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ON BANHATTI AND ZAGREB INDICES
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Abstract. Let G = (V,E) be a connected graph. The Zagreb indices were in-

troduced as early as in 1972. They are defined as M1(G) =
∑

uv∈E(G)[dG(u)+

dG(v)] and M2(G) =
∑

uv∈E(G) dG(u)dG(v), where dG(u) denotes the degree

of a vertex u. The K Banhatti indices were introduced by Kulli in 2016. They
are defined as B1(G) =

∑
ue[dG(u) + dG(e)] and B2(G) =

∑
ue dG(u)dG(e),

where ue means that the vertex u and edge e are incident and dG(e) denotes
the degree of the edge e in G. These two types of indices are closely related. In
this paper, we obtain some relations between them. We also provide lower and
upper bounds for B1(G) and B2(G) of a connected graph in terms of Zagreb

indices.

1. Introduction

The graphs considered here are finite, undirected, without loops and multiple
edges. Let G = (V,E) be a connected graph with |V (G)| = n vertices and |E(G)| =
m edges. The degree dG(v) of a vertex v is the number of vertices adjacent to v. The
edge connecting the vertices u and v will be denoted by uv. Let dG(e) denote the
degree of an edge e = uv in G, which is defined by dG(e) = dG(u)+dG(v)− 2. The
vertices and edges of a graph are said to be its elements. For additional definitions
and notations, the reader may refer to [11].

A molecular graph is a graph in which the vertices correspond to the atoms
and the edges to the bonds of a molecule. A single number that can be computed
from the molecular graph, and used to characterize some property of the under-
lying molecule is said to be a topological index or molecular structure descriptor.
Numerous such descriptors have been considered in theoretical chemistry, and have
found some applications, especially in QSPR/QSAR research, see [6, 9, 17].

2010 Mathematics Subject Classification. 05C05; 05C07; 05C35.
Key words and phrases. Zagreb index, hyper–Zagreb index, K Banhatti index, K hyper–

Banhatti index.

53



54 GUTMAN, KULLI, CHALUVARAJU, AND BOREGOWDA

In [12], Kulli introduced the first and second K Banhatti indices, intending
to take into account the contributions of pairs of incident elements. The first K
Banhatti index B1(G) and the second K Banhatti index B2(G) of a graph G are
defined as

B1(G) =
∑
ue

[dG(u) + dG(e)] and B2(G) =
∑
ue

dG(u) dG(e)

where ue means that the vertex u and edge e are incident in G.
The first and second K hyper–Banhatti indices of a graph G are defined as

HB1(G) =
∑
ue

[dG(u) + dG(e)]
2 and HB2(G) =

∑
ue

[dG(u) dG(e)]
2.

The K hyper–Banhatti indices were introduced by Kulli in [13].
The degree–based graph invariants M1(G) and M2(G), called Zagreb indices,

were introduced long time ago [10] and have been extensively studied. For the
their history, applications, and mathematical properties, see [2, 6, 7, 8, 15] and
the references cited therein.

The first and second Zagreb indices take into account the contributions of pairs
of adjacent vertices. The first and second Zagreb indices of a graph G are defined
as

M1(G) =
∑

v∈V (G)

dG(v)
2 or M1(G) =

∑
uv∈E(G)

[
dG(u) + dG(v)

]
and

M2(G) =
∑

uv∈E(G)

dG(u) dG(v).

In [14], Miličević, et al., reformulated the first Zagreb index in terms of edge-
degrees instead of vertex-degrees and defined the respective topological index as

EM1(G) =
∑

e∈E(G)

dG(e)
2.

Followed by the first Zagreb index of a graph G, Furtula and one of the present
authors [5] introduced the so-called forgotten topological index F , defined as

F (G) =
∑

v∈V (G)

dG(u)
3 =

∑
uv∈V (G)

[
dG(u)

2 + dG(v)
2
]
.

In [16], Shirdel et al., introduced the first hyper–Zagreb index of G and defined
it as

HM1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]
2.

2. Comparison of Banhatti and Zagreb–type indices

Theorem 2.1. For any graph G, the first Banhatti index is related to the first
Zagreb index as B1(G) = 3M1(G)− 4m.



