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FREE VIBRATION ANALYSIS OF SINGLY CURVED CLAMPED 

SHELLS USING THE ISOGEOMETRIC FINITE STRIP METHOD 

Abstract 

A hybrid method for the spatial discretization of two-dimensional domains is recently derived and 

applied to the problem of free vibrations of simply-supported singly curved shells. This new method 

follows from a tensor product of NURBS functions and a carefully selected series that satisfies 

boundary conditions a priori. The formulation unifies spatial discretization schemes of the semi-

analytical Finite strip method and the Isogeometric analysis. In this paper, the method is improved 

by implementing the capability to deal with clamped-clamped boundary conditions. The numerical 

analysis shows that the method has favorable accuracy per DOF, in comparison with the standard 

finite elements.  

Keywords: Isogeometric analysis, finite strips, singly curved clamped shells, free vibrations 

АНАЛИЗА СЛОБОДНИХ ВИБРАЦИЈА ЈЕДНОСТРУКО 

ЗАКРИВЉЕНИХ УКЉЕШТЕНИХ ЉУСКИ ПРИМЈЕНОМ 

ИЗОГЕОМЕТРИЈСКОГ МЕТОДА КОНАЧНИХ ТРАКА 

Сажетак 

Хибридни метод за просторну дискретизацију дводимензионалних домена је недавно изведен 

и примијењен на проблем слободних вибрација једноструко закривљених слободно 

ослољених љуски. Поступак је заснован на тензорском производу НУРБС функција и 

пажљиво одабраних редова који а приори задовољавају граничне услове. Формулација 

обједињује два приступа просторне дискретизације домена: полуаналитички метод коначних 

трака и изогеометријску анализу. Кроз овај рад, метод је унапређен увођењем граничних 

услова укљештења. Нумеричка анализа показује да метод пружа одличан однос тачности 

рјешења и броја степени слободе, у поређењу са стандардним коначним елементима. 

Кључне ријечи: изогеометријска анализа, коначне траке, једноструко закривљене 

укљештене љуске, слободне вибрације 
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1. INTRODUCTION 

Singly curved shells are readily found in engineering structures in the form of thin-walled beams, 

roofs, storage tanks, etc. Due to their specific geometric properties, the application of general doubly 

curved shell models is inefficient in comparison with the reduced models, specifically designed for 

singly curved shells. 

One of the well-established methods for the analysis of such structures is the finite strip method 

(FSM) which discretizes cross section with polynomials and approximates fields in longitudinal 

direction with trigonometric series [1], [2]. Recently, the isogeometric analysis (IGA) is combined 

with the FSM in a way to discretize the cross section with the NURBS functions, which returned the 

finite-strip isogeometric (FSIGA) formulation [3]. The method is successfully applied in [4] for the 

analysis of singly curved shells that are simply supported on both ends. 

In this paper, the FSIGA is improved so that it can model clamped-clamped boundary conditions. 

To avoid classic free-vibration mode shapes of a clamped-clamed beam which consist of hyperbolic 

functions, a different series is utilized, employing only trigonometric functions [5], [6]. In this way, 

the numerical issues, inherent for the hyperbolic functions, are avoided. 

Brief review of the FSIGA and its application to thin singly curved shells is given in the next section. 

The numerical analysis and conclusions are delivered in the last two sections. 

2. FINITE STRIP ISOGEOMETRIC FORMULATION FOR A SINGLY 

CURVED SHELL 

2.1. METRIC OF THE MIDSURFACE 

The present analysis is conducted using the convective frame of reference while the complete shell 

kinematics is defined by the Cartesian components of translation of midsurface. 

The boldface lowercase and uppercase letters are used for vectors and tensors/matrices, respectively. 

The asterisk symbol designates a deformed configuration while the overbar indicates an equidistant 

surface. The quantities measured with respect to the local, curvilinear, coordinates are labeled with 

the caret symbol. The Greek index letters take values of 1 and 2 while the Latin indices take values 

of 1, 2, and 3. The covariant and partial derivatives with respect to the mth coordinate are designated 

with ( )|m and ( ),m, respectively. 

The displacement vector of the shell midsurface is r={x=x1, y=x2, z=x3}, Fig. 1, which is here 

expressed as a tensor product of two families of lines: 

1 1 1 1

( , ) ( ) ( ) , ( ) ( ) , ,
N M N M

k k k k k

k I J IJ I J IJ IJ IJ k

I J I J

x R F x R f x x     
= = = =

= = = = =   r r i r r i     (1) 

where RI() is NURBS basis function of Ith control point. FJ() is Jth term of a series, which for the 

approximation of reference geometry of singly curved shells reduces to the ones used in the semi-

analytical FSM, [6]: 

 
1 2 3{ , , } {1, ,1}.J J J JF f f f = =                            (2) 

rIJ is the position vector of the Ith control point for the Jth series term, N is the total number of control 

points along the  direction while M is the total number of series terms. im are the base vectors of 

the Cartesian coordinate system and 
1 =  is local curvilinear coordinate, see Fig. 1. 
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 An isogeometric finite strip model. The mapping between the reference and deformed 

configurations in physical space (left), and parameter space (right). An example of general basis 

functions is shown next to the parameter space. 

