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MODEL OF POROUS MATERIALS BY RHEOLOGICAL-DYNAMICAL 

ANALOGY USING THE PRINCIPLES OF MASS AND ENERGY 

CONSERVATION 

Abstract 

It is assumed that the porous material is based on the principle of conservation of mass and the 

principle of conservation of energy. The validity of both principles relies on experimental 

observations. Experimental results of different metals were used to compare the Poisson ratio as a 

function of porosity. A comparison is made between the theory of percolation and the model 

proposed in this paper based on the rheological-dynamic analogy (RDA). The results show that there 

is an excellent agreement between percolation theory and the RDA model. Finally, a new 

relationship between the creep coefficient and porosity was proved for all analyzed metals by 

defining their damage variable in the range of measurable porosities. 

Keywords: Porous materials; Mass and energy conservation; Percolation theory; RDA model, 

Metals. 

МОДЕЛ ПОРОЗНИХ МАТЕРИЈАЛА РЕОЛОШКО-ДИНАМИЧКОM 

АНАЛОГИЈOM ПРИМЕНОМ ПРИНЦИПА ОЧУВАЊА МАСЕ И 

ЕНЕРГИЈЕ 

Сажетак 

Претпоставља се да је порозни материјал заснован на принципима очувања масе и енергије. 

Ваљаност оба принципа се заснива на експерименталним запажањима. Експериментални 

резултати различитих метала коришћени су за поређење Поасоновог коефицијента као 

функције од порозности. Упоређена је теорија перколације са моделом предложеним у овом 

раду који се заснива на реолошко-динамичкој аналогији (РДА). Резултати показују да постоји 

одлично слагање између теорије перколације и РДА модела. Коначно, доказана је нова веза 

између коефицијента течења и порозности за све анализиране метале дефинисањем њихове 

варијабле оштећења у опсегу мерљивих порозности. 

Кључне ријечи: Порозни материјали; Очување масе и енергије; Теорија перколације; РДА 

модел, Метали. 
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1. INTRODUCTION  

So far, significant work has been done to connect the mechanical properties of the material with its 

microstructure. In particular, relationships have been established between porosity and key 

mechanical properties such as strength and modulus of elasticity. However, the usefulness and 

physical significance of many of these relationships are often unclear as most theoretical models are 

based on some idealized physical microstructure, and the resulting correlations often cannot be 

applied to actual materials and practical applications, [1]. 

Spriggs' empirical equation for Young's modulus of porous materials [2], and the similar 

Ryshkewitch-Duckworth equation for the strength of porous materials [3], have long been accepted 

from the literature. Also, Phani and Niyogi derived a semi-empirical equation to describe the 

porosity dependence of Young's modulus of brittle solids [4]. Further, Wang theoretically obtained 

the relationship between porosity and Young's modulus for porous materials made by powder 

metallurgy, [5]. The dependence is applicable to the entire range of porosity and is able to treat the 

transition of the pore structure from interconnected to isolated. However, later, advances in 

predicting the elastic properties of porous materials over the entire porosity range were closely 

related to the semi-empirical relationship to Phani and Niyogi, [4]. 

Porous metals are preferably prepared from powder, the size, and shape of which can vary 

considerably. During powder consolidation, different porosities can be achieved by varying 

technological parameters such as temperature, external pressure, or time. Compaction begins only 

by touching the powder particles and goes to a lower porosity by creating and growing a throat 

between the particles. Subsequent closure of the pore channels leads to the elimination of the pores. 

Analyzing these metallic materials, Kovačik concluded that the Phani-Niyogi equation is identical 

to the equation of percolation theory for Young’s behavior and the shear modulus with porosity, [6]. 

Kovačik determined the percolation threshold for porosity at which the effective Young and the 

shear modulus become zero. However, the theory of percolation is beyond the content of this paper. 

This paper only uses the results presented by Kovačik [7] for comparison with the results of the 

RDA model. 

The topic of this paper is related to the RDA model. Taking into account the RDA, the rheological 

behavior of the sample can be characterized by only one parameter, i.e., the dynamic time of 

retardation 1DT = , where   is the natural angular frequency of the discrete dynamic model. 