BANHATTI AND ZAGREB INDICES 55

Proof. Let G be a graph with n > 3 vertices and m edges. Then

B1(G) =
∑
ue

[dG(u) + dG(e)]

=
∑

uv∈E(G)

[dG(u) + dG(uv)] +
∑

uv∈E(G)

[dG(v) + dG(uv)]

=
∑

uv∈E(G)

[dG(u) + dG(u) + dG(v)− 2]

+
∑

uv∈E(G)

[dG(v) + dG(u) + dG(v)− 2]

=
∑

uv∈E(G)

[3dG(u) + 3dG(v)− 4] = 3M1(G)− 4m.

�

Theorem 2.2. For any graph G, the second Banhatti index is related to the
first Zagreb and hyper–Zagreb indices as B2(G) = HM1(G)− 2M1(G).

Proof. Let G be a graph with n > 3 vertices and m edges. Then

B2(G) =
∑
ue

dG(u) dG(e)

=
∑

uv∈E(G)

dG(u) dG(uv) +
∑

uv∈E(G)

dG(v) dG(uv)

=
∑

uv∈E(G)

dG(u) [dG(u) + dG(v)− 2]

+
∑

uv∈E(G)

dG(v) [dG(u) + dG(v)− 2]

=
∑

uv∈E(G)

[dG(u) + dG(v)]
2 − 2[dG(u) + dG(v)]

= HM1(G)− 2M1(G).

�

Theorem 2.3. Let G be a graph with n > 3 vertices and m edges. Then
EM1(G) = HM1(G)− 4M1(G) + 4m.

Proof. Let G be a graph with n > 3 vertices and m edges. Then

EM1(G) =
∑

e∈E(G)

dG(e)
2 =

∑
uv∈E(G)

[dG(u) + dG(v)− 2]2

=
∑

uv∈E(G)

(
[dG(u) + dG(v)]

2 − 4[dG(u) + dG(v)] + 4
)

= HM1(G)− 4M1(G) + 4m.

�
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Theorem 2.4. Let G be a graph with n > 3 vertices and m edges. Then
B1(G) = HM1(G)− EM1(G)−M1(G).

Proof.

EM1(G) = HM1(G)− 4M1(G) + 4m

= HM1(G)−M1(G)−
[
3M1(G)− 4m

]
= HM1(G)−M1(G)−B1(G).

�
Theorem 2.5. Let G be a graph with n > 3 vertices and m edges. Then

B2(G) = EM1(G) + 2M1(G)− 4m.

Proof.

EM1(G) = HM1(G)− 4M1(G) + 4m

= HM1(G)− 2M1(G)− 2M1(G) + 4m

= B2(G)− 2M1(G) + 4m.

�
Corollary 2.1. Let G be a graph with n > 3 vertices and m edges. Then

B1(G) +B2(G) = HM1(G) +M1(G)− 4m.

Theorem 2.6. Let G be a graph with n > 3 vertices and m edges. Then
HB1(G) = 2HM1(G)− 4M1(G) + 24m.

Proof.

HB1(G) =
∑
ue

[dG(u) + dG(e)]
2

=
∑

uv∈E(G)

[dG(u) + dG(uv)]
2 +

∑
uv∈E(G)

[dG(v) + dG(uv)]
2

=
∑

uv∈E(G)

[dG(u) + dG(u) + dG(v)− 2]2

+
∑

uv∈E(G)

[dG(v) + dG(u) + dG(v)− 2]2

=
∑

uv∈E(G)

[2(dG(u) + dG(v))
2 − 4(dG(u) + dG(v)) + 24].

Theorem 2.6 follows now from the definitions of the hyper–Zagreb and first Zagreb
indices, and the fact that E(G) has m elements. �

Corollary 2.2. Let G be a graph with n > 3 vertices and m edges. Then
B2(G) = 1

2HB1(G)− 12m.

Proof.

HB1(G) = 2[HM1(G)− 2M1(G)] + 24m = 2B2(G) + 24m.

