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Abstract

Dynamic analysis of a spatially curved Bernoulli-Euler beam subjected to the moving load is
considered in this paper. The isogeometric approach is used for the spatial discretization of the weak
form of the equation of motion. Both the reference geometry and the solution space are represented
using the same NURBS basis functions that guarantee an accurate description of beam’s centerline.
The time integration is done by the explicit technique. The presented formulation is validated by the
comparison with the existing results from the literature for the curved beam subjected to the constant
load moving with the constant velocity.

Keywords: isogeometric approach, Bernoulli-Euler curved beam, moving load

N30TEMETPUJCKA AHAJIN3A YTUIIAJA ITIOKPEHTOI'
OIITEPEREIBA HA ITPOCTOPHOJ KPUBOJIMHUJCKOJ BEPHYJIU-
OJJIEPOBOJ I'PEJIN

Caxicemax

VY oBoM paay je mpHKazaHa JUHAMHYKa aHaliu3a NPOCTOpHE KpuBoiuHUjcke beprymu-Ojnepose
rpesie Moj yTHIajeM HOKpeTHOr onrtepehema. M30reoMeTpHjcky NPUCTYI je MPUMEHEH Y LHIbY
NPOCTOPHE AMCKpeTH3aluje ciaade GpopmMe jenHaunHa Kperama rpeae. OBaj npuctyn ce 6asupa Ha
npumenn wuctux ©OasHnx NURBS ¢yskunja 3a omucuBambe reoMeTpuje W KHHEMAaTHKE
KPUBOJIMHUjCKE Tpelie, YUMe je oMorylieH TayaH NpHKa3 CHUCTEMHe JHHHje Ipene. BpemeHcka
HHTerpalyja jelHaunHa je W3BpIICHA IPHUMEHOM eKCIUMIHTHE Metoze. [Ipukaszana dopmyranmja
je BaimaupaHa NopelemeM ca pe3yiTaTUMa M3 JIUTepaType 3a cilydaj KPUBOJMHHjCKE Tpeie
onTepehieHe MOKPETHOM CHIIOM KOHCTaHTHOI HHTCH3UTETA U Op3uHe.

Kwyune pujeuu: uzoceomempujcxu npucmyn, bepnynu-Ojneposa kpusa epeda, nokpemua cuna



1. INTRODUCTION

Beam-like structures are often subjected to dynamic loads during their lifetime. Therefore, the
dynamic analysis of beam elements is necessary for an accurate prediction of their real-life behavior.
One type of the dynamic loads is the mass that moves along the structure, which is the standard load
case for cranes and bridges. The moving mass is usually modeled as a moving force with constant
magnitude and direction. Such approach gives a moving load model where the inertial term of the
moving mass is neglected. Majority of the research in this field is related to the analysis of a mass
moving along a straight beam. One of the earliest investigations was carried out by Stokes in 1849
[1], where the influence of the moving mass on the plane straight Bernoulli-Euler beam was
considered analytically using the moving load model.

Due to the aesthetic and functional requirements in the design process, curved spatial beam elements
cannot be avoided. Geometrical model of the curved spatial beam requires the spatial curve, which
can be obtained using computer-aided design (CAD) software packages. To accurately describe the
free-form curves and the curves of conic sections such as circle, ellipse, parabola and hyperbola,
CAD packages utilize the NURBS (Non-Uniform Rational B-Spline) basis functions.

In order to conduct the general dynamic analysis of complex spatially curved beams subjected to the
moving load, numerical methods are essential. Nowadays, the Finite Element Method (FEM) is
implemented in most software packages for structural analysis. A direct relation between CAD and
FEM has not yet been established [2], leading to costly and time-consuming iterative design process.
The isogeometric approach establishes a direct relationship between the geometry and the unknown
fields of the structure [2]. This is enabled by using the NURBS functions as basis functions of the
numerical model’s reference and solution spaces. Therefore, the same basis functions are applied
for the geometry and kinematics, which eliminates the errors due to the geometric approximation in
a spatially discretized model. In order to improve the mesh, three types of mesh refinement are used
in the isogeometric approach, denoted as H-, P-, and K-methods [2].

A dynamic analysis of an arbitrarily curved spatial beam subjected to the moving load is studied in
this paper. A short review on the NURBS basis function is given in Section 2 and followed by the
beam’s geometry representation. The governing equation of motion of the Bernoulli-Euler
isogeometric beam element is briefly given in Section 4, while more details can be found in authors’
previous paper [3]. The moving load model is presented in Section 5 and followed by the numerical
example of spatially curved beam subjected to the moving load in Section 6. At the end, the main
conclusions have been drawn.

