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Abstract

It is assumed that the porous material is based on the principle of conservation of mass and the
principle of conservation of energy. The validity of both principles relies on experimental
observations. Experimental results of different metals were used to compare the Poisson ratio as a
function of porosity. A comparison is made between the theory of percolation and the model
proposed in this paper based on the rheological-dynamic analogy (RDA). The results show that there
is an excellent agreement between percolation theory and the RDA model. Finally, a new
relationship between the creep coefficient and porosity was proved for all analyzed metals by
defining their damage variable in the range of measurable porosities.

Keywords: Porous materials; Mass and energy conservation; Percolation theory; RDA model,
Metals.

MOJEJI IOPO3HUX MATEPUJAJIA PEOJIOIIKO-ATMHAMNUYKOM
AHAJIOI'NJOM TIPUMEHOM INTPUHIUIIA OYYBAIBA MACE U
EHEPI'MJE

Caxcemax

[Ipermocrasspa ce a je MOPO3HU MaTepHjall 3aCHOBAH HA MPUHIIMIINMA O9yBamka Mace U CHEpTrHje.
Baspanoct 00a MpHHIMIA Ce 3aCHUBA HA EKCIEPHMEHTAHMM 3arnaxcarbuMa. EKCrieprMeHTalHU
pe3yNTaTH pasIMIUTHX MeTana kopuithenn cy 3a mopeheme IloacoHoBOr KoedwuimjeHTa Kao
(dbyHKIIHje o1 TOPO3HOCTH. YTIOopeheHa je TeopHja MmepKoIalnje ca MOJIECIOM MPEIJIOKEHIM Y OBOM
paay KojH ce 3aCHUBA Ha PEOJIONIKO-InHaMU4Koj aHaoruju (P/IA). PezynraTi noka3syjy aa mocToju
OJITMYHO ciarame u3Mely teopuje nmepkonanuje u PJIA monena. Konauno, qoka3aHa je HoBa Be3a
n3mely xoedunmjenTa Teuerma U MOPO3HOCTH 32 CBE aHAM3WpaHe MeTaie AepUHNCamheM BUXOBE
Bapujabie omrehema y orcery MepJbUBUX MOPO3HOCTH.

Kwyune pujeuu. Iloposnu mamepujanu, Ouysare mace u enepeuje, Teopuja nepronrayuje;, PIJA
Mmooen, Memanu.



1. INTRODUCTION

So far, significant work has been done to connect the mechanical properties of the material with its
microstructure. In particular, relationships have been established between porosity and key
mechanical properties such as strength and modulus of elasticity. However, the usefulness and
physical significance of many of these relationships are often unclear as most theoretical models are
based on some idealized physical microstructure, and the resulting correlations often cannot be
applied to actual materials and practical applications, [1].

Spriggs' empirical equation for Young's modulus of porous materials [2], and the similar
Ryshkewitch-Duckworth equation for the strength of porous materials [3], have long been accepted
from the literature. Also, Phani and Niyogi derived a semi-empirical equation to describe the
porosity dependence of Young's modulus of brittle solids [4]. Further, Wang theoretically obtained
the relationship between porosity and Young's modulus for porous materials made by powder
metallurgy, [5]. The dependence is applicable to the entire range of porosity and is able to treat the
transition of the pore structure from interconnected to isolated. However, later, advances in
predicting the elastic properties of porous materials over the entire porosity range were closely
related to the semi-empirical relationship to Phani and Niyogi, [4].

Porous metals are preferably prepared from powder, the size, and shape of which can vary
considerably. During powder consolidation, different porosities can be achieved by varying
technological parameters such as temperature, external pressure, or time. Compaction begins only
by touching the powder particles and goes to a lower porosity by creating and growing a throat
between the particles. Subsequent closure of the pore channels leads to the elimination of the pores.
Analyzing these metallic materials, Kovacik concluded that the Phani-Niyogi equation is identical
to the equation of percolation theory for Young’s behavior and the shear modulus with porosity, [6].
Kovacik determined the percolation threshold for porosity at which the effective Young and the
shear modulus become zero. However, the theory of percolation is beyond the content of this paper.
This paper only uses the results presented by Kovacik [7] for comparison with the results of the
RDA model.

