

Soil Acidification: Processes, Effects on Soil and Plants, and Remediation Strategies

Zia Ur Rahman Farooqi, Ayesha Abdul Qadir, Sobia Riaz, Zahoor Mujdded Chaudhary, Waqas Mohy Ud Din, Predrag Ilić, Novo Pržulj

Abstract: *Soil acidification is an adverse reduction in soil pH and is among the most common soil degradation types. It is primarily caused by the decomposition of soil organic matter (SOM), weathering of minerals, acidic parent material, acid rain impacted by industrial emissions, improper agricultural activities (mono-cropping), and use of acidic fertilizers. Studies show that soil acidification extensively affects its fertility through reducing nutrient availability, disturbing soil structure, shift in microbial community structure, impaired nutrient cycling, increased metal solubility, and subsequent soil and water pollution. Soil acidification also affects crop productivity as low soil pH cause crop roots damage, thereby reduced nutrients absorption which leads to lesser crop yields. Such adverse soil implications due to soil acidification are selectively needed to remedial measures for the management of soil acidification by applying, e.g., liming, acid tolerant crops, addition of SOM, biochar, and ash, crop rotation, and genetic modification of crops to tolerate acidic conditions. In this chapter, authors have comprehensively summarized the causes and processes in the development of acidification in soils, its effect on soil health and crop plants along with the remedial measures.*

Keywords: *Soil Acidification, Soil Degradation, Liming, Soil Organic Matter Loss, Nutrient's Availability*

Cite as: Farooqi ZUR, Qadir AA, Riaz S, Chaudhary ZM, Mohy-Ud-Din W, Ilić P, Pržulj N (2025) Soil Acidification: Processes, Effects on Soil and Plants, and Remediation Strategies. In: Ilić P, Pržulj N (eds) Environmental Protection and Remediation. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LXIII: 171–206

Цитирање: Фаруки ЗУР, Кадир АА, Ријаз С, Чаудхари ЗМ, Мохи Уд Дин В, Илић П, Пржуль Н (2025) Закисељавање земљишта: процеси, ефекти на земљиште и биљке и стратегије ремедијације. У: Илић П, Пржуль Н (уредници) Заштита животне средине и ремедијација. Академија наука и умјетности Републике Српске, Бања Лука, Монографија LXIII: 171–206

6.1. Introduction

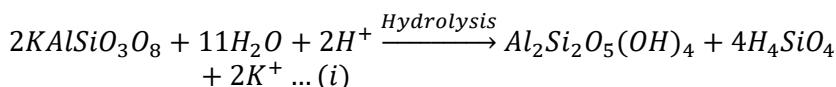
Globally, around 50% of the arable soils are acidic in nature (Wang et al. 2021), posing a notable concern in the soil productivity, mostly resulting from the decomposition of soil organic matter (SOM) (Mockeviciene et al. 2022). This process involves the breakdown of complex organic molecules into simpler compounds by soil micro-organisms, including bacteria, fungi, and actinomycetes. The presence of organic acids, such as acetic acid, citric acid, and oxalic acid, leads to soil acidity by increasing the concentration of hydrogen ions (H^+) in the soil solution (Grenni et al. 2012). The process of nitrification in nitrogen (N) cycle, also cause of soil acidification where it converts organic N molecules into ammonium (NH_4^+) and nitrate (NO_3^-), while simultaneously releasing H^+ , exacerbating the soil acidification process. Carbon dioxide (CO_2) released into the soil atmosphere is also a contributing factor to soil acidification. Organic matter in the soil affects the soil redox potential, resulting in the formation of compounds with reduced oxidation states, such as methane (CH_4) and organic acids (Gerke 2022). Weathering encompasses the disintegration of rocks and minerals through physical, chemical, or biological mechanisms. During weathering, minerals are exposed to water and atmospheric gases e.g., CO_2 , oxygen (O_2), and sulfur dioxide (SO_2) (Qiao et al. 2015). When soil solution comes in contact with CO_2 , it forms carbonic acid (H_2CO_3) which is a dilute acid but produces bicarbonate ions (HCO_3^-) and free H^+ , which decrease soil pH (Dietzen and Rosing 2023; Stojanović Bjelić et al. 2023a). Biological weathering produces organic acids through plant roots, fungi, and microbes, facilitating the breakdown of minerals and increasing H^+ concentration in soil solution (Altevogt and Jaffé 2005). Anthropogenic activities, such as the burning of fossil fuels, have exacerbated soil acidity by emitting sulfur (S) and nitrogen oxides (NO_x) into the atmosphere, resulting in the occurrence of acid rain. Soil acidification is also influenced by the disintegration of acidic parent materials, such as granite, sandstone, shale, and basalt via weathering through hydrolysis, oxidation-reduction, and dissolution (Sun et al. 2023). Industrial emissions, including sulfur dioxide (SO_2) and NO_x , are a primary contributor to the process of soil acidification. Emissions of these gases occur as a result of operations such as the combustion of fossil fuels, the extraction of metal ores, and the production of chemicals (Syed et al. 2022). When the pH of soil decreases, the levels of harmful metals such as aluminum (Al) and manganese (Mn) is increased, leading to more soil acidification and pollution (Ilić et al. 2020, 2022; Stojanović Bjelić et al. 2022, 2023b, Mehmood et al. 2024; Malić et al. 2025; Mihajlović et al. 2025). Soil acidity is also caused through the use of N-based fertilizers, crop farming, organic amendments, and irrigation methods. N-based fertilizers, especially, those containing NH_4^+ by undergoing nitrification and mono-cropping

of legumes may speed up the process of soil acidification (Zhang et al. 2022b). This occurs because when N-fixing plants are decomposed, they produce organic acids and remove important cations from the soil. During the decomposition process, organic amendments such as manure and composts may generate organic acids, which, in turn, contribute to a decrease in soil pH. Irrigation with higher HCO_3^- and other salts that displace calcium (Ca) and magnesium (Mg) ions, leading to an increase in H^+ concentration. Acid rain cause accelerated rates of SOM decomposition, leading to soil acidification (Gunasekera and Silva 2020; Farooqi et al. 2023; Pržulj and Tunguz 2022; Pržulj et al. 2022; Farooqi et al. 2024).

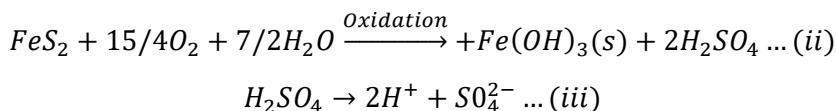
As soil acidification cause deleterious effects on soil productivity, crop yield and soil health via impacting microbial community structure, nutrient's cycling and their availability as well as soil structure (Shetty and Prakash 2020). So, the issue of soil acidification should be addressed via suitable measure. The notable measures include liming (lime, gypsum, calcium-based soil conditioners/amendments), SOM-containing amendments, biochar, ash, and crop and soil management practices. This chapter addresses, firstly, the key issues of soil acidification by reviewing the causes and processes responsible for soil acidity development. Secondly, it discusses the key issues and challenges posed by soil acidity on soil health and plant productivity. Thirdly, it comprehensively discusses numerous remedial measures to combat soil acidification.

6.2. Sources of soil acidification

6.2.1. Natural sources


6.2.1.1. Organic matter decomposition

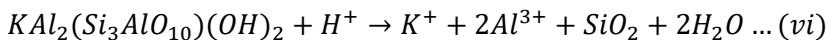
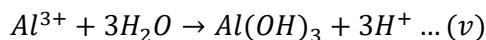
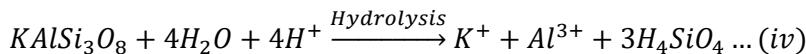
SOM decomposition results in the formation of simpler constituents from complex organic molecules through soil microbes i.e., bacteria, fungi, and actinomycetes. The formation of organic acids (acetic acid, citric acid, oxalic acid) is a key process by which SOM breakdown causes soil acidification (Prescott and Vesterdal 2021). These acids have the ability to decrease soil pH by directly raising H^+ concentration, thereby considerably altering the soil chemical equilibrium. Moreover, during the process of SOM decomposition, organic N molecules undergo mineralization and are converted into NH_4^+ through the process known as ammonification. The NH_4^+ is then converted to NO_3^- by nitrifying bacteria, resulting in the emission of H^+ (Anjum and Khan 2020). In addition, NO_3^- may form associations with alkaline cations including calcium (Ca^{2+}), magnesium (Mg^{2+}), potassium (K^+), and sodium (Na^+), thereby extracting them from soils and further


increasing the soil pH as soil buffering capacity is altered. Furthermore, SOM decomposition also results in CO₂ emissions, which form H₂CO₃ when dissolved in soil water and dissociates into H⁺ and HCO₃⁻. This process contributes to the accumulation of H⁺ in soil, resulting in decreased soil pH (Mohankumar 2018).

6.2.1.2. Weathering of minerals

The weathering of soil minerals is a fundamental process in earth's geochemical cycles and is responsible of contributing to soil acidification. When minerals react with water and CO₂, O₂, and SO₂, the dissolution of CO₂ in water forms H₂CO₃, which comes into contact with mineral surfaces and yield HCO₃⁻ and H⁺ ions which are key players in soil acidification (Dietzen and Rosing 2023) (equation 1).

It facilitates the breakdown of feldspar into clay minerals, dissolved silica, K⁺, and HCO₃⁻. The release of HCO₃⁻ and H⁺ into soil solution lowers the soil pH, contributing to acidification. Another significant pathway for soil acidification through weathering involves the oxidation of sulfide minerals, such as pyrite (FeS₂). When pyrite is exposed to O₂ and water, it undergoes oxidation, producing sulfuric acid (H₂SO₄). The H₂SO₄ formed in this reaction dissociates into sulfate ions (SO₄²⁻) and H⁺, significantly lowering the soil pH (Ji-zheng 2002), equation 2-3.




This process is particularly pronounced in mining areas where sulfide minerals are brought to the surface and exposed to atmospheric conditions. Biological weathering also contributes to soil acidification as plant roots, fungi, and microorganisms produce organic acids which enhance the minerals weathering and chelating metal cations and increasing the availability of H⁺ in the soil solution. For instance, the exudation of organic acids by plant roots can accelerate the dissolution of Al-bearing minerals, releasing Al³⁺ and H⁺ into the soil (Huang et al. 2023).

6.2.1.3. Acidic parent materials

Parent materials are the underlying geological formations that give rise to soil through weathering processes. When these materials are inherently acidic, they

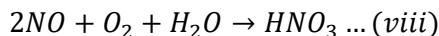
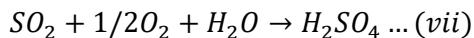
contribute to the development of acidic soils, which can significantly impact the agricultural soils. Several types of rocks and minerals can be classified as acidic parent materials. Granite, for example, is a common acidic parent material composed mainly of quartz, feldspar, and mica (equation 4-6).

The feldspar and mica in granite contain aluminum silicates (Al_2SiO_5), which release H^+ during weathering, contributing to soil acidity.

Sandstone, particularly when it lacks significant amounts of calcareous cement, can be another source of acidic parent materials (Datta and Adhikari 1973). The sand-sized particles predominantly consist of quartz, which is resistant to weathering but often associated with more acidic conditions.

Shale, formed from compacted clay sediments, often contains significant amounts of iron (Fe) and S, which can oxidize/hydrolyze to produce H_2SO_4 and lowers soil pH (He et al. 2022). Although generally more basic than granite, certain volcanic rocks like basalt can also contribute to soil acidity under specific conditions. The weathering of basalt releases Mg and Ca, but if these elements leach out quickly, the remaining soil can become acidic (Fujii et al. 2020).

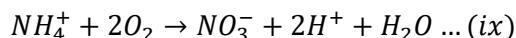
The weathering of acidic parent materials involves both physical and chemical processes that release various ions into the soil. Key weathering processes include hydrolysis, oxidation-reduction, and dissolution. The hydrolysis of feldspar in granite can release H^+ , contributing to soil acidity.



