, ,cp(o) lda (u)+
da(v)] and M2 (G) = X2, e p(e) da(u)dg (v), where dg(u) denotes the degree
of a vertex u. The K Banhatti indices were introduced by Kulli in 2016. They
are defined as B1(G) = Y, .ldg(u) + dg(e)] and B2(G) = 3, dg(u)da(e),
where ue means that the vertex v and edge e are incident and dg(e) denotes
the degree of the edge e in G. These two types of indices are closely related. In
this paper, we obtain some relations between them. We also provide lower and
upper bounds for B (G) and B2(G) of a connected graph in terms of Zagreb
indices.

1. Introduction

The graphs considered here are finite, undirected, without loops and multiple
edges. Let G = (V, E) be a connected graph with |V (G)| = n vertices and |E(G)| =
m edges. The degree dg(v) of a vertex v is the number of vertices adjacent to v. The
edge connecting the vertices u and v will be denoted by uv. Let dg(e) denote the
degree of an edge e = uv in G, which is defined by dg(e) = dg(u) + dg(v) — 2. The
vertices and edges of a graph are said to be its elements. For additional definitions
and notations, the reader may refer to [11].

A molecular graph is a graph in which the vertices correspond to the atoms
and the edges to the bonds of a molecule. A single number that can be computed
from the molecular graph, and used to characterize some property of the under-
lying molecule is said to be a topological index or molecular structure descriptor.
Numerous such descriptors have been considered in theoretical chemistry, and have
found some applications, especially in QSPR/QSAR research, see [6, 9, 17].
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In [12], Kulli introduced the first and second K Banhatti indices, intending
to take into account the contributions of pairs of incident elements. The first K
Banhatti index B;(G) and the second K Banhatti index By(G) of a graph G are
defined as

Bi(G) = [da(u) + da(e)] and By(G) = dg(u)da(e)

where ue means that the vertex u and edge e are incident in G.
The first and second K hyper—-Banhatti indices of a graph G are defined as

HBy(G) =) [de(u) +dg(e)*  and  HBy(G) =Y [dg(u)da(e)].

The K hyper-Banhatti indices were introduced by Kulli in [13].

The degree—based graph invariants M;(G) and My(G), called Zagreb indices,
were introduced long time ago [10] and have been extensively studied. For the
their history, applications, and mathematical properties, see [2, 6, 7, 8, 15] and
the references cited therein.

The first and second Zagreb indices take into account the contributions of pairs
of adjacent vertices. The first and second Zagreb indices of a graph G are defined
as

Ml(G) = Z dG('U)2 or Ml(G) = Z [dg(u) + dg(v)]
veV(G) wweE(G)

and

Ma(G) = > do(u)dg(v).

weE(G)

In [14], Milicevié, et al., reformulated the first Zagreb index in terms of edge-
degrees instead of vertex-degrees and defined the respective topological index as

EM(G)= Y da(e).
e€E(G)

Followed by the first Zagreb index of a graph G, Furtula and one of the present
authors [5] introduced the so-called forgotten topological index F, defined as

F(G)= > dew)?’= Y [da(u)®+da(v)?].
veV(G) wveV (Q)
In [16], Shirdel et al., introduced the first hyper—Zagreb index of G and defined
it as
HM(G) = > [da(u)+da(v)].
uveE(G)
2. Comparison of Banhatti and Zagreb—type indices

THEOREM 2.1. For any graph G, the first Banhatti index is related to the first
Zagreb index as B1(G) = 3M1(G) — 4m.
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PROOF. Let G be a graph with n > 3 vertices and m edges. Then

BiG) = Y ldo(w) + da(e)

ue

= Y [de(u) +dew)] + Y [da(v) + de(uv)]

w€EE(G) uv€E(G)
= Y lde(u) +da(u) + dg(v) — 2]
weE(G)
+ Y lda(v) +da(u) + dg(v) — 2]
weE(G)
= Y [Bdg(u)+3dg(v) — 4] = 3My(G) — 4m.
weEE(Q)

O

THEOREM 2.2. For any graph G, the second Banhatti index is related to the
first Zagreb and hyper—Zagreb indices as Ba(G) = HM,(G) — 2M;(G).