The topic of this paper is related to the RDA model. Taking into account the RDA, the rheological
behavior of the sample can be characterized by only one parameter, i.e., the dynamic time of
retardation TP =1/w, where @ is the natural angular frequency of the discrete dynamic model.
The RDA model has the same phase angle as the discrete dynamic model with damping in the steady
state vibration, so from that fact the coefficient of viscous damping was obtained by Milasinovi¢,
[8]. Milasinovi¢ has already explained the RDA model of material behavior for axially cyclically
loaded bars on a macro scale in order to predict their fatigue behavior, [9]. The efficient numerical
implementation of RDA and its practical application was also studied by Milasinovi¢ for the visco-
elasto-plastic behavior of metallic bars where the load function for the Hencky theory is derived,
[10]. The main goal of this paper is to predict the relationship between creep coefficient and porosity
of materials. It is considered that the principle of conservation of mass and energy is valid during
the wave movement between two cross-sections of the sample, regardless of how the bar material
behaves in terms of size and arrangement of material particles.

2. POISSON RATIO OF POROUS MATERIALS USING RHEOLOGICAL-
DYNAMICAL ANALOGY

Mechanical disturbance (deformation) propagates in an elastic sample at phase velocity Vo, Thus,
the deformations, which are initiated at the moment % of the wave source, reach an arbitrary point
M of the sample at the moment % . The larger the path I of the wave that travels from its source
to the point M | the greater the difference t_to. Accordingly, the vibration at the point M lags
?enind that at the source of the wave. If ly is the distance between the two ends of the sample,
ollows
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During a small time interval TP the total strain energy density will move so that the fictitious area
A of the cross section 1 will have moved a short distance Al, . In the same time the cross section

area A, will have moved a greater distance 4l, such that

Al = A Al =V @)

where V is the fictitious volume.
Energy has passed through a fictitious volume without physically transferring material from the

source by any cross section in time TP . Thus, the continuity equation derives from the principle of
mass conservation

AV = AV, ®)
where v, and v, are the velocities.
Therefore,
A
Vo =—=Vp. (4)
Ay

The energy equation is the result of applying the principle of energy conservation to a stable energy
transfer. Thus, the reduced area A, can now be found by applying Bernoulli's energy theorem

1 1
O'1+EPV12=0'2+EPV§7 5)

where o, and o, are the stresses and p is the mass density.
Due to (4), equation (5) becomes

2
1 1
o +=pVi=o,+=p| 2| V2. (6)
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Since the velocity v, is the phase velocity
E
Vl = VO = H ’ (7)
Y2,
where E, is the Young modulus, (6) and (7) imply

A = ———, (®)
2(0:5;02) 1
where oy = o is the elastic stress.
2.1. RELATIONSHIP BETWEEN POISSON RATIO AND CREEP COEFFICIENT
Milasinovi¢, [9], defined the endurance limit o, (R), where the ratio of minimum and maximum

stress is R . In the symmetrical cycle (R = —1) follows

01

o, =0, (R) : ©)
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where " is the structural-material creep coefficient. Taking o, = o, (R) , the reduced area A, is

B . (10)




Experiments show that under tension, the length of the cylindrical sample increases by Al, while
its diameter @, decreases. Longitudinal strain can be found by applying Hooke's law

_O&

S g (11)
H

If the bar is subjected to tensile or compressive stress in a given direction, not only strain occurs in
that direction (longitudinal strain), but also strains in directions perpendicular to it (transverse
strains). Within the range of elastic action, the relationship between transverse and longitudinal
strain under uniaxial loading conditions is called the Poisson ratio. The transverse strain is

& =/138| ) (12)
where 4 is Poisson's ratio of solid material.
On the other hand the transverse strain is
D -2,
E=—"". 13
e (13)
@, is the sample diameter while @, is the reduced diameter.
Hence,
« O -D, E
p=——2—. (14)
D o

