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ISOGEOMETRIC ANALYSIS OF A SPATIALLY CURVED BERNOULLI-
EULER BEAM SUBJECTED TO MOVING LOAD 

Abstract 
Dynamic analysis of a spatially curved Bernoulli-Euler beam subjected to the moving load is 
considered in this paper. The isogeometric approach is used for the spatial discretization of the weak 
form of the equation of motion. Both the reference geometry and the solution space are represented 
using the same NURBS basis functions that guarantee an accurate description of beam’s centerline. 
The time integration is done by the explicit technique. The presented formulation is validated by the 
comparison with the existing results from the literature for the curved beam subjected to the constant 
load moving with the constant velocity.  
Keywords: isogeometric approach, Bernoulli-Euler curved beam, moving load 

ИЗОГЕМЕТРИЈСКА АНАЛИЗА УТИЦАЈА ПОКРЕНТОГ 
ОПТЕРЕЋЕЊА НА ПРОСТОРНОЈ КРИВОЛИНИЈСКОЈ БЕРНУЛИ-
ОЈЛЕРОВОЈ ГРЕДИ  

Сажетак 
У овом раду је приказана динамичка анализа просторне криволинијске Бернули-Ојлерове 
греде под утицајем покретног оптерећења. Изогеометријски приступ је примењен у циљу 
просторне дискретизације слабе форме једначина кретања греде. Овај приступ се базира на 
примени истих базних NURBS функцијa за описивање геометрије и кинематике 
криволинијске греде, чиме је омогућен тачан приказ системне линије греде. Временска 
интеграција једначина је извршена применом експлицитне методе. Приказана формулација 
је валидирана поређењем са резултатима из литературе за случај криволинијске греде 
оптерећене покретном силом константног интензитета и брзине. 
Кључне  ријечи: изогеометријски приступ, Бернули-Ојлерова крива греда, покретна сила 
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1. INTRODUCTION 

Beam-like structures are often subjected to dynamic loads during their lifetime. Therefore, the 
dynamic analysis of beam elements is necessary for an accurate prediction of their real-life behavior. 
One type of the dynamic loads is the mass that moves along the structure, which is the standard load 
case for cranes and bridges. The moving mass is usually modeled as a moving force with constant 
magnitude and direction. Such approach gives a moving load model where the inertial term of the 
moving mass is neglected. Majority of the research in this field is related to the analysis of a mass 
moving along a straight beam. One of the earliest investigations was carried out by Stokes in 1849 
[1], where the influence of the moving mass on the plane straight Bernoulli-Euler beam was 
considered analytically using the moving load model. 
Due to the aesthetic and functional requirements in the design process, curved spatial beam elements 
cannot be avoided. Geometrical model of the curved spatial beam requires the spatial curve, which 
can be obtained using computer-aided design (CAD) software packages. To accurately describe the 
free-form curves and the curves of conic sections such as circle, ellipse, parabola and hyperbola, 
CAD packages utilize the NURBS (Non-Uniform Rational B-Spline) basis functions.  
In order to conduct the general dynamic analysis of complex spatially curved beams subjected to the 
moving load, numerical methods are essential. Nowadays, the Finite Element Method (FEM) is 
implemented in most software packages for structural analysis. A direct relation between CAD and 
FEM has not yet been established [2], leading to costly and time-consuming iterative design process. 
The isogeometric approach establishes a direct relationship between the geometry and the unknown 
fields of the structure [2]. This is enabled by using the NURBS functions as basis functions of the 
numerical model’s reference and solution spaces. Therefore, the same basis functions are applied 
for the geometry and kinematics, which eliminates the errors due to the geometric approximation in 
a spatially discretized model. In order to improve the mesh, three types of mesh refinement are used 
in the isogeometric approach, denoted as H-, P-, and K-methods [2]. 
A dynamic analysis of an arbitrarily curved spatial beam subjected to the moving load is studied in 
this paper. A short review on the NURBS basis function is given in Section 2 and followed by the 
beam’s geometry representation. The governing equation of motion of the Bernoulli-Euler 
isogeometric beam element is briefly given in Section 4, while more details can be found in authors’ 
previous paper [3]. The moving load model is presented in Section 5 and followed by the numerical 
example of spatially curved beam subjected to the moving load in Section 6. At the end, the main 
conclusions have been drawn. 