�
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Corollary 2.3. Let G be a graph with n > 3 vertices and m edges. Then

B1(G) =
1

2
HB1(G)− EM1(G) +M1(G)− 12m.

Proof.

HB1(G) = 2[HM1(G)−M1(G)]− 2M1(G) + 24m

= 2[B1(G) + EM1(G)]− 2M1(G) + 24m

= 2B1(G) + 2EM1(G)− 2M1(G) + 24m.

�

Theorem 2.7. Let G be a graph with n > 3 vertices and m edges. Then
HB1(G) = 5F (G) + 8M2(G)− 12M1(G) + 8m.

Proof.

HB1(G) =
∑
ue

[dG(u) + dG(e)]
2

=
∑

uv∈E(G)

[dG(u) + dG(uv)]
2 +

∑
uv∈E(G)

[dG(v) + dG(uv)]
2

=
∑

uv∈E(G)

[dG(u) + dG(u) + dG(v)− 2]2

+
∑

uv∈E(G)

[dG(v) + dG(u) + dG(v)− 2]2

=
∑

uv∈E(G)

[
5
[
dG(u)

2 + dG(v)
2
]
+ 8 dG(u) dG(v)

− 12 [dG(u) + dG(v)] + 8
]

= 5F (G) + 8M2(G)− 12M1(G) + 8m.

�

In order to prove our next result, we use the earlier established:

Theorem 2.8. [19] Let G be a graph with n > 3 vertices and m edges. Then
EM1(G) = F (G) + 2M2(G)− 4M1(G) + 4m.

Corollary 2.4. Let G be a graph with n > 3 vertices and m edges. Then
B1(G) = F (G) + 2M2(G)−M1(G)− EM1(G).

Proof. From Theorem 2.8, we have

EM1(G) = F (G) + 2M2(G)−M1(G)− (3M1(G)− 4m)

= F (G) + 2M2(G)−M1(G)−B1(G).

�
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Corollary 2.5. Let G be a graph with n > 3 vertices and m edges. Then
B2(G) = F (G) + 2M2(G)− 2M1(G).

Proof. From Theorem 2.5, we have

B2(G) = EM1(G) + 2M1(G)− 4m

= F (G) + 2M2(G)− 4M1(G) + 4m+ 2M1(G)− 4m

= F (G) + 2M2(G)− 2M1(G).

�

3. Bounds on Banhatti and Zagreb–type indices

Theorem 3.1. For any graph G,

M1(G) 6 B1(G).

Equality is attained if and only if G is totally disconnected or G ∼= mK2.

Proof. Let G be a simple graph with n vertices and m edges. Then by
Theorem 2.1, we have B1(G) = 3M1(G) − 4m. Clearly M1(G) 6 B1(G) follows.
Now we prove the second part.

The graph G satisfied the given condition

⇔ B1(G) = M1(G)

⇔ 3M1(G)− 4m = M1(G)

⇔ M1(G) = 2m.

Since
∑

dG(u)
2 = 2m =

∑
dG(u), and

∑
(dG(u)

2 − dG(u)) = 0, because dG(u)
2 −

dG(u) > 0.

⇔ dG(u)
2 = dG(u)

⇔ dG(u) = 0 or dG(u) = 1.

Thus the result follows �

Here, we use the following existing results of the Zagreb and K Banhatti indices
of regular graph.

Theorem 3.2. [15] Let G be an r-regular graph. Then

M1(G) = nr2 and M2(G) =
1

2
nr3.

Theorem 3.3. [12] Let G be an r-regular graph. Then

B1(G) = nr(3r − 2) and B2(G) = 2nr2(r − 1).

Theorem 3.4. For any connected graph G,

B2(G) > 4M2(G)− 2M1(G).

Equality is attained if and only if G is a regular graph.
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Proof.

B2(G) =
∑
ue

dG(u) dG(e)

=
∑

uv∈E(G)

dG(u)
[
dG(u) + dG(v)− 2

]
+

∑
uv∈E(G)

dG(v)
[
(dG(u) + dG(v)− 2

]
=

∑
uv∈E(G)

[
dG(u)

2 + dG(v)
2 + 2dG(u) dG(v)

]
− 2M1(G)

>
∑

uv∈E(G)

4dG(u) dG(v)− 2M1(G).