The reduced sample diameter @, for all 0(p{e" can be obtained using equation(10),

D,
Dy = (15)

N A
Ey 1+

so the relationship between the Poisson's ratio and the creep coefficient is

u(p)= T S— .Y (16)

O
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The assumption of incompressibility is supported by the fact that the bulk modulus is three orders
of magnitude larger than the shear modulus. As a result, compressibility can significantly affect the

stress distribution, especially when the Poisson ratio, i.e., z, approaches 0.5. Generally speaking,

it is difficult to experimentally determine the bulk modulus, and only a few special experiments can
be found in the literature. For most structural materials, the Poisson ratio has values ranging from
one-third to one-fifth; therefore, with ordinary measuring devices, the accuracy of lateral
deformation measurements is not as high as with the corresponding axial strain measurements. This

discussion of the relationship between variables shows that we can also use E,; and g, as constants
and get the following expression for the creep coefficient ¢, which is a new characteristic of the
strain state

4 4
1 E 1 E
= -1|—H 1- -1|—H+. 17
o (u) | uoe 20, L uoe 20, (17)
En En

The function ¢( ) is shown in Figure 1.
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Figure 1. Creep coefficient versus Poisson’s ratio

The general approach to the analysis of the problem of the influence of the Poisson's ratio on the
development of the creep coefficient must be based on Eq.(17). Assuming that, at the limit of
elasticity og /E,, =0.001, it follows

1) 1 LY :
(p(u)=[(l_o_001ﬂj ‘1} 2.0.001 / {l{(l—o.omyj _1}2-0.001} 49

Assuming that y; is 1/3 for metals, we get ¢* = 2. The semi-brittle material is determined by the
linear dependence of log ¢ on log «, as shown in Figure 1. According to this criterion, the upper

limit value of the Poisson's ratio for semi-brittle materials is 0.25.
The relationship given by Eq.(18) can be simplified by neglecting the products of second-order
exponents, [11]:

SR Y S
1-0.001x) |2-0.001

1 1
1 ~
[1—0.002/1+(O.001,u)2}[1—0.002,u+(0.001/1)2} 0.002

(19)
1 1 1
(1-0.0024)(1-0.002,) ~ |0.002 1-0.0044+(0.002) 0.002
1 B 1 ([ 0.004u 1 2u 2
1-0.004 1 0.002 (1-0.0044 )0.002 1-0.004x a
so the relationship between the creep coefficient and the Poisson's ratio is
2u
- 20
0=1" » (20)
If the creep coefficient is a known value, follows
4
= . 21
#7201 0) (21)

2.2. RELATIONSHIP BETWEEN CREEP COEFFICIENT AND POROSITY

Creep can occur in metals, plastics, rubber, glass, concrete and many other materials. Copper, iron,
nickel and their alloys will exhibit creep at high temperatures. When a constant force is applied,
some materials gradually deform over time and the result is an increase in length. However, in the



study of material fatigue [9], a very short time TP was used (TP represents the time delay that a
wave of velocity v, takes to traverse the length 1), due to which the creep coefficient was

converted into a quotient of two modules
* EH
=—, 22
@ £, (22)
where E, is the modulus of viscoelasticity. The creep coefficient is a linear function of both p and
Ey , while Ey is independent of porosity and constant of the material, as a consequence of the
principle of mass conservation. Figure 2 shows the linear dependence of the creep coefficient on the
porosity. ¢ is the creep coefficient at zero porosity while ¢ is the creep coefficient at the end of

the porosity range pg. pgis a known value as well as P, , which is defined at zero creep
coefficient. Considering the points (O,(p* ) and ( pg e ), the linear dependence can be expressed
by
. p(¢* —¢’E)
o(p)=¢p ———=. (23)
Pe

On the other hand, due to points ( pg,¢g )and (ppay.0). the linear dependence is

;o(p)=<o*(1—pp j (24)
@
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Figure 2. Creep coefficient versus porosity
2.3. POISSON RATIO OF POROUS MATERIALS

The relationship between the Poisson ratio and the porosity follows on the basis of Eq.(21)

. Plo - . Plo -0
veon(p)=| ¢ PO )| ol P o)l o
Pe Pe
where
* 2#;
. 26
@ = (26)

1 1S the measured value.
The creep coefficient of the porous material at the end of the porosity range pg is

2ug

= 27
o (27)
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where g must be defined.