PRrROOF. Let G be a graph with n > 3 vertices and m edges. Then

BQ(G) = Z dG

= Z de(u) dg(uv) Z da(v) da(uv)
weEE(G) weE(G)

= Z da(u) [da(u) + da(v) — 2]
weE(G)

+ Y de(v) [de(u) + da(v) — 2]
weE(G)

= > lda(w) +da(v)]® = 2lda(u) + da(v)]
weE(G)

O

THEOREM 2.3. Let G be a graph with n > 3 wvertices and m edges. Then
EM1(G) = HM1(G) - 4M1(G) + 4m.

PRrROOF. Let G be a graph with n > 3 vertices and m edges. Then

EM\(G) = > dale)’= Y [da(u)+dg(v)—2]

e€E(G) wEE(G)
= Y (o) + do(v)]? — 4lde(u) + da(v)] +4)
weE(G)

= HM\(G) — 4M(G) + 4m.
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THEOREM 2.4. Let G be a graph with n > 3 wvertices and m edges.
B1(G) = HM,(G) — EM1(G) — M1(G).

Proor.
EM(G) = HM(G)—4M(G) + 4m
= HM;(G)— M:i(G) — [3M:1(G) — 4m]
= HM(G) — Mi(G) — B1(G)

THEOREM 2.5. Let G be a graph with n > 3 wvertices and m edges.
Bs(G) = EM1(G) + 2M1(G) — 4m.
ProOF.
EM,(G) = HM(G)—4M1(G)+ 4m
HM,(G) — 2M,(G) — 2M;(G) + 4m
= By(G) — 2M1(G) + 4m.

COROLLARY 2.1. Let G be a graph with n > 3 wvertices and m edges.

THEOREM 2.6. Let G be a graph with n > 3 vertices and m edges.
HBl(G) = QHMl(G) — 4M1(G) + 24m.

ProoF.
HB(G) = Y lda(u)+ da(e))?

ue

= Z [de(u) + de(uv))® + Z [da(v) + da(uv)]?

w€EE(G) w€EE(G)
= ) lde(u) +da(u) + d(v) — 2]
uwweE(G)
+ Y [da() +da(u) + da(v) - 2
weE(G)
= ) [2(dg(w) +da(v)® = 4(de(u) + d(v)) + 24].
wweE(G)

Then

Then

Then

Then

Theorem 2.6 follows now from the definitions of the hyper—Zagreb and first Zagreb

indices, and the fact that E(G) has m elements.

COROLLARY 2.2. Let G be a graph with n > 3 wvertices and m edges.

By(G) = tHB(G) — 12m.

=3
PROOF.
HB:(G) =2[HM:(G) — 2M1(G)] + 24m = 2B5(G) + 24m.

O
Then
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COROLLARY 2.3. Let G be a graph with n > 3 vertices and m edges. Then
1
Bi(G) = §HB1(G) — EM1(G) + M1(G) — 12m.
PROOF.
HB,(G) 2[HM1(G) — M1(G)] — 2M;1(G) + 24m

O

THEOREM 2.7. Let G be a graph with n > 3 wvertices and m edges. Then
HB;(G) =5F(G) + 8M3(G) — 12M;(G) + 8m.
PROOF.

HB(G) = Y lde(u) +da(e))?

ue

= Z [da(u) + de(uv))® + Z [da(v) + de(uv)]?

uv€E(G) uv€E(G)

= Z [de(u) + dg(u) + dg(v) — 2
w€EE(G)

+ Z [de(v) + da(u) + de(v) — 2]°
wEE(G)

- ¥ [5 [de(u)® + da(v)?] + 8da(u) da(v)
weEE(G)

— 12[dg(u) + de(v)] + 8}

= b5F(G) 4 8M(G) — 12M1(G) + 8m.