Since
dG(u)

2 + dG(v)
2 > 2dG(u) dG(v)

and ∑
uv∈E(G)

dG(u)
2 + dG(v)

2 >
∑

uv∈E(G)

2dG(u) dG(v),

the result follows.
The equality case attains directly from Theorems 2.1, 2.2, 3.2, and 3.3. �

Now, we use the following existing results to prove our next result.

Theorem 3.5. [19] Let G be a simple graph with n > 3 vertices and m edges.
Then

M1(G) > 4m2

n
and M2(G) > 4m3

n2
.

Theorem 3.6. For any connected graph G with n > 3 vertices and m edges,

B2(G) > 8m2(2m− n)

n2
.

Further, equality is attained if and only if G is a regular graph.

Proof. From Theorems 3.3–3.5, the desired result follows. �

Theorem 3.7. For any connected graph G with n > 3 vertices and m edges,

4m(3m− n)

n
6 B1(G) 6 3m2 −m.

The lower bound becomes equality if and only if G is regular. Equality in the upper
bound is attained if and only if G ∼= K1,n−1 or G ∼= K3.

Proof. From Theorems 2.1 and 3.5, bearing in mind that of M1(G) 6 m(m+
1), the lower and upper bounds on B1(G) follow.

The second part is obvious. �

We now obtain lower and upper bounds on B1(G) in terms of the minimum
degree δ(G) and the maximum degree ∆(G) of G.
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Theorem 3.8. For any graph G with n > 3 vertices and m edges,

2m
[
3δ(G)− 2

]
6 B1(G) 6 2m

[
3∆(G)− 2

]
.

Further, equality in both lower and upper bounds is attained if and only if G is
regular.

Proof. Let G be a graph with n > 3 vertices and m edges. Then

B1(G) =
∑
ue

[dG(u) + dG(e)]

=
∑

uv∈E(G)

[dG(u) + (dG(u) + dG(v)− 2)]

+
∑

uv∈E(G)

[dG(v) + (dG(u) + dG(v)− 2)]

=
∑

uv∈E(G)

3(dG(u) + dG(v))− 4m.

But 2δ(G) 6 dG(u) + dG(v) 6 2∆(G). Bearing this in mind,

6δ(G) 6 3[dG(u) + dG(v)] 6 6∆(G)

6δ(G)− 4 6 3[dG(u) + dG(v)]− 4| 6 6∆(G)− 4

2m
[
3δ(G)− 2

]
6 B1(G) 6 2m

[
3∆(G)− 2

]
.

Further, equality in both lower and upper bounds holds if and only if dG(u) +
dG(v) = 2δ(G) = 2∆(G), for each uv ∈ E(G), which implies that G is a regular
graph. �

The following two existing results of hyper–Zagreb index to prove our next two
results in terms of δ(G) and ∆(G) of G.

Theorem 3.9. [4] For any simple graph G with n > 3 vertices and m edges,

HM1(G) 6 [δ(G) + ∆(G)]2

4mδ(G)∆(G)
M1(G)2.

Theorem 3.10. [4] For any graph G with n > 3 vertices and m edges,

δ(G)M1(G) + 2M2(G) 6 HM1(G) 6 ∆(G)M1(G) + 2M2(G),

with equality if and only if G is a regular graph.

Theorem 3.11. For any connected graph G with n > 3 vertices and m edges,

B2(G) 6 [δ(G) + ∆(G)]2

4mδ(G)∆(G)
M1(G)2 − 2M1(G).

Proof. From Theorem 3.9, we have

HM1(G)− 2M1(G) 6 [δ(G) + ∆(G)]2

4mδ(G)∆(G)
M1(G)2 − 2M1(G)
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whereas from Theorem 2.2,

B2(G) 6 [δ(G) + ∆(G)]2

4mδ(G)∆(G)
M1(G)2 − 2M1(G).

�

Theorem 3.12. For any connected graph G with n > 3 vertices,[
δ(G)− 2

]
M1(G) + 2M2(G) 6 B2(G) 6[

∆(G)− 2
]
M1(G) + 2M2(G).