Oxidation-reduction processes, such as the oxidation of S-bearing minerals in shale, produce H_2SO_4 , increasing soil acidity (Tabak et al. 2020). Dissolution processes, where minerals dissolve in water, also release H^+ ions (equation 5). For instance, the dissolution of gypsum in the presence of CO_2 forms calcium bicarbonate and releases H^+ . Climate and vegetation significantly influence the extent to which acidic parent materials contribute to soil acidification.

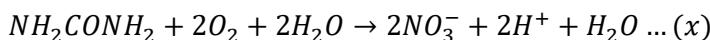
In humid regions, higher precipitation rates can enhance the leaching of basic cations like Ca^{2+} and Mg^{2+} , leaving behind the acidic ions (Yang et al. 2021). Additionally, organic acids produced by decaying vegetation can further acidify the soil by accelerating the weathering of acidic parent materials (Ji-zheng 2002).

6.2.2. Anthropogenic sources

6.2.2.1. Industrial emissions


Sulfur dioxide (SO_2) and NO_x which are released into the atmosphere through burning of fossil fuels, smelting of metal ores, and certain chemical manufacturing processes. When they undergo a series of chemical reactions e.g., SO_2 is oxidized to form sulfur trioxide (SO_3), which then reacts with water vapor to produce H_2SO_4 (equation 7), while NO_x form nitric acid (HNO_3), (equation 8) (Liu et al. 2020b).

These acids are subsequently deposited onto the earth surface through wet deposition (rain, snow, fog) or dry deposition (gases and particles). Wet deposition, commonly known as acid rain, is a primary pathway through which industrial emissions contribute to soil acidification. Soils that are rich in calcium carbonate (CaCO_3) or other alkaline materials have a higher buffering capacity and can neutralize acids more effectively (Liu et al. 2020c). However, repeated and prolonged exposure to acid deposition can overwhelm the soil buffering capacity, leading to a gradual decline in pH (Raza et al. 2021).


6.2.2.2. Agricultural practices

Agricultural practices are a significant source of soil acidification, primarily through the application of N-based fertilizers, crop cultivation, excessive application of organic amendments, and irrigation practices. N-based fertilizers, particularly NH_4^+ -based fertilizers contribute to soil acidification through nitrification process, where NH_4^+ is converted to NO_3^- , releasing H^+ into the soil and increasing its acidity (equation 9) (Lin et al. 2021). The repeated cultivation of some crops, especially leguminous crops can accelerate acidification as the decomposition of N-fixing plants releases organic acids and removes essential cations (Ca, Mg, HCO_3^-) from the soil. Some pesticides and herbicides e.g., organophosphate-containing pesticides contribute to soil acidification through the release of acidic by-products and/or leaching (Qaswar et al. 2020; Trkulja et al. 2023).

6.2.2.3. Use of acidic fertilizers

Acidic fertilizers, commonly used in agriculture to enhance crop yields, play a significant role in soil acidification. The primary mechanism through which acidic fertilizers contribute to soil acidification is through their chemical composition (Michael 2021). Acidic fertilizers typically contain ammonium (NH_4^+) or urea (NH_2CONH_2) as their main N source. When these fertilizers are applied to soil, they undergo chemical transformations that release H^+ into the soil solution, thereby decreasing soil pH (Zhang et al. 2022b).

NH_4^+ -based fertilizers, such as ammonium nitrate (NH_4NO_3) and ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$), contribute to soil acidification through a process called nitrification i.e., conversion of NH_4^+ to NO_3^- . During this conversion, H^+ are released as byproducts, leading to increased soil acidity (Wang et al. 2020). Urea, another commonly used N fertilizer, also contributes to soil acidification, though through a slightly different mechanism. When urea is applied to the soil, it is first hydrolyzed by the enzyme urease into ammonium carbonate. This compound then decomposes into ammonium bicarbonate and CO_2 (Yao et al. 2021). The ammonium carbonate dissociates into NH_4^+ and HCO_3^- . The NH_4^+ are eventually converted to NO_3^- through nitrification. In addition to NH_4^+ and urea-based fertilizers, superphosphate fertilizers also contribute to soil acidification, though to a lesser extent (Gao et al. 2021). Superphosphate fertilizers, which are derived from phosphate rock, contain H_2SO_4 as a byproduct. When superphosphate fertilizers are applied to soil, the sulfuric acid dissociates into H^+ and SO_4^{2-} , which can contribute to soil acidification (Kubheka et al. 2020) (equation 10, Fig. 6.1).

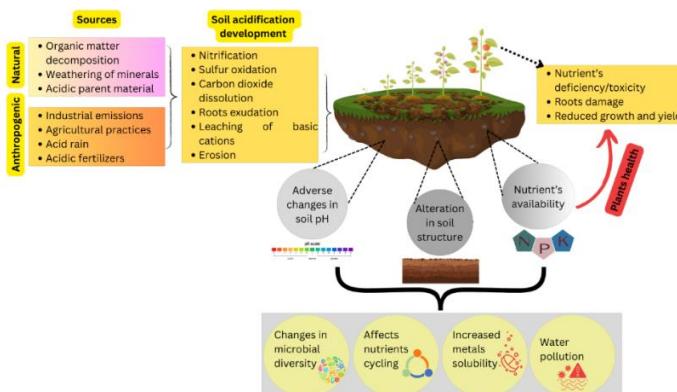


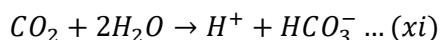
Fig. 6.1. Sources, processes, and effects of soil acidification on soil and plant health

Сл. 6.1. Извори, процеси и ефекти закисавања земљишта на здравље земљишта и биљака

6.3. Processes in the development of soil acidification

6.3.1. Chemical processes

6.3.1.1. Nitrification


Nitrification is a metabolic process in the N cycle that entails the transformation of NH_3 into NO_3^- through Nitrosomonas and Nitrobacter. NH_3 -oxidation during nitrification results in the production of NO_3^- and H^+ , which immediately leads to a decrease in soil pH (equation 9) (Li et al. 2024). Subsequently, the oxidation of nitrite (NO_2^-) to NO_3^- increase the mobility and subsequent leaching of NO_3^- which have high solubility and leached out of the rhizosphere in regions with abundant precipitation or irrigation. This process results in the transportation of Ca^{2+} , Mg^{2+} , and K^+ which intensifies soil acidification. In addition, NO_3^- have the ability to undergo microbial denitrification in the absence of O_2 , resulting in the formation of HNO_3 , which dissociates into H^+ and NO_3^- ions, contributing to soil acidification (Zhang et al. 2022a).

6.3.1.2. Sulfur oxidation

The process of S oxidation is of utmost importance in the acidity of soil, exerting a substantial influence on the chemistry of soil and the overall health of ecosystems. The process starts with the existence of S in several forms, including elemental S, sulfides (e.g., pyrite, FeS_2), and organic S compounds. When S-containing chemicals come into contact with air and moisture, some microbes, particularly autotrophic bacteria such as *Thiobacillus* oxidize them and H_2SO_4 is produced (equation 7). This acid is potent and substantially impacts reducing the pH of the soil. S-oxidation is most widespread in soils abundant in pyrite, which is often found in coal mining regions and naturally sulfide-rich environments. When mining operations or erosion occurs, the pyrite becomes exposed to O_2 and water, resulting in the formation of H_2SO_4 (Ji-zheng 2002).

6.3.1.3. Carbon dioxide dissolution

The dissolution of CO_2 from the atmosphere or soil respiration combines with soil water, it produces H_2CO_3 , which produces HCO_3^- and H^+ (equation 11).

The main sources of CO_2 in soil are microbial respiration, root respiration, and the breakdown of SOM. However, human actions such as burning of fossil fuels and deforestation also contribute to increased levels of atmospheric CO_2 , hence increasing soil acidification process (Raza et al. 2021). The elevated concentration of H^+ in soil displace Ca_2^+ , Mg_2^+ , K^+ , and Na^+ , from the soil colloids. The cations that have been displaced are removed from the soil by water that percolates through it, resulting in a decrease in nutrients and a decline in soil fertility (Raza et al. 2021).

6.3.2. Biological processes

6.3.2.1. Root exudation

Root exudation release organic acids, H^+ , and other compounds. These exudates are released in response to nutrient deficiencies, particularly P, making nutrients more available by solubilizing bound forms in the soil. As the organic acids dissociate, they release protons, increasing the H^+ concentration in the soil solution. This release of protons is further augmented by the plant's uptake of cations (e.g., Ca_2^+ , Mg_2^+ , K^+ , and NH_4^+), which must be balanced by an equivalent release of H^+ to maintain electrochemical neutrality within the plant. The acidification process is also influenced by root respiration, which produces CO_2 . When CO_2 dissolves in water, it forms H_2CO_3 . Root exudates not only lower pH directly but also indirectly by stimulating microbial activity as microorganisms decompose SOM, releasing additional organic acids and CO_2 , thus exacerbating the acidification process (Wang et al. 2023b). The increased microbial activity also enhances nitrification, the oxidation of NH_4^+ to NO_3^- , which produces H^+ ions as a byproduct, further contributing to soil acidification. Additionally, root exudates can chelate metal ions, such as Al, making them more soluble and toxic to plants and soil organisms, which can disrupt nutrient uptake and overall soil health (Cheng et al. 2010; Farooqi et al. 2022).

6.3.3. Physical processes

6.3.3.1. Leaching of basic cations

The leaching of basic cations (Ca, Mg, K, Na) results in reduction of soil pH. Leaching process transport the dissolved basic cations to downward soil, especially regions with high levels of rains, snowfall, or irrigation (Jia et al. 2021). Agricultural activities may worsen the process of cation leaching. N-fertilizers,

especially NH_4^+ -based fertilizers may cause soil acidity by promoting nitrification. Nitrification is a microbiological process that transforms NH_4^+ into NO_3^- , while simultaneously releasing H^+ (Yuan et al. 2021).

6.3.3.2. Erosion

The selective loss of soil particles is one of the main ways erosion causes soil acidity. Topsoil, which has a higher concentration of organic matter and vital nutrients, is more prone to erosion. The top fertile soil layer often includes elevated levels of alkaline cations such as Ca, Mg, K, and Na (Horn et al. 2021). Erosion leads to the removal of these cations, exposing underlying soil layers with elevated levels of acidic cations, including Al and H^+ (Babur et al. 2021). As a result, the buffering capacity of the soil is decreased, resulting in an overall rise in soil acidity. Water erosion further intensifies the process of leaking essential ions as water flows through the eroded soil. The depletion of essential nutrients disturbs the equilibrium of the soil, increasing its vulnerability to acidity. Leaching is more pronounced in areas with abundant rainfall or irrigation, where water infiltration occurs often (Jeon and Nam 2019). The soil, which has been worn away, is now deficient in vital nutrients, making it more susceptible to acidification since it is unable to adequately neutralize the presence of acidic substances. In addition, erosion-induced gathering of SOM in downstream or lower elevations in agriculture landscapes cause its decomposition and contribution to soil acidification.