2. BASICS OF NURBS

The exact shape of an arbitrary curve C(¢) in Euclidean 3D space can be represented as:

c©) =Y R, ()G
(1)

where Ri,p(&) is the i-th NURBS basis function, p is the function degree, Ci is the position of the
control point i, while n is the number of basis functions and control points. NURBS functions are
derived from the B-spline functions:
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where w; is the i-th function weight. In order to define B-spline functions, Cox de Boor algorithm is
often applied [4].
For the case of a zero degree (p = 0), the B-spline functions are defined as:
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while for the polynomial degree greater than zero (p > 0):
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The B-spline functions are polynomial functions defined in parametric domain (£) using the knot
vector. This vector represents a set of non-decreasing real numbers, the knots.

Important properties of the B-spline function, as well as the NURBS functions, used in the following
derivations, are the non-negativity and the partition of unity over the parametric domain. More about
the B-spline and NURBS basis functions can be found in [4].

3. BEAM GEOMETRY

Due to the assumptions of beam theories, all kinematic and stress quantities of a beam can be given
as a function of beam’s centerline. In general, the beam’s centerline has an arbitrary shape in the
Euclidean three-dimensional space, forming a curved line. The formulation of a curved beam is
conducted using the curvilinear coordinate system attached to the beam’s centerline.

Figure 1. Centerline of a curved beam with corresponding control points

Using the NURBS parameterization, the position vector of a curved line is defined as:

r(&) =2 R, (),

i=1 (5)
where r; is the position of the i-th control point, Figure 1. To fully define the beam continuum, a
unique triad must be attached to each point of a curve. Here, this triad is aligned with the Frenet-
Serret frame. The basis vectors are defined using the well-known relations of differential geometry
[5] and relations between the arc-length and NURBS parameterizations:
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where t, n and b are orthonormal basis vectors of beam’s centerline obtained using arc-length
parameterization (Frenet-Serret frame of reference), while g1, g2 and gs form orthogonal vector basis
with respect to the parametric coordinate. The vector g is collinear with the tangent t, while the
vectors g, and gs are in the beam’s cross- section plane. In the previous relations, K is the modulus
of curvature, while g1 is the component of the metric tensor of the beam’s centerline:
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By using the well-known Frenet-Serret relations and Eq. (6), the derivatives of the basis vectors with
respect to the parametric coordinate are:

0.1 Fil gK 0 9,
0,1 |= -gK 0 \/ET 9,
Os1 0 —Jgr 0 |9 ®

where ()1 represents the derivative with respect to the parameter & I'y; is the Christoffel symbol of
the second kind, and ris the torsion of the beam’s centerline.

In this paper, the beam cross-section principal axes coincide with the basis vectors g, and gs. If this
condition is not satisfied, the basis vectors g and gz need to be rotated around the basis vector g; to
align them with the principal axes, forming a new moving frame of reference [6].

Using the introduced basis vectors, the position vector of an arbitrary point of the beam can be
defined as:

F=r+ng,+{g, )

where # and ( are the coordinates along the principal axes. Consequently, the first basis vector of an
arbitrary point is defined as:
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Due to the assumption of the rigid cross-section, the vectors g2 and gs are translated from the beam’s

centerline to an arbitrary point. By observing the metric tensor of an arbitrary point, it is evident that
the basis vector g, is not perpendicular to the vectors g, and gs. To keep the same orthogonal vector

basis over the whole cross section, a new parameterization is performed by introducing &, coordinate.
More about this new frame of reference can be found in [6].

4. ISOGEOMETRIC BERNOULLI-EULER BEAM FORMULATION

Due to the external impact, the beam’s centerline has a new position defined with the current position
vector:

r=r+u (11)

where u represents the displacement vector of the beam’s centerline. Using the isogeometric
approach, the displacement vector can be represented as:

u@é) = z Ri,p(é:)ui = Z Ri,p(g)uimim
i=1 i=1 (12)
where u; is the displacement vector of the i-th control point. As can be noticed, the displacement
vector and the reference geometry of beam’s centerline are represented using the same basis
functions, which is the fundamental property of the isogeometric approach.
Formulation of the spatial Bernoulli-Euler isogeometric beam is conducted by applying the
convective coordinate system, therefore the position vector of an arbitrary point of a deformed beam
is:

P =F+ng; +{0, (13)
The basis vectors of the deformed configuration can be expressed as:
g; = gm + um (14)

where un represents the increment of the m-th basis vector.
Using Egs. (9), (13) and (14), the displacement vector of an arbitrary point of a beam is defined as:

U=u+nu,+<u, (15)

Using Eq. (15), the acceleration vector of an arbitrary point is obtained as the second material
derivative:
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In addition, the variation of displacement of an arbitrary point is obtained from Eq. (15) as:
6l =du+ndu, +<su, (17)
The components of the Green-Lagrange strain tensor in convective coordinate system are:
O 1/ .
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In the case of beams, the non-zero components of strain tensor are:
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By substituting the Bernoulli-Euler assumptions into the previous equations, the required kinematic
relations are obtained. Degrees of freedom of the isogeometric Bernoulli-Euler beam are the
displacements of the beam’s centerline and the torsional rotation of the beam’s cross-section. The
derivations of the kinematic relations can be found in detail in [3].

