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ISOGEOMETRIC – BASED DYNAMIC ANALYSIS OF BERNOULLI – 

EULER CURVED BEAM SUBJECTED TO MOVING LOAD  

Abstract:  

In this paper dynamic analysis of a curved Bernoulli – Euler beam subjected to a moving load is 

presented. Moving load is modelled as a single force with constant magnitude and direction, which 

moves along its trajectory. Plane curved Bernoulli – Euler beam element is formulated using 

isogeometric approach where both the displacement field and geometry of the beam are described 

using NURBS basis functions. Behavior of the beam element is defined and studied in the case of 

linear formulation where displacements and displacement gradients are assumed to be small. 

Validation of the proposed approach is presented for the plane curved beam subjected to moving 

load with constant velocity, magnitude and direction. 

Keywords: isogeometric Bernoulli – Euler curved beam, moving load, linear analysis 

ДИНАМИЧКА АНАЛИЗА РАВАНСКЕ 
ИЗОГЕОМЕТРИЈСКЕБЕРНУЛИ – ОЈЛЕРОВЕ КРИВЕ ГРЕДЕ 
ОПТЕРЕЋЕНЕ ПОКРЕТНИМ ОПТЕРЕЋЕЊЕМ ПРИМЕНОМ 
ИЗОГЕОМЕТРИЈСКОГ ПРИСТУПА 

Сажетак:  
У овом раду приказана је динамичка анализа криволинијског Бернули – Ојлеровог гредног 
носача оптерећеног покретним оптерећењем. Покретно оптерећење је дефинисано као 
концентрисана сила константног интензитета, правца и смера, која се креће по својој 
трајекторији. Раванска криволинијска греда је формулисана применом изогеометријског 
приступа где се поље померања описује истим функцијама као и геометрија конструкције, 
НУРБС функцијама. Анализа утицаја покретног оптерећења на конструкцију се врши у 
условима малих померања и градијената померања, тј. у условима линеарне анализе. 
Валидација приказаног приступа је дата на примеру раванске криволинијске греде која је 
оптерећена покретним оптерећењем константног интензитета, правца, смера и брзине 
кретања.  
Кључне ријечи: изогеометријска Бернули – Ојлерова крива греда, покретно оптерећење, 

линеарна анализа 
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1. INTRODUCTION  

Moving load generates dynamic response, which can be critical for bridges and cranes amongst 

others. This load, generated by the moving mass on the structure, is usually modelled as a 

gravitational force with constant magnitude and direction [1, 2]. Using this formulation the inertial 

part of moving mass is neglected which can be significant in some cases [3]. It is essential to define 

moving load trajectory and its position of the structure at each time. In linear dynamic analysis, the 

assumption that the moving load trajectory matches the undeformed structure geometry is valid and 

will be used in this formulation.  

Curved structure geometry can be defined using CAD (Computer Aided Design) software packages, 

which are based on NURBS (Non Uniform Rational B-Spline) functions. These rational functions 

are used for their capability to exactly represent shapes of conical sections like circle, ellipse, 

parabola, hyperbola as well as free form curves. Consequently, the trajectory of the moving load can 

be obtained exactly using the NURBS basis functions.  

Most of the software packages for structural analysis are based on finite element method (FEM). In 

order to apply FEM, physical domain of a structure has to be discretized, forming mesh of finite 

elements. This discretization is obtained from the structure’s geometrical model. If the analysis 

results are not accurate, finer mesh is required which is obtained from the geometrical model of the 

structure. Back and forward procedure between the structural geometry and analysis model can use 

great computational and time resources, which represent a disadvantage of the FEM.  

In order to overcome this disadvantage, the isogeometric approach (IGA) has been developed by 

Hughes and his co-workers [4] where solution space is formed using the same basis functions - 

NURBS that are used for geometry description. The focus of IGA utilization is on curved structural 

elements. For several years great effort has been devoted to the formulation of a Bernoulli – Euler 

curved elements for static and dynamic analysis [5 – 7].  

In this paper dynamic analysis of a curved plane Bernoulli - Euler beam subjected to a moving load 

is presented. The trajectory of a load matches the beam geometry, which has been defined using 

NURBS basis functions. This assumption is valid for linear dynamic analysis. Plane curved beam is 

defined using Bernoulli – Euler beam theory as presented in [7]. All necessary elements have been 

implemented in MATLAB [8] and used to calculate dynamic response. The results obtained using 

the presented formulation are compared with the results from the literature. 