6.4. Effects of soil acidification on soil ecosystem characteristics

6.4.1. Soil properties

6.4.1.1. Changes in soil pH and structure alteration

Soil acidification due to reduced soil pH cause a range of shifts in physical, chemical, and biological properties. As soil acidification intensifies, it leads to a reduction in soil pH, resulting in increased soil acidity. The change in pH has significant consequences for soil health and its capacity to support plant growth, development, yield, and ecosystem processes (Goulding 2016). Ca and Mg, which are essential for the growth of plant cell walls and enzymatic processes, are more susceptible to leaching under acidic circumstances, resulting in nutritional deficits. On the other hand, some elements have a higher solubility and may become more

poisonous as the pH of the soil lowers e.g., Al, Mn, and Fe (Sharpley 1991). Al is liberated from soil minerals and enter the soil solution in acidic soils, causing root damage. This toxicity hinders root development and impairs root function. Mn become too concentrated in acidic soils, leading to harmful impacts on plant physiology and chlorosis, diminished root formation, and stunted plant growth. The pH of soil also has an impact on the activity and diversity of microorganisms, which play a crucial role in maintaining the health and fertility of the soil (Rahman et al. 2018). The pH range of 5.5 – 6.5 is considered optimum for microbes in soil. Acidic circumstances have a detrimental impact on microbial population and diversity, such as bacteria, fungus, and actinomycetes. These microbes are essential for breaking down organic debris, recycling nutrients, and shaping the structure of soil. The presence of very acidic soils greatly diminishes the activity of helpful microorganisms such as nitrifying bacteria, which play a crucial role in converting NH_4^+ into NO_3^- (Ning et al. 2021). This decrease hinders the N cycle, resulting in reduced N availability for plants and worsening nutritional imbalances. pH alterations also impact the biological interactions e.g., symbiotic relationships such as mycorrhizal fungi and plant roots. Mycorrhizal fungi augment the absorption of nutrients by plants, especially P, by expanding the surface area of the roots. The efficacy of these fungi is lowered in acidic soils, hence lowering their symbiotic advantages to plants. In very acidic soils, the activity of earthworms and other soil fauna, which play a crucial role in breaking down SOM and improving soil aeration, is also reduced or diminished, affecting soil health and fertility (Zhang et al. 2022a). Furthermore, the decrease in soil pH affects aggregates formation, affecting soil structure through losing of organo-mineral formation (Gilbert et al. 2007), as well as deposition of soil humic acids at acidic pH 6 (Yang et al. 2024), which is crucial for ensuring optimal soil aeration, water infiltration, and root penetration. Acidic soils exhibit diminished soil structure as a result of heightened solubility and leaching of Ca, which serves as a cohesive agent for soil particles. Ca depletion may cause soil particles to disperse, leading to the formation of compacted and poorly organized soils that are susceptible to erosion and have diminished water retention ability (Horn and Peth 2009).

6.4.1.2. Nutrient availability

The process of soil acidification can restrict or improve the accessibility of essential micro- and macro-nutrients. The macronutrients that mostly influenced by soil pH include N, P, K, Ca, Mg, and S. N, mostly present as NH_4^+ and NO_3^- , becomes less accessible in acidic soils. Under acidic conditions, the transformation of NH_4^+ into NH_3 is promoted, leading to its potential loss into the environment. In acidic soils, the activity of nitrifying bacteria, which convert NH_4^+ to NO_3^- is decreased,

resulting in a decrease in its availability (Olego et al. 2022). P availability in acidic soils has a tendency to combine with Al and Fe to create compounds that are not soluble, therefore reducing its availability to plants. Plant roots absorb nutrients in pH range 4.5 – 6.5 but do not easily absorb these chemicals below this range, resulting in P deficiency. Moreover, acidic nature of the soil solution of acidic soils enhance the ability of Al and Fe to dissolve, thereby worsening the problem by further combining with P (Ofoe et al. 2023). Under acidic circumstances, K is leached from the soil exchange complex due to displacement by H⁺. The process of leaching diminishes the K concentration in the soil, which, in turn, has a negative impact on plant nutrition and development. H⁺ and Al ions displace Ca and Mg from soil particles, resulting in leaching and decreased availability. This reduction may lead to their deficiencies, since plants have difficulties in assimilating enough amounts of Ca and Mg for their growth (Han et al. 2018). Sulfur, often found as sulfate (SO₄²⁻), may not be directly affected by acidification to a great extent. However, the general soil health and crucial microbial activities involved in S-cycling might be adversely impacted, indirectly affecting its availability. Micronutrients, which are needed in lower amounts, also show different reactions to soil acidification. Fe, Mn, Cu, Zn, and boron (B) exhibit increased solubility and accessibility in acidic soils due to instability of organo-mineral complexes under acidic conditions (Gilbert et al. 2007; Zhang et al. 2022a). Nevertheless, the heightened accessibility of these substances may lead to toxic concentrations, causing damage to plants and microbes. The solubility of Fe and Mn is greatly enhanced in acidic soils, resulting in potential poisoning symptoms in plants, including chlorosis and necrosis (Karna et al. 2018). Cu and Zn become more accessible, but excessive amounts can be poisonous and hinder the development and function of plant roots. Boron, although necessary in modest quantities, may become excessive and hazardous in very acidic environments (Cai et al. 2021). On the other hand, several micronutrients have reduced availability as soils grow more acidic. Molybdenum (Mo), which is necessary for N fixation and enzyme activity, becomes less soluble and accessible in acidic soils, possibly resulting in shortages. The decreased accessibility might hinder the process of N fixation in legumes and impact the overall nutritional status of plants (Rahman et al. 2018).

6.4.2. Plant health

6.4.2.1. Nutrient deficiency/toxicity

Soil acidification greatly impedes plant development and yield, since the presence of vital nutrients becomes limited under acidic environments. A direct consequence of soil acidity on plants is the reduced accessibility of macro-

nutrients such as N, P, and K. The lower nutrient's availability occurs due to the tendency of P to create insoluble compounds with Al and Fe (Warke and Wakgari 2024). Consequently, the availability of P for plant absorption decreases, resulting in inhibited growth, under-developed roots, and decreased agricultural productivity. Similarly, Ca, Mg, and K are also easily washed away under soil acidity via high solubility of soil fulvic acids and protein-like substances (Yang et al. 2024) which occurs due to instability of organo-minerals under acidic conditions (Gilbert et al. 2007), leading to a decrease in their concentration in the soil. Insufficient Ca may cause blossom-end rot in tomatoes and tip burn in lettuce, whereas inadequate Mg generally leads to interveinal chlorosis, characterized by yellowing of the spaces between leaf veins while the veins themselves stay green (Hodges and Steinegger 1991).

6.4.2.2. Root damage

Acidic soils put harmful effects to plant roots. As the pH of acidic soils decreases below 5.5, the concentration of Al increases, exerting severe toxicity towards plant roots, impeding their elongation and inflicting harm onto the root tips (Ahmad et al. 2019). Similarly, Mn poisoning disrupt many physiological processes in plant roots, such as enzyme activity and metabolic functions. An excess amount of Mn result in oxidative stress, which can harm root cell membranes and contribute to the development of lesions (Zhou et al. 2022). These lesions weaken the root's structural integrity and hinder their capacity to efficiently absorb water and nutrients. Soil acidity also impacts the accessibility of vital nutrients, resulting in shortages that harm plant roots (Wang et al. 2023a).

6.4.2.3. Reduced crop growth and yield

As soil acidity negatively affects nutrient accessibility and roots growth, it results in decreased plant strength and poor agricultural output. Plants in acidic soils have reduced uptake of N, P, and K, while enhanced ability of Al and Mn to dissolve and higher mobility (Olego et al. 2022). Elevated levels of Al also have detrimental effects on plant roots, impeding their development and impairing their function as Al toxicity hinders the process of root cell division and elongation, resulting in the growth of under-developed root systems. This compromised roots growth has reduced efficiency in the absorption of water and nutrients, leading to a direct impact on the plant's general development and health. Mn poisoning may also arise in acidic soils, resulting in chlorosis and necrosis in plant tissues, hence reducing plant vigor and yield (Ofoe et al. 2023). Moreover, soil acidification has

an impact on microbial activity and soil biodiversity, both of which play a critical role in preserving soil fertility and structure. Beneficial microorganisms, such as N-fixing bacteria and mycorrhizal fungi, flourish in environments that are neither too acidic nor too alkaline. When the pH of the soil decreases, the activity and number of these microorganisms decrease, which, in turn, reduces their capacity to promote plant development (Choma et al. 2020).

6.4.3. Microbial communities

6.4.3.1. Changes in microbial diversity

Microbial diversity is greatly impacted by soil acidification as they can survive in a narrow range of acidic pH (5.5 – 6.5), apart from microbes having adapt to acidic conditions. Soil acidification primarily reduces the population and diversity of microorganisms, resulting in a decrease in microbial diversity. Various soil microorganisms, such as bacteria, fungi, and archaea, exhibit optimal pH ranges for their growth and development (Song et al. 2023). Acidification may cause the soil pH to exceed the optimum ranges, resulting in a decrease in their populations that are sensitive to acidity. Acidophilic bacteria, namely Actinobacteria and Proteobacteria, tend to decline in population with increasing soil acidity. On the other hand, microorganisms that are able to tolerate or thrive in acidic conditions, such as Acidobacteria and fungus, may become more prevalent (Choma et al. 2020). This change in community structure lead to a decrease in the total microbial diversity, as a smaller variety of species becomes dominant in the environment. Reduced microbial diversity may negatively impact essential soil functioning as microorganisms responsible for SOM may be shifted from acidic soil. For example, several N-fixing bacteria are susceptible to lower pH levels. As the population of these bacteria declines, the amount of N in the soil also drops, which has a negative impact on both plant development and soil fertility. Likewise, the breakdown of organic matter decelerates, resulting in the buildup of unprocessed organic remains and a reduction in the accessibility of nutrients. Soil acidification has an impact on microbial interactions and the dynamics of the community. Within a robust soil ecosystem, microorganisms engage in intricate interactions, establishing networks of mutualistic, antagonistic, and competitive partnerships (Gowda et al. 2017). Acidification may disturb these interactions, specifically restraining some bacteria groups. For example, mycorrhizal fungi, which establish mutually beneficial associations with plant roots and improve nutrient absorption, are often adversely impacted by acidic environments. The decrease in these fungi may diminish the efficiency of nutrient interchange between plants and soil, hence exacerbating the health of plants and the structure of soil. In addition, soil

acidity may modify the generation and functioning of microbial enzymes, leading to a decrease in the efficiency of certain activities (Hu et al. 2022). For instance, the functioning of enzymes responsible for P mineralization, such as phosphatases, might decrease in acidic soils, resulting in a decrease in the amount of P that is accessible to plants. Higher Al mobility may hinder the establishment of helpful bacteria and fungi, worsening the decrease in microbial diversity and disturbing soil processes (Kamran et al. 2018).

6.4.3.2. Impact on decomposition and nutrient cycling

Decomposition and nutrient cycling processes are facilitated by a diverse variety of microorganisms, such as bacteria, fungi, and actinomycetes. These organisms have a high level of sensitivity to changes in soil pH and are often hindered in their activity and variety by acidic environments (Xiao et al. 2020). For example, bacterial populations, which flourish in circumstances that are neither acidic nor alkaline, see a substantial decline when the soil gets more acidic (Sánchez-Galindo et al. 2022). The decrease in bacterial activity hinders the breakdown process, resulting in the buildup of organic materials in the soil, particularly occurrence of deposition of soil humic acids at acidic pH 6 (Yang et al. 2021). In contrast, fungi exhibit greater tolerance towards acidic environments and often assume the role of primary decomposers in soils that have been acidified. Although fungi are capable of ongoing decomposition of organic materials, their metabolic pathways vary from those of bacteria. Fungal decomposition exhibits a longer and less effective process in breaking down intricate organic molecules, including lignin, which is a significant component of plant cell walls (Khomutovska et al. 2024). Consequently, the pace at which organic matter breaks down diminishes, leading to the accumulation of partly digested organic wastes. The gradual accumulation of soil humic acids may result in the formation of organic acids (Yang et al. 2021; Pržulj et al. 2024), specifically the remaining soil fulvic acids and protein-like substances (Gao et al. 2018; Mohinuzzaman et al. 2020), as well as their high solubility under acidic conditions (Tadini et al. 2018), which in turn acidify the soil matrix. The modified decomposition dynamics in acidified soils have a direct impact on nutrient cycling, which is the process of releasing, transforming, and making nutrients accessible for plant uptake. Soil acidification has a significant impact on the availability of N, which is a crucial nutrient for plant development (Soong et al. 2020). Microbial activities, such as ammonification and nitrification, facilitate the transformation of organic N into inorganic forms, namely NH_4^+ and NO_3^- . Under acidic circumstances, the activity of nitrifying bacteria is suppressed, leading to a decrease in the conversion of NH_4^+ to NO_3^- . This inhibition results in the buildup of NH_4^+ , which may be harmful to plants when present at high levels

and can also be released as NH₃ volatilization, particularly in soils with inadequate buffering capacity. Soil acidification has an impact on the availability of P in the nutrient cycle (Mpanga et al. 2019). P in acidic soils has a tendency to combine with Al and Fe to create insoluble compounds, hence reducing its accessibility to plants. The decreased accessibility may restrict the development of plants and impact the overall efficiency of the ecosystem. In addition, the immobilization of P may disturb the equilibrium of nutrient ratios in the soil, so complicating nutrient management even more. Soil acidification also impacts the process of micronutrient cycling, including elements like Fe, Mn, Zn, and Cu, which may affect due to instability of organo-mineral complexes (Gilbert et al. 2007). While many micronutrients exhibit increased solubility and accessibility in acidic conditions, which may result in toxicities, others have reduced availability, leading to shortages (Antoniadis et al. 2015). Fe and Mn toxicity may manifest in very acidic soils, leading to hindered root development and functionality. On the other hand, when there is a decrease in the amount of Zn and Cu available, it may result in deficiencies that have a negative impact on plant metabolism and development. In addition, soil acidity may impact the physical characteristics of soil, including its structure and porosity, which subsequently affect the processes of decomposition and nutrient cycling (Faria et al. 2021). Soils that have been acidified often exhibit deteriorated structure and less aggregate stability, resulting in lower levels of aeration and water penetration. These physical alterations provide an inhospitable setting for soil microbes and roots, hence impeding breakdown and the absorption of nutrients (Pierzynski and Hettiarachchi 2018).