Further, equality in both lower and upper bounds hold if and only if G is regular.

Proof. From Theorem 3.10, we have

δ(G)M1(G) + 2M2(G)− 2M1(G) 6 HM1(G)− 2M1(G) 6
∆(G)M1(G) + 2M2(G)− 2M1(G).

Then from Theorem 2.2, we get the desired result.
Further, equality in both lower and upper bounds will hold if and only if dG(u)+

dG(v) = 2δ(G) = 2∆(G), for each uv ∈ E(G), which implies that G is a regular
graph. �

Now, we use the following existing results to prove our next result of B1(T ) .

Theorem 3.13. [7] For any tree T with n > 3 vertices and m edges,

4n− 6 6 M1(T ) 6 n(n− 1).

Theorem 3.14. For any tree T with n > 3 vertices and m edges,

8n− 14 6 B1(T ) 6 (n− 1)(3n− 4).

Further, equality in the lower bound is attained if and only if T ∼= Pn and in the
upper bound if and only if T ∼= K1,n−1.

Proof. From Theorems 2.1 and 3.13, we have

4n− 6 6 1

3

[
B1(T ) + 4m

]
6 n(n− 1)

12n− 18− 4m 6 B1(T ) 6 3n(n− 1)− 4m.

Since for any tree T , m = n− 1, the result follows.
Further, the equality in the lower bound is attained if and only if T ∼= Pn

because B1(Pn) = 8n− 14. Equality in the upper bound is attained if and only if
T ∼= K1,n−1 because B1(K1,n−1) = (n− 1)(3n− 4). �

In order to prove our next result (upper bound) of B1(G) via M1(G), we apply
of the Biernacki–Pidek–Ryll–Nardzewski inequality [1].
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Theorem 3.15. [1] Let a and b be n-tuples such that x 6 ai 6 X and y 6 bi 6
Y for i = 1, 2, . . . , n. Then⌊

1

n

n∑
i=1

aibi −
1

n

n∑
i=1

ai ·
n∑

i=1

bi

⌋
6 1

4
(X − x)(Y − y),

with ⌊·⌋ being the greatest integer function. Equality occurs when n is even.

Theorem 3.16. For any connected graph G with n > 3 vertices and m edges,

B1(G) 6 3n

4
[∆(G)− δ(G)]2 +

4m

n
(3m− n).

Proof. Let ai = bi = dG(ui) for i = 1, 2, . . . , n with x = δ(G) = y and
X = ∆(G) = Y . Then 1

n

n∑
i=1

dG(ui)
2 − 1

n2

(
n∑

i=1

dG(ui)

)2
 6 1

4
[∆(G)− δ(G)]2

⌊
1

n
M1(G)− 1

n2
(2m)2

⌋
6 1

4
[∆(G)− δ(G)]2

1

n
M1(G)− 4m2

n2
6 1

4
[∆(G)− δ(G)]2.

Since

M1(G) > 4m2

n
⇒ 1

n
M1(G) > 4m2

n2
,

we have

M1(G)− 4m2

n
6 n

4
[∆(G)− δ(G)]2

1

3

[
B1(G) + 4m

]
− 4m2

n
6 n

4
[∆(G)− δ(G)]2

B1(G) + 4m− 12m2

n
6 3n

4
[∆(G)− δ(G)]2.

Hence the upper bound follows. �

In order to prove our next result (lower bound) of B1(G) in terms of the mini-
mum degree δ(G), the maximum degree ∆(G) and the forgotten topological index
F (G), we use of the well known Cassel’s inequality [18].

Theorem 3.17. [18] Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be positive real
numbers, satisfying the condition 0 < ℓ 6 ak

bk
6 L < ∞ for each k ∈ {1, 2, . . . , n},

where ℓ and L are some constants. Let (w1, w2, . . . , wn) be positive weights. Then(
n∑

i=1

wk a
2
i

)(
n∑

i=1

wk b
2
i

)
6 (L+ ℓ)2

4Lℓ

(
n∑

i=1

wk ai bi

)2

.
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Theorem 3.18. For any connected graph G with n > 3 vertices and m edges,

B1(G) > 24mδ(G)∆(G)

(δ(G) + ∆(G))2
F (G)− 4m.