2. BASICS OF NURBS 

The exact shape of an arbitrary curve C(ξ) in Euclidean 3D space can be represented as: 
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where Ri,p(ξ) is the i-th NURBS basis function, p is the function degree, Ci is the position of the 
control point i, while n is the number of basis functions and control points. NURBS functions are 
derived from the B-spline functions: 
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where wi is the i-th function weight. In order to define B-spline functions, Cox de Boor algorithm is 
often applied [4]. 
For the case of a zero degree (p = 0), the B-spline functions are defined as: 
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while for the polynomial degree greater than zero (p > 0): 



 
106 STEPGRAD2022    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON CONTEMPORARY THEORY AND PRACTICE IN CONSTRUCTION XV 

 

 

1
, 1 1, 1 1

1 1,

( ) ( ), if [ , [
( )

0, otherwise

i pi
i p i p i i p

i p i i p ii p

N N
N

ξ ξξ ξ
ξ ξ ξ ξ ξ

ξ ξ ξ ξξ
+ −

− + − + +
+ + + +

− −
+ ∈ − −= 


    (4) 

The B-spline functions are polynomial functions defined in parametric domain (ξ) using the knot 
vector. This vector represents a set of non-decreasing real numbers, the knots.  
Important properties of the B-spline function, as well as the NURBS functions, used in the following 
derivations, are the non-negativity and the partition of unity over the parametric domain. More about 
the B-spline and NURBS basis functions can be found in [4]. 

3. BEAM GEOMETRY 

Due to the assumptions of beam theories, all kinematic and stress quantities of a beam can be given 
as a function of beam’s centerline. In general, the beam’s centerline has an arbitrary shape in the 
Euclidean three-dimensional space, forming a curved line. The formulation of a curved beam is 
conducted using the curvilinear coordinate system attached to the beam’s centerline.  

 
  Centerline of a curved beam with corresponding control points 

Using the NURBS parameterization, the position vector of a curved line is defined as:  
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where ri is the position of the i-th control point, Figure 1. To fully define the beam continuum, a 
unique triad must be attached to each point of a curve. Here, this triad is aligned with the Frenet-
Serret frame. The basis vectors are defined using the well-known relations of differential geometry 
[5] and relations between the arc-length and NURBS parameterizations: 
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where t, n and b are orthonormal basis vectors of beam’s centerline obtained using arc-length 
parameterization (Frenet-Serret frame of reference), while g1, g2 and g3 form orthogonal vector basis 
with respect to the parametric coordinate. The vector g1 is collinear with the tangent t, while the 
vectors g2 and g3 are in the beam’s cross- section plane. In the previous relations, K is the modulus 
of curvature, while g11 is the component of the metric tensor of the beam’s centerline: 

( )
11

11

0 0
0 1 0 , det
0 0 1

ij ij

g
g g g g

 
 = = = 
               (7) 



 
107 STEPGRAD2022    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON CONTEMPORARY THEORY AND PRACTICE IN CONSTRUCTION XV 

 

 

By using the well-known Frenet-Serret relations and Eq. (6), the derivatives of the basis vectors with 
respect to the parametric coordinate are: 
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where (),1 represents the derivative with respect to the parameter ξ, Γ1
11 is the Christoffel symbol of 

the second kind, and τ is the torsion of the beam’s centerline. 
In this paper, the beam cross-section principal axes coincide with the basis vectors g2 and g3. If this 
condition is not satisfied, the basis vectors g2 and g3 need to be rotated around the basis vector g1 to 
align them with the principal axes, forming a new moving frame of reference [6]. 
Using the introduced basis vectors, the position vector of an arbitrary point of the beam can be 
defined as: 

2 3ˆ η ζ= + +r r g g        (9) 

where η and ζ are the coordinates along the principal axes. Consequently, the first basis vector of an 
arbitrary point is defined as: 
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Due to the assumption of the rigid cross-section, the vectors g2 and g3 are translated from the beam’s 
centerline to an arbitrary point. By observing the metric tensor of an arbitrary point, it is evident that 
the basis vector 1ĝ  is not perpendicular to the vectors g2 and g3. To keep the same orthogonal vector 
basis over the whole cross section, a new parameterization is performed by introducing ξλ coordinate. 
More about this new frame of reference can be found in [6]. 

4. ISOGEOMETRIC BERNOULLI-EULER BEAM FORMULATION 

Due to the external impact, the beam’s centerline has a new position defined with the current position 
vector: 

* = +r r u          (11) 

where u represents the displacement vector of the beam’s centerline. Using the isogeometric 
approach, the displacement vector can be represented as: 
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where ui is the displacement vector of the i-th control point. As can be noticed, the displacement 
vector and the reference geometry of beam’s centerline are represented using the same basis 
functions, which is the fundamental property of the isogeometric approach.  
Formulation of the spatial Bernoulli-Euler isogeometric beam is conducted by applying the 
convective coordinate system, therefore the position vector of an arbitrary point of a deformed beam 
is: 

* * *
2 3ˆ ˆ η ζ= + +r r g g       (13) 

The basis vectors of the deformed configuration can be expressed as: 
*
m m m= +g g u           (14) 

where um represents the increment of the m-th basis vector. 
Using Eqs. (9), (13) and (14), the displacement vector of an arbitrary point of a beam is defined as: 

2 3ˆ η ζ= + +u u u u      (15) 