The RDA model has the same phase angle as the discrete dynamic model with damping in the steady 

state vibration, so from that fact the coefficient of viscous damping was obtained by Milašinović, 

[8]. Milašinović has already explained the RDA model of material behavior for axially cyclically 

loaded bars on a macro scale in order to predict their fatigue behavior, [9]. The efficient numerical 

implementation of RDA and its practical application was also studied by Milašinović for the visco-

elasto-plastic behavior of metallic bars where the load function for the Hencky theory is derived, 

[10]. The main goal of this paper is to predict the relationship between creep coefficient and porosity 

of materials. It is considered that the principle of conservation of mass and energy is valid during 

the wave movement between two cross-sections of the sample, regardless of how the bar material 

behaves in terms of size and arrangement of material particles. 

2. POISSON RATIO OF POROUS MATERIALS USING RHEOLOGICAL-

DYNAMICAL ANALOGY 

Mechanical disturbance (deformation) propagates in an elastic sample at phase velocity 0v
. Thus, 

the deformations, which are initiated at the moment 0t  of the wave source, reach an arbitrary point 

M  of the sample at the moment 0t t
. The larger the path l  of the wave that travels from its source 

to the point M , the greater the difference 0t t−
. Accordingly, the vibration at the point M  lags 

behind that at the source of the wave. If 0l  is the distance between the two ends of the sample, 

follows 

0
0

0

D l
T t t

v
= − = .     (1) 
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During a small time interval DT  the total strain energy density will move so that the fictitious area 

1A  of the cross section 1 will have moved a short distance 1l . In the same time the cross section 

area 2A  will have moved a greater distance 2l  such that 

1 1 2 2A l A l V = = ,     (2) 

where V  is the fictitious volume. 

Energy has passed through a fictitious volume without physically transferring material from the 

source by any cross section in time DT . Thus, the continuity equation derives from the principle of 

mass conservation 

1 1 2 2A v A v= ,      (3) 

where 1v  and 2v are the velocities. 

Therefore, 

1
2 1

2

A
v v

A
= .      (4) 

The energy equation is the result of applying the principle of energy conservation to a stable energy 

transfer. Thus, the reduced area 2A  can now be found by applying Bernoulli's energy theorem 

          
2 2

1 1 2 2

1 1

2 2
v v   + = + ,     (5) 

where 1  and 2  are the stresses and   is the mass density.  

Due to (4), equation (5) becomes 

2

2 21
1 1 2 1

2

1 1

2 2

A
v v

A
   

 
+ = +  

 
.     (6) 

Since the velocity 1v  is the phase velocity 

      1 0
HE

v v


= = ,      (7) 

where HE is the Young modulus, (6) and (7) imply 

  
( )

1
2

1 22
1

H

A
A

E

 
=

−
+

,      (8) 

where 1 E =  is the elastic stress. 

2.1. RELATIONSHIP BETWEEN POISSON RATIO AND CREEP COEFFICIENT 

Milašinović, [9], defined the endurance limit ( )e R , where the ratio of minimum and maximum 

stress is R . In the symmetrical cycle ( 1R = − ) follows 

   ( ) 1
2

1
e R


 


= =

+
,      (9) 

where is the structural-material creep coefficient. Taking ( )2 e R = , the reduced area 2A is 

  
1

2

2
1

1

E

H

A
A

E

 







=
 

+  + 

.     (10) 
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Experiments show that under tension, the length of the cylindrical sample increases by l , while 

its diameter 1  decreases. Longitudinal strain can be found by applying Hooke's law 

   
E

l
HE


 = .        (11) 

If the bar is subjected to tensile or compressive stress in a given direction, not only strain occurs in 

that direction (longitudinal strain), but also strains in directions perpendicular to it (transverse 

strains). Within the range of elastic action, the relationship between transverse and longitudinal 

strain under uniaxial loading conditions is called the Poisson ratio. The transverse strain is 

   0
*

t l  = ,        (12) 

where 0
*  is Poisson's ratio of solid material. 

On the other hand the transverse strain is 

  
1 2

1
t

 




−
= .        (13) 

1  is the sample diameter while 2  is the reduced diameter. 