6.4.4. Soil and water quality

As soil acidification has a substantial effect on the solubility of metals and soil humic substances, therefore it leads to soil and water pollution (Ilić et al. 2021a, 2021b, 2021c, 2021d, 2023, 2024a, 2024b). With the decrease in soil pH, the characteristics of metals in the soil change, resulting in higher solubility and movement of potentially toxic metal ions. This phenomena have significant ramifications for the soil health, and productivity of agriculture (Boechat et al. 2016). As soil pH decreases, the concentration of H⁺ rises, leading to their interactions with metal ions present in the soil. Under acidic circumstances, organo-mineral complexes, for instance, metal oxide and hydroxides, e.g. Al, Fe, and Mn (Hemingway et al. 2019; Kirsten et al. 2021; Zhang et al. 2024a) which undergo dissolution (Malik et al. 2018), transforming into more soluble compounds. The enhanced solubility of these metals in the soil solution results in their higher concentration, which makes them more easily accessible for absorption by plants (Faria et al. 2021). For example, Al is liberated from mineral complexes and rendered soluble in acidified soils. Acidic soils

also cause increased solubility of many other metals e.g., lead (Pb), cadmium (Cd), and copper (Cu) and transported to edible plant parts or drinking water and pose hazard to human and plant life (Kleber et al. 2021; Porębska and Mulder 1996).

6.5. Remedial measures for soil acidification

6.5.1. Addition of organic matter

Soil organic matter is generally known as an effective solution for soil acidity. It is essential for developing soil structure, increasing nutrient availability, and boosting the ability of soil to resist acidification through soil buffering capacity. An important advantage of incorporating SOM is its capacity to enhance soil pH via several ways e.g., soil humic substances, composing of humic acids, fulvic acids and protein-like substances found in decaying plant matter and compost may initially decrease the pH of the soil (Mohinuzzaman et al. 2020; Tadini et al. 2018). However, as decomposition continues, these acids are broken down, resulting in the creation of more stable molecules that assist in regulating the soil pH (Hayashi et al. 2023). In addition, SOM includes organic bases that have the ability to counteract H⁺ in the soil, hence raising the soil pH and decreasing acidity. Incorporating SOM in the form of manure and composts improves the ability of the soil to resist changes in pH i.e., soil pH buffering capacity. Organic matter, particularly soil humic acids, stimulates the soil aggregates formation in degraded soil structures due to acidity as these aggregates improve the permeability and water retention of the soil as well as decreasing soil erosion (Hussain et al. 2021). Enhanced soil structure also helps in the prevention of the leaching of Ca and Mg, which are crucial for counteracting soil acidity. Moreover, addition SOM ensures a safe habitat of microorganisms, hence stimulating their development and productivity. Microbial communities that are actively engaged in metabolic processes play a crucial role in decomposing organic waste and transforming it into humic substances. These stable organic compounds have the ability to improve soil fertility and regulate pH levels (Hussain et al. 2021).

6.5.1.1. Crop rotation

Crop rotation entails the practice of rotating several crops in the same field throughout the different growing seasons, instead of mono-cropping. Farmers may mitigate the impacts of soil acidity by diversifying their crops, since this might have an effect on different soil qualities and processes. Crop rotation effectively

mitigates soil acidification by altering the soil pH through various crops (Zhang et al. 2024b). As various crops have diverse impacts on soil pH owing to their root systems, N absorption behavior, and breakdown of crop residues (Bossolani et al. 2021). For example, legumes such as clover or beans with cereals or cover crops are very advantageous because this rotation can convert atmospheric N into the soil, resulting in enhanced soil fertility and a balanced acid-base equilibrium. In addition, the decomposed remains of legumes may improve the ability of soil to resist changes in pH, helping to neutralize acidic situations. The root systems of various crops also contribute to the overall soil health i.e., perennial plants with extensive root systems facilitate the movement of essential nutrients and organic substances from lower layers of soil, which may have an impact on the acidity level of the soil (Bangash et al. 2023). Crops with extensive root systems or tubers e.g., maize and potato have the ability to obtain nutrients and minerals that are less readily available to plants with shallow root systems. When these nutrients are transported to the upper layers of soil by extensive root systems, they have the ability to interact with the top soil, which may influence its acidity. Additionally, crop rotation aids in the management of SOM. Various crops provide different kinds and quantities of organic wastes to the soil, their breakdown impacts the pH level of the soil. For example, the residues of some crops may break down into compounds that assist in neutralizing the acidity of the soil (Dane et al. 2017). Various crop's organic matter may have specific impacts on the pH of the soil, and the diversity brought via rotation can help create a more harmonious soil ecosystem. Crop rotation has an impact on soil microbial populations, in addition to the contributions of organic matter. Various crops harbor distinct microorganisms, and these microbial communities are essential for soil functions such as organic matter breakdown and N cycling (Breza et al. 2023). Crop rotation promotes a wide range of microbial species, which in turn improves soil quality and influences soil acidity levels. Specific crops may have microbial mechanisms that might help neutralize acidic environments (Guerra et al. 2022). Crop rotation may mitigate soil erosion, so indirectly addressing soil acidity. Through the practice of crop rotation, farmers may enhance soil composition and mitigate erosion rates. Erosion often results in the depletion of topsoil, which contains abundant nutrients and organic matter that aid in maintaining soil pH stability (Shehrawat et al. 2023).

6.5.1.2. Liming

As soil acidity is due to higher H⁺ ions, it can be countered by basic ions (OH⁻). Liming treatment is a proven method used to address soil acidification, hence promoting plant development and enhancing agricultural production. Lime is

mostly comprised of calcium carbonate (CaCO_3), calcium hydroxide (Ca(OH)_2), gypsum ($\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$), and calcium oxide (CaO) (Nogaroli and Fonseca 2020). When lime is added to acidic soils, it chemically reacts with soil acids, causing the H^+ to be neutralized and resulting in the production of water and CO_2 . This technique efficiently elevates the pH of the soil, mitigating the detrimental consequences of soil acidity. Lime treatment enhances soil structure via the promotion of aggregation and the reduction of soil erosion. Acidic soils often exhibit inadequate structure, resulting in problems such as compaction and diminished water infiltration (Bolan et al. 2023). Liming enhances soil aggregation through neutralizing acidity, leading to improved soil aeration, root penetration, and moisture retention. Soil that is well-organized promotes plant development and decreases the likelihood of erosion, so enhancing soil health (Bolan et al. 2023). The use of lime also affects the availability of nutrients in the soil. Soils with high acidity often have reduced levels of vital elements such P, K, Ca, and Mg. Lime treatment enhances the availability of essential nutrients by modifying the soil pH and improving the solubility of certain minerals (Gurmessa 2021). P availability to plant roots is enhanced by increasing soil pH and enhances nutrients availability, hence optimizing plant development and increasing agricultural yields. Liming not only neutralizes soil acidity, but it also provides secondary advantages for soil health and fertility i.e., the use of lime may augment the activity of soil microbes, which are crucial in facilitating nutrient cycling and the breakdown of organic wastes (Bakari et al. 2020; Nešković Markić et al. 2021, 2024; Ilić et al. 2024).

6.5.1.3. Improved fertilization practices

Enhanced fertilization techniques are essential for reducing soil acidity and revitalizing soil health. Efficient fertilization methods strive to mitigate these impacts by preserving or re-instating soil pH to the ideal values for promoting plant development. Balanced fertilization techniques through precision agriculture practices entails the use of fertilizers that provide vital nutrients in appropriate amounts and right time to prevent over application (Zhang et al. 2024a). Fertilizers, i.e., manures or chemical fertilizers enhance the ratios and arrangement of soil particles and augment its ability to resist changes in pH, hence aiding in the maintenance of pH levels. Conversely, inorganic fertilizers are designed to provide precise nutrients like as N, P, and K (Zhang et al. 2024b). These fertilizers may be customized to match the specific nutrient requirements and pH levels of the soil, hence minimizing the chances of acidification. Slow-release fertilizers are another option for this purpose as they release the N at slower pace and at the time when it is required (Hussain et al. 2021).

6.5.1.4. Use of acid-tolerant crops

Utilizing acid-tolerant crops such as soybean, oat, millet, and alfalfa etc. provides another strategic method for effectively regulating soil acidification and tackling the difficulties presented by the growing acidity of soils (Agegnehu et al. 2021). These specialty varieties are specifically developed or chosen for their capacity to flourish in settings when the soil pH is lower than the usual optimal level for most crops. Their use is a pragmatic solution to soil acidity, a factor that might otherwise impede agricultural output. The creation and acceptance of acid-tolerant crop varieties are based on both conventional breeding methods and contemporary genetic engineering (Shetty et al. 2021).

6.5.1.5. Biochar

Biochar is produced through pyrolysis of biomaterials and recognized as a potentially effective solution for combating soil acidity. The use of it in soil management arises from its distinct characteristics and the many advantages it provides for soil health and fertility. Biochar is characterized by its significant surface area and porous structure, which provide an ample home for microbial organisms and enhance the soil capacity to hold nutrients and water (Xia et al. 2020). Biochar effectively counteracts soil acidification by modifying soil pH as biochar synthesis process yields a material that is often alkaline, particularly when generated from substances such as wood. Biochar, when used on acidic soils, may raise the soil pH, reducing the level of soil acidification. The rise in pH is a result of the alkaline properties of biochar, which counteracts the surplus of H⁺ in the soil, so decreasing its acidity (Liu et al. 2020a). In addition, biochar enhances the cation exchange capacity (CEC) of the soil, enabling it to effectively retain and exchange important cations including Ca, Mg, and K. Acidic soils often have poor CEC, resulting in a diminished capacity to retain essential nutrients. Biochar improves it by offering more locations for the exchange of positively charged ions, thanks to its porous structure and surface charge characteristics (Geng et al. 2022). The elevated CEC not only aids in balancing soil acidity but also enhances the accessibility of vital nutrients for plant absorption. The capacity of biochar to enhance soil structure is an additional noteworthy aspect of its function as a restorative treatment. The incorporation of this substance into the soil enhances soil aggregation and porosity. Enhanced soil structure improves the process of aeration and water infiltration, hence decreasing the likelihood of erosion and runoff (KedirJemal 2021). Biochar indirectly enhances the soil ability to resist acidification by fostering improved soil structure, which creates a stable environment that is favorable for plant development and microbial activity. Another benefit is the enduring stability of

biochar in the soil over an extended period of time (Bolan et al. 2023). Unlike other organic additions, biochar exhibits exceptional resistance to degradation as a result of its inherently stable carbon structure. Once biochar is applied, it stays in the soil for long periods of time, resulting in long-lasting benefits. The extended lifespan of this solution contributes to the maintenance of an alkaline pH and the enhancement of soil health, making it a resilient method for regulating soil acidification (Huang et al. 2023). Moreover, biochar has the ability to impact soil microbial populations as its porous structure serves as a home for advantageous microorganisms, which contribute to the process of nutrient cycling and the overall soil health. These bacteria facilitate the breakdown of organic materials, hence influencing soil acidity levels. Biochar may augment microbial activity, so bolstering the general well-being and resilience of the soil ecosystem. When combined with other soil management strategies, biochar may provide significant benefits in agricultural settings. The use of this may enhance the effects of lime or other soil amendments by offering further advantages including enhanced nutrient retention and better soil structure (Shiyal et al. 2022).