In order to prove our next result, we use the earlier established:

THEOREM 2.8. [19] Let G be a graph with n > 3 vertices and m edges. Then

COROLLARY 2.4. Let G be a graph with n > 3 wvertices and m edges. Then
Bi(G) = F(G) + 2M5(G) — M1(G) — EM1(G).
PROOF. From Theorem 2.8, we have
EM\(G) = F(G)+2M(G) — My(G) — BM1(G) — 4m)
= F(G)+2M5(G) — M;(G) — B1(G).
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COROLLARY 2.5. Let G be a graph with n > 3 wvertices and m edges. Then
By(G) = F(G) + 2M5(G) — 2M1(G).
PRrOOF. From Theorem 2.5, we have
By (G) = EMi(G)+2M;(G) —4m
= F(G)+2M5(G) —4M;(G) +4m + 2M1(G) — 4m
F(G) +2Ms(G) — 2M,(G).

3. Bounds on Banhatti and Zagreb—type indices
THEOREM 3.1. For any graph G,
Mi(G) < B1(G).
Equality is attained if and only if G is totally disconnected or G = mKs,.

PrOOF. Let G be a simple graph with n vertices and m edges. Then by
Theorem 2.1, we have B1(G) = 3M;(G) — 4m. Clearly M1(G) < B1(G) follows.
Now we prove the second part.

The graph G satisfied the given condition

= Bl(G) = M1(G)
<~ 3M1(G) —4m:M1(G)

Since Y dg(u)? = 2m = 3" dg(u), and Y (dg(u)? — dg(u)) = 0, because dg(u)? —
dg(u) > 0.

= Clg(u)2 = dG (u)
< de(u) =0 or dg(u) = 1.
Thus the result follows U

Here, we use the following existing results of the Zagreb and K Banhatti indices
of regular graph.

THEOREM 3.2. [15] Let G be an r-reqular graph. Then

M, (G) = nr? and Ms(G) = %nr?’.
THEOREM 3.3. [12] Let G be an r-reqular graph. Then
Bi(G) =nr(3r—2) and Bo(G) = 2nr?(r — 1).

THEOREM 3.4. For any connected graph G,
By (G) = 4M3(G) — 2M:(G).
Equality is attained if and only if G is a reqular graph.
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PROOF.

By(G) = > da(u)dal(e)
=Y da(u) [de(u) + da(v) - 2]

weE(G)
+ Z de(v) [(de(u) + da(v) — 2]
weE(G)
— Z [dc;(u)2 + dg(v)2 + 2dg(u) dg(v)] —2M;(G)
weE(G)
> ) ddo(w)dg(v) - 2Mi(G).
wweE(G)
Since
dg(u)z + dG(”U)2 Z 2dg(u) dg(v)
and
Yo da(w)?+de)? > > 2dg(u)da(v),
wEE(G) weEE(G)
the result follows.
The equality case attains directly from Theorems 2.1, 2.2, 3.2, and 3.3. (]

Now, we use the following existing results to prove our next result.

THEOREM 3.5. [19] Let G be a simple graph with n > 3 vertices and m edges.

Then

4m2 3

Ml(G) 2 e and MQ(G) >

= T .
n n?

4m

THEOREM 3.6. For any connected graph G with n > 3 vertices and m edges,

8m?(2m — n)
—_——

By(G) =

n
Further, equality is attained if and only if G is a reqular graph.

PROOF. From Theorems 3.3-3.5, the desired result follows. O

THEOREM 3.7. For any connected graph G with n > 3 vertices and m edges,
4m(3m —n)
n

The lower bound becomes equality if and only if G is regular. Equality in the upper
bound is attained if and only if G = K ,,—1 or G = K3.

< B1(G) < 3m?* —m.

PRrROOF. From Theorems 2.1 and 3.5, bearing in mind that of M;(G) < m(m+
1), the lower and upper bounds on B;(G) follow.
The second part is obvious. O

We now obtain lower and upper bounds on B;(G) in terms of the minimum
degree 6(G) and the maximum degree A(G) of G.
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THEOREM 3.8. For any graph G with n
2m [35(0) — 2] < B1(G)

> 3 vertices and m edges,
< 2m[3A(G) — 2].