Hence, 

  
1 2

0
1

* H

E

E 


 

−
= .      (14) 

The reduced sample diameter 2  for all 0     can be obtained using equation(10), 

  1
2

4
2

1
1

E

HE




 



=
 

+ 
+ 

,    (15) 

so the relationship between the Poisson's ratio and the creep coefficient is 

  ( )

4

1
1

2
1

1

H

EE

H

E

E

 
 



 
 
 

= − 
  +  +  

.    (16) 

The assumption of incompressibility is supported by the fact that the bulk modulus is three orders 

of magnitude larger than the shear modulus. As a result, compressibility can significantly affect the 

stress distribution, especially when the Poisson ratio, i.e., 0
*  approaches 0.5. Generally speaking, 

it is difficult to experimentally determine the bulk modulus, and only a few special experiments can 

be found in the literature. For most structural materials, the Poisson ratio has values ranging from 

one-third to one-fifth; therefore, with ordinary measuring devices, the accuracy of lateral 

deformation measurements is not as high as with the corresponding axial strain measurements. This 

discussion of the relationship between variables shows that we can also use HE  and 0
*  as constants 

and get the following expression for the creep coefficient  , which is a new characteristic of the 

strain state 

  ( )

4 4

1 1
1 1 1

2 2
1 1

H H

E EE E

H H

E E

E E

 
  

       
       
       = − − −        − −                 

.   (17) 

The function ( )   is shown in Figure 1. 
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 Creep coefficient versus Poisson’s ratio 

The general approach to the analysis of the problem of the influence of the Poisson's ratio on the 

development of the creep coefficient must be based on Eq.(17). Assuming that, at the limit of 

elasticity 0 001E HE . = , it follows 

  ( )
4 4

1 1 1 1
1 1 1

1 0 001 2 0 001 1 0 001 2 0 001. . . .
 

 

        
   = − − −    

−  −            

.  (18) 

Assuming that 0
*  is 1/3 for metals, we get   = 2. The semi-brittle material is determined by the 

linear dependence of log   on log  , as shown in Figure 1. According to this criterion, the upper 

limit value of the Poisson's ratio for semi-brittle materials is 0.25. 

The relationship given by Eq.(18) can be simplified by neglecting the products of second-order 

exponents, [11]: 

 
( ) ( )

( )( ) ( )

4

2 2

2

1 1
1

1 0 001 2 0 001

1 1
1

0 0021 0 002 0 001 1 0 002 0 001

1 1 1 1
1 1

1 0 002 1 0 002 0 002 0 0021 0 004 0 002

1 1 0 004
1

1 0 004 0 002 1 0 004

. .

.. . . .

. . . .. .

.

. . .



   

   





  
 − = 

−    

 
 

−  
   − + − + 
    

  
 − = −  

− −    − +   

 
− = 

− − 

1 2
2

0 002 1 0 004. .




 

 
=  

− 

  (19) 

so the relationship between the creep coefficient and the Poisson's ratio is 

  
2

1 2





=

−
.      (20) 

If the creep coefficient is a known value, follows 

 
( )2 1





=

+
.      (21) 

2.2. RELATIONSHIP BETWEEN CREEP COEFFICIENT AND POROSITY 

Creep can occur in metals, plastics, rubber, glass, concrete and many other materials. Copper, iron, 

nickel and their alloys will exhibit creep at high temperatures. When a constant force is applied, 

some materials gradually deform over time and the result is an increase in length. However, in the 

0,01

0,1

1

10

100

0,01 0,1 1

log 

lo
g

  Brittle material

Ductile material
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study of material fatigue [9], a very short time DT  was used ( DT  represents the time delay that a 

wave of velocity 0v  takes to traverse the length 0l ), due to which the creep coefficient was 

converted into a quotient of two modules 

 
* H

K

E

E
 = ,      (22) 

where KE  is the modulus of viscoelasticity. The creep coefficient is a linear function of both p  and 

HE , while KE  is independent of porosity and constant of the material, as a consequence of the 

principle of mass conservation. Figure 2 shows the linear dependence of the creep coefficient on the 

porosity. * is the creep coefficient at zero porosity while E  is the creep coefficient at the end of 

the porosity range Ep . Ep is a known value as well as maxp , which is defined at zero creep 

coefficient. Considering the points ( )0 *, and ( )E Ep , , the linear dependence can be expressed 

by 

   ( )
( )*

E*

E

p
p

p

 
 

−
= − .    (23) 

On the other hand, due to points ( )E Ep , and ( )0maxp , , the linear dependence is 

   ( ) 1*

max

p
p

p
 

 
= − 

 
.    (24) 

 

 Creep coefficient versus porosity 

2.3. POISSON RATIO OF POROUS MATERIALS 

The relationship between the Poisson ratio and the porosity follows on the basis of Eq.(21) 

  ( )
( ) ( )

2 1

* *
E E* *

RDA
E E

p p
p

p p

   
  

    − −    = − + − 
        

,  (25) 

where 

 0

0

2

1 2

*
*

*





=

−
.     (26) 

0
* is the measured value. 