Proof. Let ai = dG(ui)
3/2 and bi = dG(ui)

1/2 with ℓ = δ(G), L = ∆(G) and
wi = 1 for all 1 6 i 6 n. By Theorem 3.17 (Cassel’s inequality),

n∑
i=1

dG(ui)
3

n∑
i=1

dG(ui) 6 (δ(G) + ∆(G))2

4δ(G)∆(G)
dG(ui)

2

F (G) 2m 6 (δ(G) + ∆(G))2

4δ(G)∆(G)
M1(G)

F (G) 6
(
(δ(G) + ∆(G))2

8mδ(G)∆(G)

)
1

3

[
B1(G) + 4m

]
.

Thus the result follows. �

Now, we obtain lower and upper bounds on EM1(G), B1(G), and B2(G) in
terms of δ(G), ∆(G), and M1(G), using Abel’s inequality as follows.

Theorem 3.19. [3] Let {a1, a2, . . . , an} and {b1, b2, . . . , bn} with

b1 > b2 > · · · > bn > 0

be two sequences of real numbers and Sk = a1 + a2 + · · ·+ ak for k = 1, 2, . . . , n. If
ω = min16k6nSk and Ω = max16k6nSk, then

ω b1 6 a1b1 + a2b2 + · · ·+ anbn 6 Ω b1.

In order to prove our next result we make use of the following definition:
The line graph L(G) of the graph G is the graph whose vertices correspond to

the edges of G and two vertices in L(G) are adjacent if and only if the corresponding
edges in G are adjacent (that is, are incident with a common vertex).

Theorem 3.20. For any connected graph G with n > 3 vertices and m edges,

4(δ(G)− 1)2 6 EM1(G) 6 2
[
M1(G)− 2m

]
(∆(G)− 1)(3.1)

HM1(G)−M1(G)(2∆(G)− 1) + 4m(∆(G)− 1) 6
B1(G) 6 HM1(G)−M1(G)− 4(δ(G)− 1)2(3.2)

4(δ(G)− 1)2 + 2M1(G)− 4m 6 B2(G) 6[
2M1(G)− 4m

]
∆(G).(3.3)

Proof. Inequality (3.1): Let ai = dG(ei) with ei = uivj for i ̸= j and b1 >
b2 > · · · > bn > 0. Clearly, b1 = max dG(ei) and 2δ(G) − 2 6 b1 6 2∆(G) − 2,
where Sk = a1 + a2 + · · ·+ ak for k = 1, 2, . . . , n.
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Therefore ω = min16k6n Sk = min16i6ndG(ei) ⇒ ω > 2(δ(G)− 1) and

Ω = max16k6n Sk = max16i6n dG(ei) = Sn

=
n∑

i=1

dG(ei) = 2|E(L(G))| = 2

[
1

2

n∑
i=1

dG(ui)
2 −m

]

= 2

[
1

2
M1(G)−m

]
= M1(G)− 2m.

By Theorem 3.19 (Abel’s inequality), we get

ω b1 6 a1b1 + a2b2 + · · ·+ anbn 6 Ω b1

(2δ(G)− 2)b1 6 a1b1 + a2b2 + · · ·+ anbn 6 (2∆(G)− 2)b1

4(δ(G)− 1)2 6
n∑

i=1

dG(ei)
2 6 [M1(G)− 2m](2∆(G)− 2)

4(δ(G)− 1)2 6 EM1(G) 6 2 [M1(G)− 2m] (∆(G)− 1).

Inequality (3.2): From (3.1) and Theorem 2.4, we get

HM1(G)−M1(G)(2∆(G)− 1) + 4m(∆(G)− 1) 6 B1(G) 6
HM1(G)−M1(G)− 4(δ(G)− 1)2.

Inequality (3.3): From (3.1) and Theorem 2.5, we get

4(δ(G)− 1)2 + 2M1(G)− 4m 6 B2(G) 6
(2M1(G)− 4m)∆(G).