Assuming the linear elastic material behavior, the constitutive relations can be written as:

Si_ 9,4 jam
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where §} represents the mixed components of the second Piola-Kirchoff stress tensor, while 4 and

/. are Lame’s constants.
In order to obtain the equations of motion, the principle of virtual work is used:

[ pa-50dV, + [ 5 5edv, = [ fsiav,
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where p is the mass density, while f is the external load. By substituting Egs. (16), (17), (19) and
(20) into Eq. (21), the governing equation of motion of Bernoulli-Euler isogeometric curved beam
subjected to the moving load is obtained:

where M is the mass matrix, K is the stiffness matrix, Q is the vector of equivalent control forces,
while g is the displacement vector of the control points. Solution of this equation requires application
of a time integration procedure. The explicit step by step integration has been applied using the finite
differences method [7]. The reduced integration has been applied in Eq. (21) [8], and implemented
into the original MATLAB code [9].

5. MOVING LOAD

A mass moving along the structure generates a dynamic response. This load can be modeled as a
single load with constant magnitude and direction, fo, that moves along a beam with the constant
velocity:

f(t)=f,-5(£-V.t)
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where V: and V are the magnitudes of velocity with respect to the parametric and arc-length
coordinates, respectively.
The vector of equivalent forces of the i-th control point in the case of a point load is:

Q= Jf'Rivp(é)\/gd‘f:f'Ri,p(ém)\/g

(24)

where &y is the position of the moving load on a beam.

6. NUMERICAL EXAMPLE

The validation study of the proposed formulation is given in this section. The horizontally curved
arch with the length L = 24 m and the subtended angle « = 30° is subjected to the out-of-plane and
the in-plane moving load with constant speed V = 40 m/s. The displacements and the torsional
rotations at both ends of the beam are restrained. The beam’s geometry has been modeled with the
cubic NURBS, as given in Figure 2.

P,(23.73,0,0)
wy =1

P,(7.82,2.00,0)
wy = 0.977
-9~

T;
£ = 2400 kg/m?

o

E=2322 GPa

Figure 2. The arch subjected to the moving load

The material is homogeneous and defined using the Young’s modulus E = 32.2 GPa, the Poisson’s
ratio v = 0.2 and the mass density p = 2400 kg/m?, while the cross-section is rectangular with the
dimensions b/h = 5/1.8 m. The beam is subjected to the out-of-plane load Fy = -293.32 kN and the
in-plane load F, = 1043.71 kN directed towards the arch center. The displacements of the beam’s
midpoint obtained using the isogeometric approach have been compared with the semi-analytical
results from the literature, applicable only for the simply supported arches [10]. It is important to
point out that the beam model presented in [10] is based on the Timoshenko beam theory. In this
example, the validation study is conducted as well as the convergence study using the P- refinement
procedure.

The in-plane (u) and the out-of-plane (w) displacement components of the midpoint obtained using
the P-refinement procedure are presented respectively in Figure 3 and Figure 4.

In addition, the same example is used to calculate the influence line of the beam’s midpoint
displacement components by neglecting the inertial part of the beam in the principle of virtual work.
By comparing the results of the beam’s midpoint displacements obtained using the dynamic and
static analysis, significant difference can be observed, especially for the case of the out-of-plane
displacement.
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Figure 3. Comparison of in-plane displacement component (u) of the beam’s midpoint
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Figure 4. Comparison of the out-of-plane displacement component (w) of the beam’s midpoint

7. CONCLUSIONS

The dynamic analysis of spatially curved Bernoulli-Euler beam subjected to the moving load is
briefly presented. Spatial discretization is performed by the isogeometric approach, while the
explicit procedure is used for the time integration. To validate the proposed method, the numerical
study of the curved spatial beam subjected to the point load has been carried out. Satisfactory
agreement has been observed between the results obtained using the proposed method and the results
from the literature. In addition, the influence line of the beam’s midpoint has been calculated, and
the difference between the static and dynamic results is shown. The accurate modeling of the moving
load has significant influence on the response of a beam. In future work, the inertial part of the
moving load will be taken into account, modeling the moving mass more accurately. Also, implicit
procedures and effects of the higher-order metric will be considered [11, 12].
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