2. BASICS OF NURBS 

Geometry of a plane curve C(ξ) can be represented using NURBS parametrization as: 

 C(ξ) = �Ri,p(ξ)

n

i=1

Ci (1) 

where ξ represents the independent parameter, Ri,p(ξ) is the  i-th  NURBS basis function of degree 

p, while Ci is the i-th control point defined in Cartesian coordinate system. As can be noticed, basis 

vectors are defined in parametric domain using so-called knot vector composed of non-decreasing 

sets (ξi) of coordinates in parametric domain, called knots. NURBS functions as rational functions 

are constructed from B – Spline functions as: 

 Ri,p(ξ)=� Ni,p(ξ)∙wi∑ Nj,p(ξ)∙wj
n
j=1

n

i=1

 (2) 

where wi is i-th function weight. B – Spline functions are polynomial functions obtained using Cox 

de Boor algorithm. For the case of zero degree the B – Spline functions are defined as: 

 Ni,p(ξ) = �1, if ξ ∈ [ξi,ξi+1[

0, otherwise
 (3) 

while for the polynomial degree greater than zero: 
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 Ni,p(ξ) = � ξ - ξi

ξi+p - ξi

Ni,p-1(ξ) + 
ξi+p-1 - ξ

ξi+p+1 - ξi+1

Ni+1,p-1(ξ), if ξ ∈ [ξi,ξi+p+1[

0, otherwise

 (4) 

B – Spline functions have a property of non – negativity, partition of unity, and with adequate choice 

of knot vector, interpolator property at the domain boundary. The properties of B – Spline functions 

are inherited for NURBS basis functions, which is important for beam formulation. In Figure 1 plane 

curve with an arbitrary shape defined using four control points and adequate NURBS basis functions 

has been presented. More about B – Spline and NURBS functions and their properties and utilization 

can be found in [9]. 

 

 

Figure 1. Plane curve and corresponding NURBS basis functions 

3. BEAM GEOMETRY 

Due to the assumption of undeformable beam’s cross section, all beam quantities are defined at 

beam’s centerline. Centerline of curved beam is curve line which can be parametrized using NURBS 

parametrization as: 

 r(ξ) = �Ri,p(ξ)

n

i=1

ri (5) 

where r(ξ) is the position vector of beam’s centreline, while ri is the i-th control point, Figure 2. 

Using well-known relations of differential geometry [10] the basis vectors of plane curve are defined 

as: 

 g
1
 = r,1 = 

dr

dξ
=

dr

ds

ds

dξ
 = t

ds

dξ
 = t�g

11
 (6) 
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  g
2
 = 

K

K
 = 

1

K

dξ
ds

d

dξ
� g

1�g
1
�� (7) 

where g1 vector is the general non-unit vector collinear to tangent vector t, g2 is the normal vector 

perpendicular to tangent vector thus lies in beam’s cross section, K is the curvature vector with its 

modulus K, while s represents the arc – length coordinate. Metric tensor of presented reference frame 

is obtained as: 

 g
ij
 = �g11

0

0 1
� , det �g

ij
�  = g

11
 = g (8) 

 

Figure 1. Undeformed and deformed beam’s centerline 

First derivative of basis vectors with respect to the parametric coordinate is obtained using Frenet – 

Serret relation as: 

 �g1,1

g
2,1
�  = �Γ11

1 gK

-K 0
� �g1

g
2
�   (9) 

where Γ1
11 is Christoffel symbol of the second kind. Using the frame of reference, the position vector 

of an arbitrary point of beam is obtained as: 

 r� = r + ηg
2
 (10) 

where η represents the coordinate axis in the direction to the beam’s cross section principle axis. 

From previous relation the basis vectors of an arbitrary point are: 

 g�
1
 = (1- ηK)g

1
 (11) 

 g�
2
 = g

2
 (12) 

As can be noticed, second basis vector is independent on the point position due to the assumption of 

rigid cross section. Metric tensor of an arbitrary point is obtained as: 

 g�
ij
 = �g0

 g
11

0

0 1
� , g

0
= (1- ηK)2 (13) 

4. ISOGEOMETRIC BERNOULLI – EULER BEAM FORMULATION 

Position vector of beam’s centerline in deformed configuration is given as: 

 r*= r + u (14) 

where u represents the displacement vector of beam’s centreline, Figure 2. If both undeformed and 

deformed beam configurations are parametrized using the same parametrization, then the 

displacement vector is defined as:  
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 u(ξ) = �Ri,p(ξ)

n

i=1

ui= �Ri,p(ξ)

n

i=1

ui
mim (15) 

Eq. (15) represents the main property of the isogeometric approach where geometry and solution 

space are defined using the same basis functions. 