6.5.1.6. Microbial inoculants

Microbial inoculants e.g., rhizobium, azospirillum, *Pseudomonas* spp., and mycorrhizal fungi are becoming more widely acknowledged as a feasible method for reducing soil acidity, due to their ability to improve soil health and promote sustainable agriculture practices (O'Callaghan et al. 2022b). Inoculants are composed of helpful microorganisms, including bacteria, fungus, and actinomycetes, which are added to the soil to enhance different biological processes. They have the capacity to play a substantial part in tackling the difficulties presented by soil acidification via their influence on soil pH, nutrient accessibility, and dynamics of microbial communities (Lopes et al. 2021). Microbial inoculants play a crucial role in remedying soil acidification by improving the soil's inherent ability to resist changes in pH. Specific bacteria, especially those with the ability to generate organic acids, may assist in counteracting acidic environments. For example, several bacteria and fungi generate alkaline compounds like NH₃ or CO₃⁻ that neutralize soil acidity (O'Callaghan et al. 2022b). The activity of these microorganisms contributes to the equilibrium of soil pH, resulting in a reduction of acidity and an enhancement of conditions for plant development. Microbial inoculants help enhance the process of making vital nutrients more soluble in acidic soils. Under acidic circumstances, nutrients like P and Ca tend to precipitate, making them unavailable to plants. Phosphate-solubilizing bacteria and mycorrhizal fungi have the ability to convert these nutrients into forms that plants can easily take up (Daraz et al. 2021). Microbial inoculants indirectly alleviate the negative impacts of

soil acidity by enhancing nutrient availability, enabling plants to more effectively get the necessary minerals for their growth and development. Microbial inoculants have the ability to improve soil structure and aggregation, in addition to their function in nutrient solubilization. Some specific types of fungus and bacteria secrete extracellular polysaccharides that bind soil particles, resulting in the formation of solid aggregates (Chen et al. 2021). Enhanced soil structure promotes water penetration and decreases erosion, hence contributing to the maintenance of a more stable pH environment. The enhanced stability of soil aggregates also decreases the likelihood of nutrient leakage, which may otherwise worsen soil acidity. Moreover, microbial inoculants have the ability to impact the dynamics of the microbial population in the soil (Wahid et al. 2020). The acidity of soil may modify the makeup and functioning of soil microbial communities, often promoting acid-tolerant microbes while inhibiting beneficial ones. Through the introduction of targeted microbial inoculants, it is feasible to reinstate a more harmonized and efficient microbial community (O'Callaghan et al. 2022a). This equilibrium may enhance soil vitality and resistance, therefore facilitating mechanisms that counteract soil acidification. Microbial inoculants also facilitate the biological processes associated with the breakdown of organic materials. Highly proficient decomposer microorganisms have the ability to successfully break down organic wastes, resulting in the release of nutrients and buffering agents that may counterbalance soil acidity. The accelerated breakdown of organic matter leads to the creation of humic compounds, which possess buffering qualities and may also counteract soil acidity. Microbial inoculants may also be used into several soil management strategies in agricultural systems to combat soil acidity (Ewubare et al. 2023).

6.5.1.7. Genetic modification of crops

Genetic engineering offers a novel method for tackling soil acidity by improving crop resilience. Genetic modification mostly tackles soil acidification by creating crops that have improved ability to withstand low pH conditions (Kumar et al. 2020). Conventional breeding techniques often encounter constraints when it comes to generating crops that possess the ability to endure harsh soil conditions. These approaches enable the incorporation of certain genes, e.g., ALMT (aluminum-activated malate transporter) and STOP1 (sensitive to proton rhizotoxicity1) genes that are known to provide acid tolerance (Abdul Aziz et al. 2022). Genes responsible for encoding proteins involved in pH control or stress response may be introduced into the genomes of crops, as an example. These alterations may enhance a crop's tolerance in acidic soils, hence mitigating the adverse effects of soil acidification on production and quality (Rafeeq et al. 2023).

6.5.1.8. Controlled environment agriculture (CEA)

Controlled environment agriculture (CEA) is an advanced agricultural method that effectively deals with soil acidity by maintaining strict regulations in contained systems such as greenhouses. CEA mitigates soil acidification by effectively manipulating environmental parameters such as light, temperature, humidity, and fertilizers delivery. An important advantage of CEA is its capacity to mitigate soil erosion, which is a significant contributor to soil acidity (R'him et al. 2022). By cultivating crops in enclosed or semi-enclosed systems, the risk of soil erosion caused by wind and water is significantly reduced. Vertical farms and greenhouses use buildings to shield the soil and plants from external climatic conditions which guarantees the minimized erosion and its consequential impact on soil acidity. Under regulated settings, water and nutrient solutions are administered with accuracy and effectiveness, hence minimizing the risk of nutritional depletion (Xu et al. 2020). By balancing micro- and macro-nutrients, the risk of soil acidification is minimized, as these nutrients are not bound or washed away (Fan et al. 2020). The use of soil-less growth medium in various CEA methods also reduces the hazards linked to soil acidification. These systems depend on nutritional solutions that are directly supplied to plant roots, bypassing the need for conventional soil (Kalkhajeh et al. 2021). CEA systems completely exclude the possibility of soil-based acidification processes by not using soil. Finally, a summary of different methods used to prevent/combat soil acidification are enlisted in the Figure 6.2.

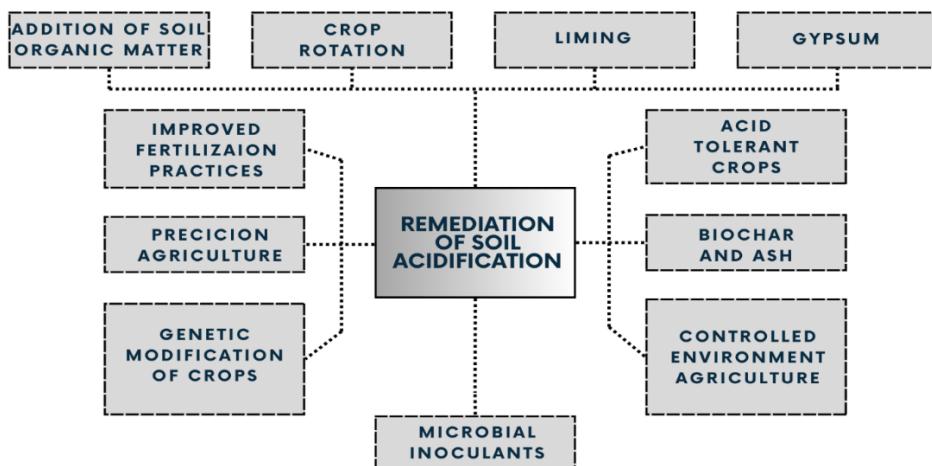


Fig. 6.2. Methods of combating/prevention of soil acidification
 Сл. 6.2. Методе сузбијања/превенције закисељавања земљишта

6.6. Conclusion and future research directions

Soil acidification plays a crucial role in agriculture settings, reducing the capacity of soils to neutralize acids and raises its overall acidity. Erosion also speeds up this process through the breakdown of soil organic matter, producing organic acids that further intensifying the acidity of soils. This, in turn, poses challenges for land management and agricultural activities, reducing food crop's yield. Use of recommended methods such as liming, biochar, addition of organic matter, and genetic modifications in crop plants has been effectively applied in combating soil acidification. Controlled environment agriculture also a viable strategy for reducing adverse effects of soil acidity. But due to the lack of evidences on the effectiveness of the existing technologies, future research direction should focus to screen out and prioritize the optimization of different technologies to produce food crops from acidic soils. Furthermore, it is imperative to do research on the enduring impacts of different technologies on getting higher yields with good soil health, as well as its capacity to be expanded for wider agricultural uses.

Literature

Abdul A M, Brini F, Rouached H, Masmoudi K (2022) Genetically engineered crops for sustainably enhanced food production systems. *Front. Plant Sci.* 13:1027828. doi:10.3389/fpls.2022.1027828

Agegnehu G, Amede T, Erkossa T, Yirga C, Henry C, Tyler R, Nosworthy MG, Beyene S, Sileshi GW (2021) Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. *Acta Agric. Scand. B Soil Plant Sci.* 71:852–869. doi:10.1080/09064710.2021.1954239

Ahmad W, Dijkstra FA, Dalal RC, Singh B (2019) Plant roots are more important than temperature in modulating carbon release in a limed acidic soil. *Eur. J. Soil Sci.* 71:727–739. doi:10.1111/ejss.12899

Altevogt AS, Jaffé PR (2005) Modeling the effects of gas phase CO₂ intrusion on the biogeochemistry of variably saturated soils. *Water Resour. Res.* 41(9):1–9. doi:10.1029/2004WR003819

Antoniadis V, Hatzis F, Bachtsevanidis D, Koutroubas SD (2015) Phosphorus Availability in Low-P and Acidic Soils as Affected by Liming and P Addition. *Commun. Soil Sci. Plant Anal.* 46:1288–1298. doi:10.1080/00103624.2015.1033539

Anjum, Khan AS (2020) Decomposition of soil organic matter is modulated by soil amendments. *Carbon Manag.* 12:37–50. doi:10.1080/17583004.2020.1865038

Babur E, Uslu ÖS, Battaglia ML, Diatta A, Fahad S, Datta R, Zafar-ul-Hye M, Hussain GS, Danish S (2021) Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. *J. Saudi Soc. Agric. Sci.* 20(3):190–197. doi:10.1016/j.jssas.2021.01.005

Bakari R, Mungai N, Thuita M, Masso C (2020) Impact of soil acidity and liming on soybean (*Glycine max*) nodulation and nitrogen fixation in Kenyan soils. *Acta Agric. Scand. B Soil Plant Sci.* 70:667–678. doi:10.1080/09064710.2020.1833976

Bangash SH, Ullah F, Azam S, Hussain S, Hussain T, Fatima I, Sherbano B (2023) Residual Effect of Biochar and Legumes on Soil Fertility, Yield and Yield Components of Wheat. *J. Soil Plant Environ.* 2(2):47–62. doi:10.56946/jspae.v2i2.275

Boechat CL, Pistóia VC, Ludtke AC, Gianello C, Camargo FAO (2016) Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances. *Rev. Bras. Ciênc. Solo* 40:e0150383. doi:10.1590/18069657rbcs20150383

Bolan N, Sarmah AK, Bordoloi S, Bolan S, Padhye LP, Van Zwieten L, Sooriyakumar P, Khan BA, Ahmad M, Solaiman ZM (2023) Soil acidification and the liming potential of biochar. *Environ. Pollut.* 317:120632. doi:10.1016/j.envpol.2022.120632