2.4. CRITICAL DAMAGE VARIABLE OF POROUS MATERIALS

Since the development of micro voids leads to a decrease in the stiffness of the material, Milasinovi¢
characterized the state of damage of isotropic materials with a critical scalar damage variable, [11],
Figure 3.

p=-*_, (28)
l+¢
where 0<D<1.
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Figure 3. Critical damage variable versus creep coefficient

In the case of porous materials, follows

(29)
Mot and Rondal, [12], found that all actual materials have a Poisson ratio between 0.2 and 0.5, so
for these boundaries are 0.66 <@ <oo and 0.4<D <1. The critical state of elastic parameters of
brittle elastic solids containing slits-critical, was also investigated by Kraj¢inovi¢ et al., [13].
Acording to Lemaitre, [14], the critical value of the damage variable corresponds to the breaking of
elements into two parts, where 0.2 < D < 0.8 is for metals. According to the RDA model, the critical
damage variable for porous materials in the porosity range 0< p < pg is

*

? _>p>_% (30)
l+(/) 1+¢)E

3. POISSON RATIO OF POROUS MATERIALS USING PERCOLATION
THEORY

Phani and Niyogi have developed the power exponent correlation for describing the dependence of
Young's modulus and porosity of brittle solids [4]

E=E,(1-ap)", (31)

where E and E, are the Young's moduli at porosity p and zero, respectively, a and n are material

constants. The expression has been derived semi-empirically for describing the porosity dependence
of Young's modulus of brittle solids. The equation satisfies quite well the exact theoretical solution
for the values of Young's moduli at different porosities for model systems with ideal and non-ideal



packing geometry, where parameters a and n provide information about the packing geometry
and pore structure of the material.

According to [6] and [15], Eq.(31) is identical with the percolation theory equation for the behavior
of Young's and shear modulus with porosity:

.
E=E, (1— P j for  P< Pra (32)
max
fG
G =G, [1— P j for  P< Prax: (33)
max

where fg is the characteristic exponent for the Young's modulus while fg is the characteristic
exponent for the shear modulus of the porous material.

Pmax 1S the percolation threshold [16], i.e. the porosity at which the effective Young's E and shear
modulus G become zero. From Eq.(22) it follows that ¢( p,,,) is zero when E(p,,,) is zero,
which means that the adopted percolation threshold p,., also corresponds to the RDA model.
After substituting Egs. (32) and (33) in the equation

E
=— -1, 34
H=25 (34)

the correlation between Poisson's ratio and porosity from the percolation theory was obtained by
Kovacik in [7] as

fo—tq
,uPT(p):(y8+1)[l— pj -1, (35)
Prmax
where
. E
ﬂo:ﬁ_ : (36)

Poisson's ratio ,u; of solid material corresponds to the calculated value using the velocities of P and
S waves, [17].

4. MODEL VERIFICATION AND DISCUSSION

A systematic study of the variation of elastic moduli and Poisson's ratio of sintered iron compacts
of porosity up to 21.6% has been carried out by measuring longitudinal and shear ultrasonic
velocities, [18]. The variation of these parameters with porosity was compared with predictions of
elasticity and scattering theories. Using these results, Kovacik [7] presented the results of the
correlation of Poisson's ratio and porosity by percolation theory.