�

Finally, we obtain the lower and upper bounds on B1(G) and B2(G) in terms
of the number of pendent vertices and minimal non-pendent vertices of G.

Theorem 3.21. For any (n,m)-graph G with η pendent vertices and minimal
non-pendent vertex degree δ1(G),

6δ1(G)(m− η) + 3η(1 + δ1(G))− 4m 6 B1(G) 6
6∆(G)(m− η) + 3η(1 + ∆(G))− 4m(3.4)

4δ1(G)(δ1(G)− 1)(m− η) + (δ1(G)2 − 1)η 6 B2(G) 6
4∆(G)(∆(G)− 1)(m− η) + (∆(G)2 − 1)η.(3.5)
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Proof. Inequality (3.4):

B1(G) =
∑
ue

[dG(u) + dG(e)]

=
∑

uv∈E(G)

[dG(u) + (dG(u) + dG(v)− 2)]

+
∑

uv∈E(G)

[dG(v) + (dG(u) + dG(v)− 2)]

=
∑

uv∈E(G)

3[dG(u) + dG(v)]− 4

=
∑

uv∈E(G);dG(u),dG(v) ̸=1

3[dG(u) + dG(v)]

+
∑

uv∈E(G);dG(u)=1

3[1 + dG(v)]−
∑

uv∈E(G)

4

6 6∆(G)(m− η) + 3η(1 + ∆(G))− 4m.

Thus the upper bound follows.

Similarly,

B1(G) >
∑

uv∈E(G);dG(u),dG(v)̸=1

6δ1(G) +
∑

uv∈E(G);dG(u)=1

3η(1 + δ1(G))−
∑

uv∈E(G)

4

= 6δ1(G)(m− η) + 3η(1 + δ1(G))− 4m.

Hence the lower bound follows.
Inequality (3.5):

B2(G) =
∑
ue

dG(u) dG(e)

=
∑

uv∈E(G)

dG(u)
[
dG(u) + dG(v)− 2

]
=

∑
uv∈E(G);dG(u),dG(v) ̸=1

dG(u)
[
dG(u) + dG(v)− 2

]
+

∑
uv∈E(G);dG(u),dG(v) ̸=1

dG(v)
[
dG(u) + dG(v)− 2

]
+

∑
uv∈E(G);dG(u)=1

1[dG(v)− 1] +
∑

uv∈E(G);dG(u)=1

dG(v)[dG(v)− 1]

6
∑

uv∈E(G);dG(u),dG(v) ̸=1

[
∆(G)(2∆(G)− 2) + ∆(G)(2∆(G)− 2)

]
+

∑
uv∈E(G);dG(u)=1

[
∆(G)− 1

]
+

∑
uv∈E(G);dG(u)=1

[
∆(G)− 1

]
.
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Thus the upper bound follows.
Similarly,

B2(G) >
∑

uv∈E(G);dG(u),dG(v)̸=1

2δ1(G)
[
2δ1(G)− 2

]
+

∑
uv∈E(G);dG(u)=1

[
δ1(G)− 1

]
+

∑
uv∈E(G);dG(u)=1

δ1(G)
[
δ1(G)− 1

]
= 6δ1(G)(m− η) + 3η(1 + δ1(G))− 4m.

Hence the lower bound follows. �

Remark 3.1. In the inequalities (3.4) and (3.5), equality is attained if and
only if dG(u) = dG(v) = ∆(G) = δ1(G) for each uv ∈ E(G) with dG(u), dG(v) ̸= 1
and dG(v) = ∆(G) = δ1(G) for each uv ∈ E(G) with dG(u) = 1.
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[10] I. Gutman and N. Trinajstić. Graph Theory and molecular orbitals. Total π-electron energy

of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535–538.
[11] V.R. Kulli. College Graph Theory, Vishwa Int. Publ., Gulbarga, 2012.

[12] V.R. Kulli. On K Banhatti indices of graphs, J. Comput. Math. Sci., 7(2016), 213–218.
[13] V.R. Kulli. On K hyper–Banhatti indices and coindices of graphs, Int. Res. J. Pure Algebra,

6(2016), 300–304.
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