Using convective system of reference, the deformation of the beam is contained in the deformation 

of beam’s basis vectors as: 

 g
m
* = g

m
+ um (16) 

In addition, displacement field of an arbitrary point is given as: 

 u�  = u + ηu2 (17) 

Correspondingly, acceleration and displacement variations of an arbitrary beam point are given as: 

 a� = (u�)̈  = ü + ηü2 (18) 

 δu�  = δu + ηδu2 (19) 

As mentioned before, the beam formulation is given in the convective system of reference.  Thus, 

the axial deformation term of the deformation tensor is obtained as: 

 ε�11= 
1

2
�g�

11

* - g�
11
�= g

0
[(1+ ηK)ε11- ηκ] (20) 

where terms ε11 and κ represent respectively the strain deformation of the beam’s centreline and 

bending deformation about the axis g2: 

 ε11 = 
1

2
�g

11
*  -  g

11
� (21) 

  κ = K�*
 - K� =  g

2
∙�u1,1 - Γ11

1 u,1� (22) 

In this paper, generalized Hook’s law is used in order to define relation between stress and 

deformation terms: 

 σ�ij = 
E

1 + ν
�g�ikg�jlε�kl + νg�ijg�11ε�11� (23) 

where E is Young’s modulus, while ν represents the Poisson’s coefficient. In order to obtain 

equations of motion, the principle of virtual work is used: 

 � ρa�∙δudV
V

  + � S:δEdV
V

 =� f∙δudx

l

 (24) 

where ρ is the mass density, S is the second Piola-Kirchoff stress tensor, δE is variation of the Green-

Lagrangian strain tensor, while f is the external load. Applying Eqs. (18), (19), (20) and (23), the 

governing equation of moving load problem on curved beam is obtained: 

 Mq̈ + Kq = Q (25) 

where M is the mass matrix, K is the stiffness matrix, Q is the vector of equivalent control forces, 

while q is the displacement vector of the control points. In order to solve Eq. (25), numerical step 

by step integration has been applied based on the finite difference method. Also, for calculation of 

mass and stiffness matrices, given in [7], as well as vector of equivalent forces, reduced numerical 

integration [11] has been applied and implemented in original MATLAB [8] code. 
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5. MOVING LOAD  

Moving load is a spatially varying load, which generates dynamic response of a structure. This load 

can be modelled as a single force with constant magnitude (f0) and direction, which moves along a 

beam with velocity Vξ: 

  f(t) = f0∙δ�ξ - Vξt�, Vξ = 
dξ
dt

= 
V�g

 (26) 

where Vξ and V are the velocity magnitudes given in NURBS and arc - length parametrizations, 

respectively. Point moving load transformed with respect to the integration points is presented in 

Figure 3.  

 

 

Figure 2. Moving load distribution on integration points 

6. NUMERICAL EXAMPLE 

To illustrate and validate the proposed method, dynamic analysis of simply supported plane curved 

beam subjected to the moving load is carried out. Geometry, material properties and load of the 

beam are given in Figure 4. Beam geometry is generated using the following control points: 

 rT= �0 5 10

0 5∙ tan(π/6) 0
� (27) 

and NURBS basis functions of degree 2 constructed using knot vector ξT= [0  0  0  1  1  1] and 

weights wT = [1  sin(π/3)  1]. Applied force has magnitude of 0.106 kN and moves along the beam 

with velocity V = 8.1 m/s.  

 

 

Figure 3. Simply supported curved beam subjected to the moving load with constant 

velocity and magnitude 

The convergence of the presented approach has been investigated using the h – refinement, which 

is achieved by knot insertion in the parametric domain. By applying this refinement procedure, the 

geometry of structure remains unchanged while the number of degrees of freedom (DOF) increases. 
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In this example, four beam models are analyzed with different number of DOFs: Model 1 (10 DOFs), 

Model 2 (22 DOFs), Model 3 (42 DOFs), Model 4 (82 DOFs). In Figure 5, time history of the 

displacement at the position of the moving load is presented. The results converged in Model 3 with 

42 DOFs. However, some discrepancies have been noticed in comparison with the results reported 

in [3]. These discrepancies occurred due to the applied beam model based on Timoshenko theory. 

7. CONCLUSIONS  

In this paper the dynamic analysis of a curved plane Bernoulli – Euler beam subjected to a moving 

load is presented. The moving load is modelled as a point force with constant magnitude and 

direction, while the curved beam is modelled using the isogeometric approach. It is assumed that the 

moving load trajectory matches the shape of the undeformed beam. In order to validate presented 

formulation the numerical example of a moving load on a curved plane beam has been carried out. 

Good agreement between the results obtained using the presented approach and the results from the 

literature has been shown. For future research, the dynamic analysis of a plane curved beam 

subjected to a moving mass will be investigated. In addition, the influence of moving load and mass 

can be extended to the case of spatial curved beam element. 

 

 

Figure 4. Vertical displacement of beam at the position of the moving load 
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