Further, equality in both lower and upper bounds is attained if and only if G is
regular.

PROOF. Let G be a graph with n > 3 vertices and m edges. Then

Bi(G) = > [de(u)+da(e)]

ue

Z [de(u) + (da(u) + da(v) — 2)]

weE(G)

+ Y lda(v) + (do(u) + da(v) - 2)]
uwweE(G)

= ) 3(da(u) +da(v)) — 4m.
uwweE(G)

But 26(G) < dg(u) + dg(v) < 2A(G). Bearing this in mind,
65(G) < 3lda(u) + da(v)] < 6A(G)

66(G) —4 < 3[dg(u) +dg(v)] — 4] < 6A(G) —4
2m([36(G) —2] < Bi(G) <2m[3A(G) —2].

Further, equality in both lower and upper bounds holds if and only if dg(u) +
da(v) = 20(G) = 2A(G), for each wv € E(G), which implies that G is a regular
graph. O

The following two existing results of hyper—Zagreb index to prove our next two
results in terms of §(G) and A(G) of G.

THEOREM 3.9. [4] For any simple graph G with n > 3 vertices and m edges,

_ PG +AG)
S T 4md(G)A(G)

THEOREM 3.10. [4] For any graph G with n > 3 vertices and m edges,
I(G)M1(G) +2M2(G) < HM1(G) < A(G)M;1(G) + 2M»(G),

HM(G) M, (G)~

with equality if and only if G is a regular graph.
THEOREM 3.11. For any connected graph G with n > 3 vertices and m edges,
6(G) + A(G)?
4mo(G)A(G)
PrROOF. From Theorem 3.9, we have
0(G) + AG)?
4mdé(G)A(G)

By(@) < Mi(G)? - 2My(G).

HM,(G) —2M(G) < M;(G)? —2M,(G)



BANHATTI AND ZAGREB INDICES 61

whereas from Theorem 2.2,

[5(G) + AG)]?

4mé(G)A(G) My (G)? = 2My(G).

By(G)

THEOREM 3.12. For any connected graph G with n > 3 vertices,
[6(G) = 2] My(G) +2M(G) < B2(G) <
[A(G) = 2] Mi(G) +2M>(G).
Further, equality in both lower and upper bounds hold if and only if G is regular.
PrROOF. From Theorem 3.10, we have
§(G)M1(G) + 2M3(G) — 2M1(G) < HM:(G) — 2M1(G) <
A(G)M1(G) + 2M>(G) — 2M41(G).

Then from Theorem 2.2, we get the desired result.

Further, equality in both lower and upper bounds will hold if and only if dg (u)+
da(v) = 20(G) = 2A(G), for each uv € E(G), which implies that G is a regular
graph. O

Now, we use the following existing results to prove our next result of By (7T) .
THEOREM 3.13. [7] For any tree T with n > 3 vertices and m edges,
dn—6 < M (T) < n(n-—1).
THEOREM 3.14. For any tree T with n > 3 vertices and m edges,
8n —14 < B1(T) < (n—1)(3n —4).

Further, equality in the lower bound is attained if and only if T = P, and in the
upper bound if and only if T = Ky 1.

PrOOF. From Theorems 2.1 and 3.13, we have
1

in—6 <
" 3

[Bi(T) +4m] < n(n—1)

12n — 18 —4m < Bi(T) < 3n(n—1) — 4m.

Since for any tree T', m = n — 1, the result follows.

Further, the equality in the lower bound is attained if and only if T" = P,
because B;(P,) = 8n — 14. Equality in the upper bound is attained if and only if
T Kl,n—l because Bl(Kl,n—l) = (’/l — 1)(3TL - 4) [l

In order to prove our next result (upper bound) of By (G) via M;(G), we apply
of the Biernacki-Pidek-Ryll-Nardzewski inequality [1].
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THEOREM 3.15. [1] Let a and b be n-tuples such that x < a; < X and y < b; <
Y fori=1,2,...,n. Then

I 1 - 1
—Zalbzf—Zalez gZ(Xf:c)(ny),
[t [t i=1

with |-| being the greatest integer function. Equality occurs when n is even.