The creep coefficient of the porous material at the end of the porosity range Ep  is 

 
2

1 2

E
E

E





=

−
,     (27) 
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where E  must be defined. 

2.4. CRITICAL DAMAGE VARIABLE OF POROUS MATERIALS 

Since the development of micro voids leads to a decrease in the stiffness of the material, Milašinović 

characterized the state of damage of isotropic materials with a critical scalar damage variable, [11], 

Figure 3. 

 
1

D



=

+
,     (28) 

where 0 1D  . 

 

 Critical damage variable versus creep coefficient 

In the case of porous materials, follows 

    ( )
( ) ( )

1

* *
E E* *

E E

p p
D p

p p

   
 

    − −    = − + − 
        

.   (29) 

Mot and Rondal, [12], found that all actual materials have a Poisson ratio between 0.2 and 0.5, so 

for these boundaries are 0 66.     and 0 4 1. D  . The critical state of elastic parameters of 

brittle elastic solids containing slits-critical, was also investigated by Krajčinović et al., [13]. 

Acording to Lemaitre, [14], the critical value of the damage variable corresponds to the breaking of 

elements into two parts, where 0 2 0 8. D .   is for metals. According to the RDA model, the critical 

damage variable for porous materials in the porosity range 0 Ep p   is 

 
11

*
E

*
E

D



 

++
.    (30) 

3. POISSON RATIO OF POROUS MATERIALS USING PERCOLATION 

THEORY 

Phani and Niyogi have developed the power exponent correlation for describing the dependence of 

Young's modulus and porosity of brittle solids [4] 

 ( )0 1
n

E E ap= − ,    (31) 

where E  and 0E  are the Young's moduli at porosity p  and zero, respectively, a  and n  are material 

constants. The expression has been derived semi-empirically for describing the porosity dependence 

of Young's modulus of brittle solids. The equation satisfies quite well the exact theoretical solution 

for the values of Young's moduli at different porosities for model systems with ideal and non-ideal 

0
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packing geometry, where parameters a  and n  provide information about the packing geometry 

and pore structure of the material. 

According to [6] and [15], Eq.(31) is identical with the percolation theory equation for the behavior 

of Young's and shear modulus with porosity: 

 0 1

Ef

max
max

p
E E for p p

p

 
= −  

 
,    (32) 

 0 1

Gf

max
max

p
G G for p p

p

 
= −  

 
,    (33) 

where Ef  is the characteristic exponent for the Young's modulus while Gf  is the characteristic 

exponent for the shear modulus of the porous material. 

maxp  is the percolation threshold [16], i.e. the porosity at which the effective Young's E  and shear 

modulus G  become zero. From Eq.(22) it follows that ( )maxp  is zero when ( )maxE p  is zero, 

which means that the adopted percolation threshold maxp  also corresponds to the RDA model. 

After substituting Eqs. (32) and (33) in the equation 

 1
2

E

G
 = − ,     (34) 

the correlation between Poisson's ratio and porosity from the percolation theory was obtained by 

Kovačik in [7] as 

 ( ) ( )0 1 1 1

E Gf f

*
PT

max

p
p

p
 

−
 

= + − − 
 

,   (35) 

where 

 
0

0
0

1
2

* E

G
 = − .     (36) 

Poisson's ratio 0
*  of solid material corresponds to the calculated value using the velocities of P and 

S waves, [17]. 

4. MODEL VERIFICATION AND DISCUSSION 

A systematic study of the variation of elastic moduli and Poisson's ratio of sintered iron compacts 

of porosity up to 21.6% has been carried out by measuring longitudinal and shear ultrasonic 

velocities, [18]. The variation of these parameters with porosity was compared with predictions of 

elasticity and scattering theories. Using these results, Kovačik [7] presented the results of the 

correlation of Poisson's ratio and porosity by percolation theory. 

According to Table I from [7], for sintered iron are: 

0 0 303* . = , 0 41maxp .= , 0 22Ep .= , 0 09E Gf f .− = . 

Hence, 

( ) 00 0 303*
PT . = = , 

( ) ( ) ( )
0 09

0

0 22
1 1 1 0 303 1 1 1 0 21585

0 41

E Gf f .
* E

PT E
max

p .
p . .

p .
 

−
   

= + − − = + − − =   
  

. 

According to the RDA model are: 

0

0

2 2 0 303
1 53807

1 2 0 3031 2

*
*

*

.
.

.







= = =

− −
, 

( )

( )

2 2 0 21585
0 75965

1 2 1 2 0 21585

PT E
E

PT E

p .
.

p .