Bossolani JW, Cruscio CA, Leite MF, Merloti LF, Moretti LG, Pascoaloto IM, Kuramae EE (2021) Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation system. *Soil Biol. Biochem.* 156:108188. doi:10.1016/j.soilbio.2021.108188

Breza LC, Mooshammer M, Bowles TM, Jin VL, Schmer MR, Thompson B, Grandy AS (2023) Complex crop rotations improve organic nitrogen cycling. *Soil Biol. Biochem.* 177:108911. doi:10.1016/j.soilbio.2022.108911

Cai Z, Wang B, Zhang L, Wen S, Xu M, Misselbrook TH, Carswell AM, Gao S (2021) Striking a balance between N sources: Mitigating soil acidification and accumulation of phosphorous and heavy metals from manure. *Sci. Total Environ.* 754:142189. doi:10.1016/j.scitotenv.2020.142189

Chen Y, Li S, Liu N, He H, Cao X, Lv C, Zhang K, Dai J (2021) Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. *Environ. Sci. Pollut. Res.* 28:23036–23047. doi:10.1007/s11356-020-12203-y

Cheng L, Zhu J, Chen G, Zheng X, Oh NH, Rufty TW, Richter D, Hu S (2010) Atmospheric CO₂ enrichment facilitates cation release from soil. *Ecol Lett* 13:284–291. doi:10.1111/j.1461-0248.2009.01421.x

Choma M, Tahovská K, Kaštovská E, Bárta J, Růžek M, Oulehle F (2020) Bacteria but not fungi respond to soil acidification rapidly and consistently in both a spruce and beech forest. *FEMS Microbiol. Ecol.* 96(10):fiaa174. doi:10.1093/femsec/fiaa174

Dane S, Laugale V, Lepse L, Siliņa D (2017) Influence of legumes on soil fertility in strawberry – legume intercropping. *Agric. Sci. (Crop Sci., Anim. Sci.)* 2:26–32. doi:10.22616/rrd.23.2017.045

Daraz U, Li Y, Sun Q, Zhang M, Ahmad I (2021) Inoculation of *Bacillus* spp. modulate the soil bacterial communities and available nutrients in the rhizosphere of vetiver plant irrigated with acid mine drainage. *Chemosphere* 263:128345. doi:10.1016/j.chemosphere.2020.128345

Datta B, Adhikari M (1973) Effect of Weathering and Parent Materials on Clay Mineralisation-Part III. *J. Indian Chem. Soc.* 50(1):54–58

Dietzen C, Rosing MT (2023) Quantification of CO₂ uptake by enhanced weathering of silicate minerals applied to acidic soils. *Int. J. Greenh. Gas Control* 125:103872. doi:10.1016/j.ijggc.2023.103872

Ewubare PO, Omokaro GO, Ewansiha OE, Edosa JO (2023) Microbial Inoculants in Agriculture - A Microbiological Review from A Nigerian Perspective. *Am. J. Life Sci. Innov.* 2(3):39–43. doi:10.54536/ajlisi.v2i3.2241

Fan YN, Zhang Y, Hess F, Huang B, Chen Z (2020) Nutrient balance and soil changes in plastic greenhouse vegetable production. *Nutrient Cycling in Agroecosystems. Nutr. Cycl. Agroecosyst.* 117:77–92. doi:10.1007/s10705-020-10057-x

Faria JMS, Teixeira DM, Pinto AP, Brito I, Barrulas P, Carvalho MD (2021) Aluminium, Iron and Silicon Subcellular Redistribution in Wheat Induced by Manganese Toxicity. *Appl. Sci.* 11(18):8745. doi:10.3390/app11188745

Farooqi ZUR, Hussain MM, Ayub MA, Qadir AA, Ilić P (2022) Potentially toxic elements and phytoremediation: opportunities and challenges. *Phytoremediation*, 19–36. doi:10.1016/B978-0-323-89874-4.00020-0

Farooqi ZUR, Qadir AA, Ilić P, Zeeshan N, Tunguz V, Pržulj N (2023) Restoration and preservation of degraded soils for crop production. In: Ilić P, Govedar Z, Pržulj N (eds) *Environment. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LV*:243–283. doi:10.7251/EORU2309243F

Farooqi ZUR, Sohail M, Alserae H, Qadir AA, Hussain T, Ilić P, Riaz S, Zafar Z (2024) Management of Soil Degradation: A Comprehensive Approach for Combating Soil Degradation, Food Insecurity, and Climate Change. *Ecosystem Management: Climate Change and Sustainability*, 55–78. doi:10.1002/9781394231249.ch3

Fujii K, Kanetani S, Tetsuka K (2020) Effects of volcanic parent materials on the acid buffering capacity of forest soils on Yakushima Island, Japan. *Soil Sci. Plant Nutr.* 66:680–692. doi:10.1080/00380768.2020.1812363

Gao L, Zhou Z, Reyes AV, Guo L (2018) Yields and characterization of dissolved organic matter from different aged soils in northern Alaska. *J. Geophys. Res. Biogeosci.* 123:2035–2052. doi:10.1029/2018JG004408

Gao Y, Song X, Liu K, Li T, Zheng W, Wang Y, Liu Z, Zhang M, Chen Q, Li Z (2021) Mixture of controlled-release and conventional urea fertilizer application changed soil aggregate stability, humic acid molecular composition, and maize nitrogen uptake. *Sci. Total Environ.* 789:147778. doi:10.1016/j.scitotenv.2021.147778

Geng N, Kang X, Yan X, Yin N, Wang H, Pan H, Yang Q, Lou Y, Zhuge Y (2022) Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature. *Ecotoxicol. Environ. Saf.* 232:113241. doi:10.1016/j.ecoenv.2022.113241

Gerke J (2022) The central role of soil organic matter in soil fertility and carbon storage. *Soil Syst.* 6(2):33. doi:10.3390/soilsystems6020033

Gilbert B, Lu G, Kim CS (2007) Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. *J. Colloid Interface Sci.* 313:152–159. doi:10.1016/j.jcis.2007.04.038

Goulding KW (2016) Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. *Soil Use. Manag.* 32:390–399. doi:10.1111/sum.12270

Gowda RC, Veeranagappa P, Hanumanthappa DC, Singh M (2017) Soil Enzyme Activities, Microbial Diversity and Available Nutrients Status of an Alfisol under Long Term Fertilization. *Int. J. Curr. Microbiol. Appl. Sci.* 6:1483–1491. doi:10.20546/ijcmas.2017.605.161

Grenni P, Falconi F, Caracciolo AB (2012) Microcosm Experiments for Evaluating Natural Bioremediation of Contaminated Ecosystems. *Chem. Eng. Trans.* 28:7–12. doi:10.3303/CET1228002

Guerra VA, Beule L, Mackowiak CL, Dubeux JCB, Jr Blount ARS, Wang XB, Rowland DL, Liao HL (2022) Soil bacterial community response to rhizoma peanut incorporation into Florida pastures. *J. Environ. Qual.* 51:55–65. doi:10.1002/jeq2.20307

Gunasekera HDBH, Silva RCLD (2020) Study of the Effects of Soil Acidity and Salinity on Aluminium Mobility in Selected Soil Samples in Sri Lanka. *Asian J. Environ. Ecol.* 13(4):58–67. doi: 10.9734/AJEE/2020/v13i430191

Gurmessa B (2021) Soil acidity challenges and the significance of liming and organic amendments in tropical agricultural lands with reference to Ethiopia. *Environ. Dev. Sustain.* 23:77–99. doi:10.1007/s10668-020-00615-2

Han T, Cai A, Liu K, Huang J, Wang B-R, Li D, Qaswar M, Feng G, Zhang H (2018) The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. *J. Soils Sediments* 19:1382–1392. doi:10.1007/s11368-018-2145-6

Hayashi R, Maie N, Wagai R, Hirano Y, Matsuda Y, Okamoto T, Wada R, Tanikawa T (2023) Soil acidity accelerates soil organic matter decomposition in *Cryptomeria japonica* stands and *Chamaecyparis obtusa* stands. *Plant Soil* 494:627–649. doi:10.1007/s11104-023-06308-9

He J, Cai J, Lei T, Song M, Liu H, Wang X (2022) Characteristics comparison and occurrence mode of different types of soluble organic matter in lacustrine shale in the Dongying Sag, eastern China. *Int. J. Coal Geol.* 254:103971. doi:10.1016/j.coal.2022.103971

Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, Galy VV (2019) Mineral protection regulates long-term global preservation of natural organic carbon. *Nature* 570:228–231. doi:10.1038/s41586-019-1280-6

Hodges L, Steinegger DH (1991) NF91-43 Blossom End Rot in Tomatoes.

Horn EL, Cooledge EC, Jones DL, Hoyle FC, Brailsford FL, Murphy DV (2021) Addition of base cations increases microbial carbon use efficiency and biomass in acidic soils. *Soil Biol. Biochem.* 161:108392. doi:10.1016/j.soilbio.2021.108392

Horn R, Peth S (2009) Soil structure formation and management effects on gas emission. *Biologia* 64:449–453. doi: 10.2478/s11756-009-0089-4

Hu Y, Chen J, Hui D, Wang YP, Li J, Chen J, Chen G, Zhu Y, Zhang L, Zhang D, Deng Q (2022) Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. *Glob Chang Biol* 28:3605–3619. doi:10.1111/gcb.16135

Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M (2023) Soil acidification and salinity: the importance of biochar application to agricultural soils. *Front. Plant Sci.* 14:1206820. doi:10.3389/fpls.2023.1206820

Hussain IAI, Ali I, Ullah S, Iqbal A, Al Tawaha AR, Al-Tawaha AR, Thangadurai D, Sangeetha J, Rauf A, Saranraj P, Al Sultan W, Al-Taey DKA, Youssef RA, Sirajuddin SN (2021) Agricultural soil reclamation and restoration of soil organic matter and nutrients via application of organic, inorganic and bio fertilization (Mini review). *IOP Conf. Ser. Earth Environ. Sci.* 788:012165. doi:10.1088/1755-1315/788/1/012165

Ilić P, Govedar Z, Trkulja V (2023) Environmental protection between pollution, protection and legislation. In: Ilić P, Govedar Z, Pržulj N (eds) *Environment. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LV:1–42.* doi:10.7251/EORU2309001

Ilić P, Ilić S, Mushtaq Z, Rashid A, Stojanović Bjelić Lj, Nešković Markić D, Mrazovac Kurilić S, Farooqi ZUR, Jat Baloch MY, Mehmood T, Ullah Z, Riaz S (2024a) Assessing the Ecological Risks and Spatial Distribution of Heavy Metal Contamination at Solid Waste Dumpsites. *Eurasian Soil Sc.* 7:1–22. doi:10.1134/S1064229324700303

Ilić P, Ilić S, Nešković Markić D, Stojanović Bjelić L, Farooqi ZUR, Sole B, Adimalla N (2021a) Source Identification and Ecological Risk of Polycyclic Aromatic Hydrocarbons in Soils and Groundwater. *Ecol. Chem. Eng. S.* 28(3):355–363. doi:10.2478/eces-2021-0024

Ilić P, Ilić S, Nešković Markić D, Stojanović Bjelić L, Popović Z, Radović B, Mrazovac Kurilić S, Farooqi ZUR, Mehmood T, Mohamed MH, Kouadri S (2022) Ecological Risk of Toxic Metal Contamination in Soil around Coal Mine and Thermal Power Plant. *Pol. J. Environ. Stud.* 31(5):4147–4156. doi:10.15244/pjoes/148071

Ilić P, Ilić S, Rashid A, Mushtaq Z, Mrazovac Kurilić S, Stojanović Bjelić Lj, Nešković Markić D, Farooqi ZUR, Jat Baloch MY, Mehmood T, Ullah Z, Riaz S (2024b) Exposure Levels, Health Risks, Spatially Distribution, Multivariate Statistics and

Positive Matrix Factorization Model of Heavy Metals from Wild solid Waste Dumpsites. *Water Air Soil Pollut.* 235:648. doi:10.1007/s11270-024-07441-6