THEOREM 3.16. For any connected graph G with n > 3 vertices and m edges,

4
TAG) ~S(@)P + T (3m — ).
PRrROOF. Let a; = b, = dg(u;) for ¢ = 1,2,...,n with z = §(G) = y and
X =A(G) =Y. Then

Bi(G) £

n n 2
% > dotui)? - % (Z dg(ui)> < i[A(G) _ ()P
L0(6) - pem?| < {IAG) - 3G
MG - T < IAG) - (O]
Since , )
we have
4m? n
My (G) - W < Z[A(G) -G
m2 n
L[BU@) +am] - T < HAG) - 6(O)P
12m? 3n 9
B (G) < T 1AG) -4(6)]
Hence the upper bound follows. O

In order to prove our next result (lower bound) of By (G) in terms of the mini-
mum degree §(G), the maximum degree A(G) and the forgotten topological index
F(G), we use of the well known Cassel’s inequality [18].

THEOREM 3.17. [18] Let (a1,as,... an) and (b1, ba,...,b,) be positive real
numbers, satisfying the condition 0 < £ < < L < oo for each k € {1,2,...,n},
where £ and L are some constants. Let (wl,wg, .., wy) be positive weights. Then

() () 5 (S
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THEOREM 3.18. For any connected graph G with n > 3 vertices and m edges,

24md(G)A(G)
BuC) > GGyt Az F@) —4m

PROOF. Let a; = dg(u;)?/? and b; = dg(u;)'/? with £ = §(G), L = A(G) and
w; = 1 for all 1 < ¢ < n. By Theorem 3.17 (Cassel’s inequality),

ch(ui)g ZdG’(Ui) < de(uif
2
F(G)2m < (55&) GT) ﬁ((g))) M, (G)
(0(G) +A(G)*\ 1
F(G@) < ( S GAG) ) g[Bl(G)—I—Zlm}.
Thus the result follows. 0

Now, we obtain lower and upper bounds on EM;(G), B1(G), and B2(G) in
terms of 6(G), A(G), and M;(G), using Abel’s inequality as follows.
THEOREM 3.19. [3] Let {a1,az,...,a,} and {b1,bs,... by} with
by =2by=---2>2b, 20
be two sequences of real numbers and Sy = a1y +as+---+ax fork=1,2,... n. If
w = Mini<kr<n Sk and = maxi1<k<n Sk, then

O.)bl <a1b1+a2b2+~--+anbn <9b1

In order to prove our next result we make use of the following definition:

The line graph L(G) of the graph G is the graph whose vertices correspond to
the edges of G and two vertices in L(G) are adjacent if and only if the corresponding
edges in G are adjacent (that is, are incident with a common vertex).

THEOREM 3.20. For any connected graph G with n > 3 vertices and m edges,
(3.1) 4(0(G) — 1)* < EM;(G) < 2[My(G) — 2m](A(G) — 1)

HM,(G) — M1(G)(2A(G) — 1) + 4m(A(G) — 1) <
(3.2) B1(G) < HM,(G) — My (G) — 4(5(G) — 1)?

4(8(G) = 1)% +2M1(G) — 4m < Ba(G) <
(3.3) [2M1(G) — 4m} A(G).
PRrROOF. Inequality (3.1): Let a; = dg(e;) with e; = u,;v; for i # j and by >

by = -+ =2 b, 2 0. Clearly, by = mazx dg(e;) and 26(G) — 2 < by < 2A(G) — 2,
where S, = a1 +as+---+ap for k=1,2,...,n.
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Therefore w = minigr<n Sk = Mini<icnda(e;) = w = 2(6(G) — 1) and

Q = Mmari<e<n Sk = MariLikn dg(ei) = Sn

n

> dale;) = 2|E(L(G |_2[ ch (us) —m]

i=1

2 [;Ml(G) - m] = M;(G) — 2m.