According to Table | from [7], for sintered iron are:

1y =0.303, Py =041, pg =022, fc—f5=009.
Hence,

tpr (0)= 145 =0.303,
fe—fo 0.22\0:%°
ﬂPT(pE):(/JS"'l)[l_ Pe j _1:(0'303+1)(1_EJ ~1=0.21585.

max

According to the RDA model are:

. 21y _ 2-0.303

Y 104 T1-2.0303
2 .

g = 2ot (Pe) _ 2:021585 o 000

Hence,

=1.53807,
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Figure 4 shows the comparison between the percolation theory and the RDA model in the analyzed
porosity range for sintered iron.
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Figure 4. Graphical comparison of Poisson's ratio versus porosity according to the percolation
theory and the RDA model for sintered iron from Figure 1 in [7]

The curve of the function of difference zpr (P)- rpa (P)for the interval [0, pg] is shown in
Figure 5. It can be concluded that the differences are very small, i.e., insignificant in this example.



Sintered iron
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Figure 5. Differences between the percolation theory and the RDA model for sintered iron from
Table I in [7]

At the limits of the porosity range, both models always give the same results. However, the theory
of percolation gives the limit value of the Poisson's ratio -1 at the percolation threshold, while the
damage variable of -2 is not a real value.

On the other hand, the RDA model gives the Poisson ratio close to zero at the percolation threshold

(0* _ Prax ((ﬂ* _(pE)

0.41(1.53807 - 0.75965)
- 1.53807 - 02
= E = : =0.04.
#zo (Pres) o (¢ ¢ 0.41(1.53807 —0.75965)
5| 14 of _ Pmax E)| 2/1+153807-
2 0.22
Pe
Hence,
2-0.04
=S _0087,
@( pmax) 1-2.0.04
0.087
- -008.
(Pner) 1+0.087

The damage variable of 0.08 is within the prescribed range of 0< D <1, but is not in the range of
critical values according to the RDA model, where 0.606 > D >0.43.

Although the negative Poisson's ratio for solid materials is not a measurable quantity, it is
theoretically provable. According to the Cauchy-Hooke law for isotropic materials and as a
consequence of the second law of thermodynamics, the following inequality must hold for isotropic
materials, —1{(0.5. However, in some older literature, the prevailing opinion was that the Poisson's

ratio should always be positive for isotropic materials, which means that the results of the RDA are
closer to reality.

On the other hand, the negative Poisson's ratio implies a negative damage variable, which is a very
little researched theoretical case. Furthermore, the negative damage variable implies a negative crack
density in the part of the range, [19]. In the appropriate regions, the actual cracks are replaced by the
stiffening-rigid lamellae. These solid elements are referred to in the literature as negative cracks or
anti-cracks, [20].

The differences in the results between the percolation theory and the RDA model depend primarily
on the choice of the percolation threshold p,,,, , but also on the characteristic exponents fz and fg

that are in the percolation formulas.

It is generally accepted that the value of the percolation threshold is a function of powder size, shape,
size and distribution of shapes, and methods of preparation, [21]. In this paper, the RDA model is
related to percolation theory in order to compare the results. The connecting parameter is the

Poisson's ratio “E calculated according to the percolation theory at the limit PE of the predicted
porosity range. It is then included in the formulas according to the RDA model to obtain the creep



coefficient ?E. The obtained differences for all analyzed metals are small and different, but they are

a consequence of the choice of percolation threshold and exponents fe and fo .

The curves of the critical damage variables as a function of porosity for all analyzed metals in [7],
but based on the RDA model, are shown in Figure 6. In the case of porous ZnO, the results show
that the critical damage variable is probably independent of porosity.
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Figure 6. Graphical comparison of the critical damage variable as a function of porosity for all
analyzed metals [7] according to the RDA model

5. CONCLUDING REMARKS

Percolation theory and the RDA model are based on completely different physical principles, so
comparing their results with experimental ones is extremely important. Based on the principles of
conservation of mass and energy during the wave movement between two cross sections of the
sample, a new linear relationship between the creep coefficient and porosity is defined. The validity
of this relationship is confirmed by comparing the dependence of the Poisson ratio on porosity
according to the RDA model with the correlation results obtained according to the percolation
theory.

It is obvious that the RDA model can be applied independently of the percolation theory, but it is
first necessary to determine the limit of the porosity range pg and Poisson ratio at that limit.
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