Ilić P, Nešković Markić D, Stojanović Bjelić LJ, Farooqi, ZUR (2021b) Polycyclic Aromatic Hydrocarbons in Different Layers of Soil and Groundwater—Evaluation of Levels of Pollution and Sources of Contamination. *Pol. J. Environ. Stud.* 30(2):1191–1201. doi:10.15244/pjoes/125565

Ilić P, Nišić T, Farooqi ZUR (2021c) Occurrence of Specific Polychlorinated Biphenyls Congeners in an Industrial Zone. *Pol. J. Environ. Stud.* 30(1):635–643. doi:10.15244/pjoes/123607

Ilić P, Nišić T, Farooqi ZUR (2021d) Polycyclic Aromatic Hydrocarbons Contamination of Soil in an Industrial Zone and Evaluation of Pollution Sources. *Pol. J. Environ. Stud.* 30(1):635–643. Doi:10.15244/pjoes/119095

Ilić P, Nišić T, Ilić S, Stojanović Bjelić LJ (2020) Identifying New ‘Hotspot’ Heavy Metal Contamination in Industrial Zone Soil. *Pol. J. Environ. Stud.* 29(4):2987–2993. doi:10.15244/pjoes/113095

Ilić P, Pržulj N, Erić O, Nešković Markić D (2024) Circular Economy: Implications for Pollution Reduction and Environmental Sustainability. In: Ilić P, Pržulj N (eds) Circular Economy. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LX:1–30. doi:10.7251/PRB2401001

Jeon I, Nam K (2019) Change in the site density and surface acidity of clay minerals by acid or alkali spills and its effect on pH buffering capacity. *Sci. Rep.* 9:9878. v

Jia M, Yu J, Li Z, Wu L, Christie P (2021) Effects of biochar on the migration and transformation of metal species in a highly acid soil contaminated with multiple metals and leached with solutions of different pH. *Chemosphere* 278:130344. doi:10.1016/j.chemosphere.2021.130344

Ji-zheng H (2002) The factors of influence accelerating soil acidification under acidic deposition. *Soil Environ. Sci.* 11(2):152–157.

Kalkhajeh YK, Huang B, Hu W, Ma C, Gao H, Thompson ML, Hansen HCB (2021) Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. *Agric. Ecosyst. Environ.* 307:107230. doi:10.1016/j.agee.2020.107230

Kamran M, Jiang J, Li J-Y, Shi R-Y, Mehmood K, Baqy MA-A, Xu R-K (2018) Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils. *Arab. J. Geosci.* 11:1–15. doi:10.1007/s12517-018-3616-1

Karna RR, Hettiarachchi GM, Van Nostrand JD, Yuan T, Rice CW, Assefa Y, Zhou J (2018) Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface. *Soil Syst.* 2(4):60. doi:10.3390/soilsystems2040060

Kedir J, Yakob A (2021) Role of bio char on the amelioration of soil acidity. *Agrotechnology* 10(4):212

Khomutovska N, Jasser I, Isidorov VA (2024) Unraveling the Role of Bacteria in Nitrogen Cycling: Insights from Leaf Litter Decomposition in the Knyszyn Forest. *Forests*. 15(6):1065. doi:10.3390/f15061065

Kirsten M, Mikutta R, Vogel C, Thompson A, Mueller CW, Kimaro DN, Bergsma HL, Feger K-H, Kalbitz K (2021) Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics. *Sci. Rep.* 11:5076. doi:10.1038/s41598-021-84777-7

Kleber M, Bourg IC, Coward EK, Hansel CM, Myneni SC, Nunan N (2021) Dynamic interactions at the mineral–organic matter interface. *Nat. Rev. Earth Environ.* 2:402–421. doi:10.1038/s43017-021-00162-y

Kubheka BP, Laing MD, Yobo KS (2020) Combinations of a biofertilizer with micro-dosed chemical fertilizers increased yield of maize in a high acid saturated soil. *Rhizosphere* 13:100189. doi:10.1016/j.rhisph.2020.100189

Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: current status and future prospects. *Planta* 251:91. doi:10.1007/s00425-020-03372-8

Li S, Kang X, Zuo Z, Islam MS, Yang S, Liu Y, Huang X (2024) Dynamic pH regulation drives Nitrosomonas for high-rate stable acidic partial nitritation. *Water Res.* 262:122078. doi:10.1016/j.watres.2024.122078

Lin Y, Hu H-W, Ye G, Fan J, Ding W, He Z-Y, Zheng Y, He J-Z (2021) Ammonia-oxidizing bacteria play an important role in nitrification of acidic soils: a meta-analysis. *Geoderma* 404:115395. doi:10.1016/j.geoderma.2021.115395

Liu T, Yang L, Hu Z, Xue J, Lu Y, Chen X, Griffiths BS, Whalen JK, Liu M (2020a) Biochar exerts negative effects on soil fauna across multiple trophic levels in a cultivated acidic soil. *Biol. Fertil. Soils* 56:597–606. doi:10.1007/s00374-020-01436-1

Liu X, Li C, Meng M, Zhai L, Zhang B, Jia Z, Gu Z, Liu Q, Zhang Y, Zhang J (2020b) Comparative effects of the recovery from sulfuric and nitric acid rain on the soil enzyme activities and metabolic functions of soil microbial communities. *Sci. Total Environ.* 714:136788. doi:10.1016/j.scitotenv.2020.136788

Liu Z, Li D, Zhang J, Saleem M, Zhang Y, Ma R, He Y, Yang J, Xiang H, Wei H (2020c) Effect of simulated acid rain on soil CO₂, CH₄ and N₂O emissions and microbial communities in an agricultural soil. *Geoderma* 366:114222. doi:10.1016/j.geoderma.2020.114222

Lopes MJDS, Dias-Filho MB, Gurgel ESC (2021) Successful plant growth-promoting microbes: inoculation methods and abiotic factors. *Front. Sustain. Food Syst.* 5:606454. doi:10.3389/fsufs.2021.606454

Malić N, Ilić P, Mrazovac Kurilić S (2025) Contamination, Risk Assessment and Spatial Distribution of Harmful Metals in Soil Near Stanari (B&H). *Ecol. Chem. Eng. S*, 32(1):27-41. doi:10.2478/eces-2025-0002

Malik AA, Puissant J, Buckeridge KM, Goodall T, Jehmlich N, Chowdhury S, Gweon HS, Peyton JM, Mason KE, van Agtmaal M (2018) Land use driven change in

soil pH affects microbial carbon cycling processes. *Nat. Commun.* 9:3591. doi:10.1038/s41467-018-05980-1

Mehmood T, Bibi S, Shafqat M, Mustafa B, Peng L, Ilić P, Anwar-ul-Haq M, Sattar M, Faheem M (2024) Water Purification and Role of Nanobiotechnology. In: Faheem M, Ditta A, Du J (eds) *Nanomaterials in Industrial Chemistry*. CRC Press. Monograph 108-135.

Michael PS (2021) Role of organic fertilizers in the management of nutrient deficiency, acidity, and toxicity in acid soils—A review. *J. Glob. Agric. Ecol.* 12:19–30.

Mihajlović D, Srdić S, Benka P, Čereković N, Ilić P, Radanović D, Antić-Mladenović S (2025) Potentially toxic elements in the agricultural soils of northwestern Bosnia and Herzegovina: spatial and vertical distribution, origin and ecological risk. *Environ. Monit. Assess.* 197(3):1-15. doi:10.1007/s10661-025-13758-4

Mockeviciene I, Repsiene R, Amaleviciute-Volunge K, Karcauskiene D, Slepeliene A, Lepane V (2022) Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. *Arch. Agron. Soil Sci.* 68:1192–1204. doi:10.1080/03650340.2021.1875130

Mohankumark T (2018) Role of Soil Microbes and their Cell Components on Stabilization of Soil Organic Carbon. In: Datta R, Meena RS (eds) *Soil Carbon Stabilization to Mitigate Climate Change*. Springer, Singapore (pp 169–204) doi:10.1007/978-981-33-6765-4_5

Mohinuzzaman M, Yuan J, Yang X, Senesi N, Li S-L, Ellam RM, Mostofa KM, Liu C-Q, (2020) Insights into solubility of soil humic substances and their fluorescence characterisation in three characteristic soils. *Sci. Total Environ.* 720:137395. doi:10.1016/j.scitotenv.2020.137395

Mpanga IK, Nkebiwe PM, Kuhlmann M, Cozzolino V, Piccolo A, Geistlinger J, Berger N, Ludewig U, Neumann G (2019) The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize. *Microorganisms* 7. doi:10.3390/microorganisms7020038

Nešković Markić D, Bjelić D, Stojanović Bjelić Lj, Ilić P (2023) Municipal waste management in Republic of Srpska: current and future challenges. In: Ilić P, Govedar Z, Pržulj N (eds) *Environment. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LV*:377–402. doi:10.7251/EORU2309377M

Nešković Markić D, Ilić P (2024) Circular Economy: Advantages and Disadvantages. In: Ilić P, Pržulj N (eds) *Circular Economy. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LX*:31–56. doi:10.7251/PRB2401031M

Nešković Markić D, Stojanović Bjelić Lj, Ilić P (2021) *Održivo upravljanje otpadom. Panevropski univerzitet Apeiron, Banja Luka*

Ning Q, Hättenschwiler S, Lü X, Kardol P, Zhang Y, Wei C, Xu C, Huang J, Li A, Yang J, Wang J, Peng Y, Peñuelas J, Sardans J, He J, Xu Z, Gao Y, Han X (2021) Carbon limitation overrides acidification in mediating soil microbial activity to

nitrogen enrichment in a temperate grassland. *Glob. Chang. Biol.* 27:5976–5988. doi:10.1111/gcb.15819

Nogaroli JA, Fonseca AF (2020) Acidity Control After Surface Application of Micronized Liming Material in a Typic Distrudept Under No-Tillage. *Braz. Arch. Biol. Technol.* 63:spe. doi:10.1590/1678-4324-2020190411

O'Callaghan M, Ballard RA, Wright D (2022a) Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. *Soil Use Manag.* 38(3):1340–1369. doi:10.1111/sum.12811

Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L (2023) Aluminum in plant: Benefits, toxicity and tolerance mechanisms. *Front. Plant Sci.* 13:1085998. doi:10.3389/fpls.2022.1085998

Olego M, Cuesta-Lasso MD, Visconti Reluy F, López R, López-Losada A, Garzón-Jimeno E (2022) Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil. *Plants (Basel)* 11(21):2871. doi:10.3390/plants11212871

Pierzynski J, Hettiarachchi GM (2018) Reactions of Phosphorus Fertilizers with and without a Fertilizer Enhancer in Three Acidic Soils with High Phosphorus-Fixing Capacity. *Soil Sci. Soc. Am. J.* 82(5):1124–1139. doi:10.2136/sssaj2018.01.0064

Porębska G, Mulder J (1996) The chemistry of aluminium in strongly acidified sandy soil in Poland. *Eur. J. Soil Sci.* 47:81–87. doi:10.1111/j.1365-2389.1996.tb01374.x

Prescott CE, Vesterdal L (2021) Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. *For. Ecol. Manage.* 498:119522. doi:10.1016/j.foreco.2021.119522

Pržulj N, Tunguz V (2022) Significance of harvest residues in sustainable management of arable land I. Decomposition of harvest residues. *Arch. Tech. Sci.* 26(1):61–70. doi:10.7251/afts.2022.1426.061P

Pržulj N, Tunguz V, Jovović Z, Velimirović A (2022) The significance of harvest residues in sustainable management of arable land II. Harvest residues management. *Arch. Tech. Sci.* 27(1):49–56. doi:10.7251/afts.2022.1427.049P

Pržulj N, Velimirović A, Petrović D, Ilić P, Miroslavljević M, Trkulja V, Jovović Z (2024) From the Stone Hoe to Circular Agriculture. In: Ilić P, Pržulj N (eds) *Circular economy. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Monograph LX*:119–168. doi:10.7251/PRB2401119P

Qaswar M, Dongchu L, Jing H, Tianfu H, Ahmed W, Abbas M, Lu Z, Jiangxue D, Khan ZH, Ullah S (2020) Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system. *Sci. Rep.* 10:19828. doi:10.1038/s41598-020-76892-8

Qiao C, Liu L, Hu S, Compton JE, Greaver TL, Li Q (2015) How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. *Glob. Chang. Biol.* 21:1249–1257. doi:10.1111/gcb.12802

R'him T, Romdhane L, Nicoletto C, Imen T, Ilahy R, Ghannem S, Radhouane L (2022) Changes in morphological and physiological parameters affecting lettuce cultivars due to nitrogen fertilizer in greenhouse tunnel. *J. Postharvest Technol.* 10(1):19–34.