Using Eq. (15), the acceleration vector of an arbitrary point is obtained as the second material 
derivative: 
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In addition, the variation of displacement of an arbitrary point is obtained from Eq. (15) as: 

2 3ˆδ δ ηδ ζδ= + +u u u u        (17) 

The components of the Green-Lagrange strain tensor in convective coordinate system are: 
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In the case of beams, the non-zero components of strain tensor are: 
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By substituting the Bernoulli-Euler assumptions into the previous equations, the required kinematic 
relations are obtained. Degrees of freedom of the isogeometric Bernoulli-Euler beam are the 
displacements of the beam’s centerline and the torsional rotation of the beam’s cross-section. The 
derivations of the kinematic relations can be found in detail in [3]. 
Assuming the linear elastic material behavior, the constitutive relations can be written as: 

ˆ ˆ ˆ2j j j m
i i i mS µε λδ ε= +      (20) 

where ˆ i
jS  represents the mixed components of the second Piola-Kirchoff stress tensor, while μ and 

λ are Lame’s constants. 
In order to obtain the equations of motion, the principle of virtual work is used: 
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where ρ is the mass density, while f̂  is the external load. By substituting Eqs. (16), (17), (19) and 
(20) into Eq. (21), the governing equation of motion of Bernoulli-Euler isogeometric curved beam 
subjected to the moving load is obtained: 

+ =Mq Kq Q       (22) 

where M is the mass matrix, K is the stiffness matrix, Q is the vector of equivalent control forces, 
while q is the displacement vector of the control points. Solution of this equation requires application 
of a time integration procedure. The explicit step by step integration has been applied using the finite 
differences method [7]. The reduced integration has been applied in Eq. (21) [8], and implemented 
into the original MATLAB code [9]. 

5. MOVING LOAD 

A mass moving along the structure generates a dynamic response. This load can be modeled as a 
single load with constant magnitude and direction, f0, that moves along a beam with the constant 
velocity: 
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where Vξ and V are the magnitudes of velocity with respect to the parametric and arc-length 
coordinates, respectively. 
The vector of equivalent forces of the i-th control point in the case of a point load is: 

( ) ( ), ,i i p i p m
d

R gd R g
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ξ ξ ξ= ⋅ = ⋅∫Q f f
      (24) 

where ξm is the position of the moving load on a beam. 

6. NUMERICAL EXAMPLE 

The validation study of the proposed formulation is given in this section. The horizontally curved 
arch with the length L = 24 m and the subtended angle α = 30° is subjected to the out-of-plane and 
the in-plane moving load with constant speed V = 40 m/s. The displacements and the torsional 
rotations at both ends of the beam are restrained. The beam’s geometry has been modeled with the 
cubic NURBS, as given in Figure 2.  

 
  The arch subjected to the moving load 

The material is homogeneous and defined using the Young’s modulus E = 32.2 GPa, the Poisson’s 
ratio ν = 0.2 and the mass density ρ = 2400 kg/m3, while the cross-section is rectangular with the 
dimensions b/h = 5/1.8 m. The beam is subjected to the out-of-plane load Fw = -293.32 kN and the 
in-plane load Fu = 1043.71 kN directed towards the arch center. The displacements of the beam’s 
midpoint obtained using the isogeometric approach have been compared with the semi-analytical 
results from the literature, applicable only for the simply supported arches [10]. It is important to 
point out that the beam model presented in [10] is based on the Timoshenko beam theory. In this 
example, the validation study is conducted as well as the convergence study using the P- refinement 
procedure.  
The in-plane (u) and the out-of-plane (w) displacement components of the midpoint obtained using 
the P-refinement procedure are presented respectively in Figure 3 and Figure 4. 
In addition, the same example is used to calculate the influence line of the beam’s midpoint 
displacement components by neglecting the inertial part of the beam in the principle of virtual work.  
By comparing the results of the beam’s midpoint displacements obtained using the dynamic and 
static analysis, significant difference can be observed, especially for the case of the out-of-plane 
displacement. 
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  Comparison of in-plane displacement component (u) of the beam’s midpoint 

 
  Comparison of the out-of-plane displacement component (w) of the beam’s midpoint  

7. CONCLUSIONS 

The dynamic analysis of spatially curved Bernoulli-Euler beam subjected to the moving load is 
briefly presented. Spatial discretization is performed by the isogeometric approach, while the 
explicit procedure is used for the time integration. To validate the proposed method, the numerical 
study of the curved spatial beam subjected to the point load has been carried out. Satisfactory 
agreement has been observed between the results obtained using the proposed method and the results 
from the literature. In addition, the influence line of the beam’s midpoint has been calculated, and 
the difference between the static and dynamic results is shown. The accurate modeling of the moving 
load has significant influence on the response of a beam. In future work, the inertial part of the 
moving load will be taken into account, modeling the moving mass more accurately. Also, implicit 
procedures and effects of the higher-order metric will be considered [11, 12]. 
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