= = =

− − 
. 

Hence, 
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( )
( )

00 0 303
2 1

*
*

RDA *
.


 


= = =

+
, 

( )
( ) ( )

( )
0 75965

0 21585
2 1 2 1 0 75965

= = = =
+ +

E
RDA E PT E

E

.
p . p

.


 


. 

Figure 4 shows the comparison between the percolation theory and the RDA model in the analyzed 

porosity range for sintered iron. 

 

 Graphical comparison of Poisson's ratio versus porosity according to the percolation 

theory and the RDA model for sintered iron from Figure 1 in [7]  

The curve of the function of difference ( )PT p - ( )RDA p for the interval [0, Ep ] is shown in 

Figure 5. It can be concluded that the differences are very small, i.e., insignificant in this example. 
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 Differences between the percolation theory and the RDA model for sintered iron from 

Table I in [7] 

At the limits of the porosity range, both models always give the same results. However, the theory 

of percolation gives the limit value of the Poisson's ratio -1 at the percolation threshold, while the 

damage variable of -2 is not a real value. 

On the other hand, the RDA model gives the Poisson ratio close to zero at the percolation threshold 

( )

( )

( )

( )

( )

0 41 1 53807 0 75965
1 53807

0 22 0 04
0 41 1 53807 0 75965

2 1 1 53807
2 1 0 22

*
max E*

E
RDA max

*
max E*

E

p
. . .

.
p .p .

. . .p
.

.
p

 



 



−
−

− −

= = =
−   −

+ −   + −
  

 

. 

Hence, 

( )
2 0 04

0 087
1 2 0 04

max

.
p .

.



= =

− 
, 

( )
0 087

0 08
1 0 087

max

.
D p .

.
= =

+
. 

The damage variable of 0.08 is within the prescribed range of 0 1D  , but is not in the range of 

critical values according to the RDA model, where 0 606 0 43. D .  . 

Although the negative Poisson's ratio for solid materials is not a measurable quantity, it is 

theoretically provable. According to the Cauchy–Hooke law for isotropic materials and as a 

consequence of the second law of thermodynamics, the following inequality must hold for isotropic 

materials, 1 0 5.−   . However, in some older literature, the prevailing opinion was that the Poisson's 

ratio should always be positive for isotropic materials, which means that the results of the RDA are 

closer to reality. 

On the other hand, the negative Poisson's ratio implies a negative damage variable, which is a very 

little researched theoretical case. Furthermore, the negative damage variable implies a negative crack 

density in the part of the range, [19]. In the appropriate regions, the actual cracks are replaced by the 

stiffening-rigid lamellae. These solid elements are referred to in the literature as negative cracks or 

anti-cracks, [20]. 

The differences in the results between the percolation theory and the RDA model depend primarily 

on the choice of the percolation threshold maxp , but also on the characteristic exponents Ef  and Gf  

that are in the percolation formulas.  

It is generally accepted that the value of the percolation threshold is a function of powder size, shape, 

size and distribution of shapes, and methods of preparation, [21]. In this paper, the RDA model is 

related to percolation theory in order to compare the results. The connecting parameter is the 

Poisson's ratio E
 calculated according to the percolation theory at the limit Ep

 of the predicted 

porosity range. It is then included in the formulas according to the RDA model to obtain the creep 

Sintered iron
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coefficient E
. The obtained differences for all analyzed metals are small and different, but they are 

a consequence of the choice of percolation threshold and exponents Ef  and Gf .  

The curves of the critical damage variables as a function of porosity for all analyzed metals in [7], 

but based on the RDA model, are shown in Figure 6. In the case of porous ZnO, the results show 

that the critical damage variable is probably independent of porosity. 

 

 Graphical comparison of the critical damage variable as a function of porosity for all 

analyzed metals [7] according to the RDA model 

5. CONCLUDING REMARKS 

Percolation theory and the RDA model are based on completely different physical principles, so 

comparing their results with experimental ones is extremely important. Based on the principles of 

conservation of mass and energy during the wave movement between two cross sections of the 

sample, a new linear relationship between the creep coefficient and porosity is defined. The validity 

of this relationship is confirmed by comparing the dependence of the Poisson ratio on porosity 

according to the RDA model with the correlation results obtained according to the percolation 

theory.  

It is obvious that the RDA model can be applied independently of the percolation theory, but it is 

first necessary to determine the limit of the porosity range Ep  and Poisson ratio at that limit. 
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