Rafeeq H, Afsheen N, Rafique S, Arshad A, Intsar M, Hussain A, Bilal M, Iqbal HM, (2023) Genetically engineered microorganisms for environmental remediation. *Chemosphere* 310:136751. doi:10.1016/j.chemosphere.2022.136751

Rahman MA, Lee SH, Ji HC, Kabir AH, Jones CS, Lee KW (2018) Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. *Int. J. Mol. Sci.* 19(10):3073. doi:10.3390/ijms19103073

Raza S, Zamanian K, Ullah S, Kuzyakov Y, Virto I, Zhou J (2021) Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. *J. Clean. Prod.* 315:128036. doi:10.1016/j.jclepro.2021.128036

Sánchez-Galindo LM, Sandmann D, Marian F, Lauermann T, Maraun M, Scheu S, (2022) Differences in leaf and root litter decomposition in tropical montane rainforests are mediated by soil microorganisms not by decomposer microarthropods. *PeerJ* 10:e14264. doi:10.7717/peerj.14264

Sharpley AN (1991) Effect of soil pH on cation and anion solubility. *Commun. Soil Sci. Plant Anal.* 22:827–841. doi:10.1080/00103629109368457

Shehrawat PS, Aditya BS, Arulmanikandan B (2023) A Study on Farmers' Knowledge and Use of Soil Health Practices for Crop Production in Hisar District of Haryana. India. *Int. J. Plant Soil Sci.* doi:10.9734/ijpss/2023/v35i193775

Shetty R, Prakash NB (2020) Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. *Sci. Rep.* 10:12249. doi:10.1038/s41598-020-69262-x

Shetty R, Vidya CS-N, Prakash NB, Lux A, Vaculík M (2021) Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. *Sci. Total Environ.* 765:142744. doi:10.1016/j.scitotenv.2020.142744

Shiyal V, Patel VM, Patel HK, Rathwa M, Patel P (2022) Biochar: An Emerging Soil Amendment for Sustaining Soil Health and Black Gold for Indian Agriculture. *J. Exp. Agric. Int.* 44(12):6–12. doi:10.9734/jeai/2022/v44i122072

Song B, Li Y, Yang L, Shi H, Li L, Bai W, Zhao Y (2023) Soil Acidification Under Long-Term N Addition Decreases the Diversity of Soil Bacteria and Fungi and Changes Their Community Composition in a Semiarid Grassland. *Microb. Ecol.* 85:221–231. doi:10.1007/s00248-021-01954-x

Soong JL, Fuchsleger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A (2020) Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. *Glob. Chang. Biol.* 26:1953–1961. doi:10.1111/gcb.14962

Stojanović Bjelić LJ, Ilić P, Nešković Markić D, Ilić S, Popović Z, Mrazovac Kurilić S, Mihajlović D, Farooqi ZUR, Jat Baloch MY, Mohamed MH, Ahmed, M. (2023b) Contamination in Water and Ecological Risk of Heavy Metals near a Coal Mine

and a Thermal Power Plant (Republic of Srpska, Bosnia and Herzegovina). *Appl. Ecol. Environ. Res.* 21(5):3807–3822. doi:10.15666/aeer/2105_38073822

Stojanović Bjelić Lj, Nešković Markić D, Ilić P (2023a) Water quality and protection. In: Ilić P, Govedar Z, Pržulj N (eds) *Environment. Academy of Sciences and Arts of the Republic of Srpska*, Banja Luka, Monograph LV:43–67. doi:10.7251/EORU2309043B

Stojanović Bjelić LJ, Nešković Markić D, Ilić P, Farooqi ZUR (2022) Polycyclic Aromatic Hydrocarbons in Soils in Industrial Areas: Concentration and Risks to Humans Health. *Pol. J. Environ. Stud.* 31(1):595–608. doi:10.15244/pjoes/137785

Sun W, Li S, Zhang G, Fu G, Qi H, Li T (2023) Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. *Glob. Ecol. Conserv.* 45:e02532. doi:10.1016/j.gecco.2023.e02532

Syed N, Karthikeyan S, Dhananjeyan B, Suresh M, Kamaludeen SPB (2022) Distribution of Microorganisms and Fractionation of Sulphur in Anthropogenic Wetlands under Long-term Elevated CO₂. *Soil. Int. J. Plant Soil Sci.* 34(23):1221–1230. doi:10.9734/ijpss/2022/v34i232536

Tabak M, Lisowska A, Filipek-Mazur B (2020) Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity. *Processes* 8:863. doi:10.3390/pr8070863

Tadini AM, Nicolodelli G, Senesi GS, Ishida DA, Montes CR, Lucas Y, Mounier S, Guimarães FE, Milori DM (2018) Soil organic matter in podzol horizons of the Amazon region: Humification, recalcitrance, and dating. *Sci. Total Environ.* 613:160–167. doi:10.1016/j.scitotenv.2017.09.068

Trkulja V, Tomić A, Pržulj N, Ilić P (2023) Sustainable use of pesticides in environmental protection. In: Ilić P, Govedar Z, Pržulj N (eds) *Environment. Academy of Sciences and Arts of the Republic of Srpska*, Banja Luka, Monograph LV:643–696. doi:10.7251/EORU2309643T

Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmidt T, Datta R (2020) Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. *Agriculture* 10(8):334. doi:10.3390/agriculture10080334

Wang J, Tu X, Zhang H, Cui J, Ni K, Chen J, Cheng Y, Zhang J, Chang SX (2020) Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil. *Sci. Total Environ.* 747:141340. doi:10.1016/j.scitotenv.2020.141340

Wang Y, Li J, Pan Y, Chen J, Liu Y (2023a) Metabolic Responses to Manganese Toxicity in Soybean Roots and Leaves. *Plants (Basel)* 12(20):3615. doi:10.3390/plants12203615

Wang Y, Luo D, Xiong Z, Wang Z, Gao M (2023b) Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. *Soil Tillage Res.* 225:105543. doi:10.1016/j.still.2022.105543

Wang Y, Yao Z, Zhan Y, Zheng X, Zhou M, Yan G, Wang L, Werner C, Butterbach-Bahl K (2021) Potential benefits of liming to acid soils on climate change mitigation and food security. *Glob. Change Biol.* 27:2807–2821. doi:10.1111/gcb.15607

Warke A, Wakgari T (2024) A Review on the Impact of Soil Acidification on Plant Nutrient Availability, Crop Productivity, and Management Options in the Ethiopian Highlands. *Agric. For. Fish.* 13(2):31–45. doi:10.11648/j.aff.20241302.13

Xia H, Riaz M, Zhang M, Liu B, El-Dessouki Z, Jiang C (2020) Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil. *Ecotoxicol. Environ. Saf.* 196:110531. doi:10.1016/j.ecoenv.2020.110531

Xiao H, Wang B, Lu S, Chen D, Wu Y, Zhu Y, Hu S, Bai Y (2020) Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands. *Glob. Change Biol.* 26:4626–4637. doi:10.1111/gcb.15167

Xu Y, Li J, Yin X (2020) Continuous cropping affects gross nitrogen transformations in subtropical acidic soils under greenhouse cultivation. *J. Soil Sci. Plant Nutr.* 20:1596–1604. doi:10.1007/s42729-020-00231-z

Yang L, Wei T, Li S, Lv Y, Miki T, Yang L, Nagasaka T (2021) Immobilization persistence of Cu, Cr, Pb, Zn ions by the addition of steel slag in acidic contaminated mine soil. *J. Hazard. Mater.* 412:125176. doi:10.1016/j.jhazmat.2021.125176

Yang X, Zhang J, Mostofa KM, Mohinuzzaman M, Teng HH, Senesi N, Senesi GS, Yuan J, Liu Y, Li S-L (2024) Solubility characteristics of soil humic substances as a function of pH. *EGUSphere* 2024:1–34. doi:10.5194/egusphere-2023-2994

Yao R, Li H, Yang J, Yin C, Wang X, Xie W, Zhang X (2021) Interactive effects of amendment materials and soil salinity on net rates of urea hydrolysis and nitrification in salt-affected soil. *J. Soil Sci. Plant Nutr.* 21:3414–3427. doi:10.1007/s42729-021-00616-8

Yuan JES, Che Z (2021) Base cation-enhancing role of corn straw biochar in an acidic soil. *Soil Use Manag.* 38:1322–1336. doi:10.1111/sum.12782

Zhang H, Wang L, Fu W, Xu C, Zhang H, Xu X, Ma H, Wang J, Zhang Y (2024a) Soil Acidification Can Be Improved under Different Long-Term Fertilization Regimes in a Sweetpotato-Wheat Rotation System. *Plants (Basel)* 13(13):1740. doi:10.3390/plants13131740

Zhang X, Shan X, Fu H, Sun Z (2022a) Effects of artificially-simulated acidification on potential soil nitrification activity and ammonia oxidizing microbial communities in greenhouse conditions. *PeerJ* 10:e14088. doi:10.7717/peerj.14088

Zhang Y, Ye C, Su Y, Peng W, Lu R, Liu Y, Huang H, He X, Yang M, Zhu S (2022b) Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. *Agric. Ecosyst. Environ.* 340:108176. doi:10.1016/j.agee.2022.108176

Zhou S, Kong J, Song Z, Zhang X, Bi X (2022) Manganese reduction regulates soil organic carbon loss from an acidified Cambisol. *Eur. J. Soil Sci.* 73:e13333. doi:10.1111/ejss.13333

Закисељавање земљишта: процеси, ефекти на земљиште и биљке и стратегије ремедијације

Зиа Ур Рахман Фаруки, Ајеша Абдул Кадир, Собиа Ријаз, Захур Муджеддед Чаудхари, Вакас Мохи Уд Дин, Предраг Илић, Ново Пржулј

Сажетак

Закисељавање земљишта представља неповољно смањење pH вриједности земљишта и спада међу најчешће типове деградације земљишта. Примарно је узроковано разградњом органске материје у земљишту (ОМЗ), временским утицајима на минерале, киселим матичним материјалом, киселим кишама под утицајем индустријских емисија, неправилним пољопривредним активностима (монокультурама) и употребом киселих ћубрива. Истраживања показују да закисељавање земљишта значајно утиче на његову плодност смањењем доступности хранљивих материја, нарушавањем структуре земљишта, промјеном микробиолошке заједнице, нарушеним циклусом хранљивих материја, повећаном растворљивошћу метала и посљедичним загађењем земљишта и воде. Закисељавање земљишта такође утиче на продуктивност усјева, јер ниска pH вриједност оштећује коријенове усјева, смањујући апсорпцију хранљивих материја, што доводи до мањих приноса. Овакве неповољне посљедице за земљиште усљед закисељавања захтијевају селективне мјере санације, као што су крчење, узгој кисело-отпорних усјева, додавање органске материје, биоугља и пепела, ротација усјева и генетска модификација усјева за толеранцију на киселе услове. У овом поглављу аутори су свеобухватно сажели узроке и процесе развоја закисељавања у земљиштима, његов утицај на здравље земљишта и усјева, као и мјере санације.

Кључне ријечи: закисељавање земљишта, деградација земљишта, крчење, губитак органске материје земљишта, доступност хранљивих материја