By Theorem 3.19 (Abel’s inequality), we get

wbi < aiby +aghy + -+ anb, <
(25(0) — 2)b1 < a1by +agby + - +apb, < (QA(G) — 2)()1

4(6(G) - 1)?

N

Z dg(ei)? < [M1(G) — 2m](2A(G) —2)
4(6(G) —1)* < EMl(G) < 2[Mi(G) — 2m] (A(G) — 1).
Inequality (3.2): From (3.1) and Theorem 2.4, we get

HM;(G) — My(G)(2A(G) — 1) + 4m(A(G) — 1) < By (G) <
HM,(G) — My(G) — 4(5(G) — 1)*,

Inequality (3.3): From (3.1) and Theorem 2.5, we get

4(6(G) — 1)* + 2M1(G) — 4m < By(G) <
(2M;(G) — 4m)A(G).

O

Finally, we obtain the lower and upper bounds on By (G) and B2(G) in terms
of the number of pendent vertices and minimal non-pendent vertices of G.

THEOREM 3.21. For any (n,m)-graph G with n pendent vertices and minimal
non-pendent vertex degree 61(G),

661 (G)(m —n) + 3n(1 + 61 (G)) —4m < B1(G) <
(3.4) 6A(G)(m —n) +3n(l + A(G)) —4m

151(G)(651(G) = 1)(m — ) + (5:(G)* — 1)y < By(G) <
(3.5) IA(G)(A(G) - 1)(m —n) + (AG)? — L)n.
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PROOF. Inequality (3.4):

Bi(G) = > [do(u)+da(e)]

ue

- Z [da(u) + (dg(u) + da(v) — 2)]

uwweE(G)

+ ) [da() + (do(u) + da(v) - 2)]
wweE(G)

= Z 3[dg(’u) + dg(’l))] —4
wweE(G)

= > 3lde(u) + da(v)]

w€E(G);dg(u),dg (v)#1

- > Bl+dew) - > 4

weE(G);dg(u)=1 weE(G)

< BA(G)(m —n)+3n(1+ A(G)) — 4m.

Thus the upper bound follows.

Similarly,
Bi(G) >

65

> 651 (G) + Yo ommA+a@G) - D 4

weE(G);dg (u),dg(v)#1 weE(G);dg(u)=1 weE(G)

661(G)(m — 1) + 35(1 + 61(G)) — 4m.

Hence the lower bound follows.
Inequality (3.5):

By (G)

N

Z dG (u) dg(e)
Z dg(u) [dg(u) + dg(’l)) — 2]

wweE(G)

> de(u)[dg(u) + da(v) — 2]

weE(G);dg (u),dg (v)#1

> de(v)[da(u) + da(v) — 2]

weEE(GQ);dg(u),dg (v)#1
> da(v) - 1]+ > da(v)lda(v) — 1]
w€EFE(G);dg(u)=1 weE(G);dg(u)=1
> [A(G)(2A(G) - 2) + A(G)(2A(G) - 2)]
w€EE(G);dg(u),dg (v)#1

oA -1+ > [A(G) —1].

w€E(G);dag(u)=1 w€E(G);da(u)=1
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Thus the upper bound follows.

Similarly,

By(G) > > 261(G)[261(G) — 2]
wEE(G);da(u),dg (v)#1

+ Yo m@-1+ Y a@[ae) 1]

weEE(GQ);da(u)=1 weEE(GQ);da(u)=1

= 661(G)(m —n) +3n(1 + 6 (G)) — 4m.

Hence the lower bound follows. O

REMARK 3.1. In the inequalities (3.4) and (3.5), equality is attained if and

only if dg(u) = dg(v) = A(G) = 61(G) for each uv € E(Q) with dg(u),dg(v) # 1
and dg(v) = A(G) = 61(Q) for each uwv € E(G) with dg(u) = 1.
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