 

The base vectors of the midsurface are: 

 
1 3 1 3

1 ,1 ,1 2 3 ,3 ,3{ ,0, }, {0,1,0}, { ,0, },x x x x= = =g g g                   (3) 

where ,

m

nx  are the partial derivatives of the midsurface position with respect to 
n  coordinates. For 

the adopted description of geometry, components of the base vector g1 are: 

 ,1 ,1

1 1

[ ( ) ( )] .
N M

k k k

I J IJ

I J

x R f x 
= =

=                            (4) 

Since the second and the third coordinates, 
2 =  and 

3 = , are straight lines, the base vectors 

g2 and g3, and its reciprocal counterparts g2 and g3 are the same and have unit length. The third 

coordinate 
3 =  is orthogonal to the 

 coordinates and the base vector g3 represents the normal 

of a midsurface: 

3 3 1

3 1 2 ,3 ,3 ,3 ,1 ,2 ,1 1 ,1 3

1 1
( ) , ,m m k l

m m klmx x x x x e x x
g g

= = =  = = = = − +g g n g g i i i        (5) 

where emnk is the permutation symbol and g is the determinant of metric tensor of midsurface: 

 

,1 ,1

, , 11

0 0

0 1 0 , det .

0 0 1

m

m

k

ij i k j ij

x x

g x x g g g

 
 

= = = = 
 
 

                 (6) 

The reciprocal metric tensor of midsurface is: 

 

11

1

11

11

1 0 0 0 0
1

0 0 0 1 0 , det 1/ ,

0 0 0 0 1

ij ij

ij

g

g g g g g
g

g

−

  
  

= = = =  
     

             (7) 

and the reciprocal tangent vector g1 is: 

 
1 ,1 ,1 3 1

2 3 ,2 ,3 ,3 1 ,3 3

1 1
( ) , .n m k

n n mknx x x x e x x
g g

=  = = = −g g g i i i              (8) 

The derivatives of the base vector g1 are calculated as: 
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,1 , 1

1, ,1 1 1,

,1 1

,

m k k

m k km n nk

m km n n

m n n

x x
x g

x x

 

   

 

 =
= =   = 

= 

g g
g i

g g
               (9) 

where 1 k  and 1

n

  are the Christoffel symbols of the first and the second kind, respectively. For 

the introduced tensor product, Eq. Error! Reference source not found., these derivatives are, [3]: 

 
1 2

1, ,11 ,1 ,2

1 1 1

[ ( ) ( ) ( ) ( ) ].
N M M

I J IJ I J IJ

I J J

R F R F       
= = =

= +  g r r              (10) 

The Christoffel symbols 𝛤1𝛼
3  are the components of the curvature tensor and we will mark them as 

𝛤𝛼𝛽
3 = 𝑏𝛼𝛽: 

 3, 3 , ,b b g b   

      = − = − =g g g                      (11) 

where b

  and b  are the mixed and covariant components of the curvature tensor, respectively, 

[3]. For singly curved shells, components of the curvature tensor at initial configuration are, Fig. 1: 

 
1 2 1 2

1 2 2 10, 0.b b b b = = =                            (12) 

2.2. METRIC OF THE EQUIDISTANT SURFACE 

The position vector of an equidistant surface is: 

 3 ,= +r r g                                (13) 

while its base vectors are: 

1 1 2

1 1 1 1 1 1 1 1 11

2 2 3 3

( ) , 1 , 0,

, ,

b b C C b C   

     



= = − = − = = − =



= =

r
g g g g g

g g g g

         (14) 

where the only non-zero component of the shift tensor which is 1C
 [7]. The covariant metric tensor 

at an equidistant surface is: 

( )
,1 ,1

2
1

, , 11 1 11 11 11

0 0

0 1 0 , det 1 2 ,

0 0 1

m

m

k

ij i k j ij

x x

g x x g g g b g g b 

 
 

= = = = = −  − 
 
 

     (15) 

In the previous equation the quadratic term with respect to  coordinate is neglected, which is often 

for thin and moderately thick shells, [8]. 

2.3. KIRCHHOFF-LOVE THEORY OF A SINGLY CURVED SHELL 

The deformed midsurface is defined with the position vector: 

* ,= +r r u                                 (16) 

where the displacement u is approximated with the tensor product of the NURBS functions and a 

series which satisfies boundary conditions for η=const. Here, this series is the same as that used for 

the description of the geometry, Eq. (1): 

   
1 1 1 1

( ) ( ) , ( ) ( ) .
N M N M

m m m m

m I J IJ I J IJ

I J I J

u R F u R f u   
= = = =

= = =   u i u            (17) 

uIJ is the vector of displacement components of the Ith control point for the Jth series term. It can be 

written as: 

               =u Nq                                  (18) 

where N is the matrix of basis functions defined in [4]. 

The acceleration field is obtained as the second material derivative of the displacement field: 
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n

nu= =u i Nq                              (19) 

According to the KL hypothesis, the expressions for the reference strains of the midsurface for singly 

curved shells within the scope of the linear theory are, [4]: 

 

1 3

11 ,1 ,1 1,1 ,1 3,1 ,1

2

22 ,2 ,2 ,2

2 1 3

12 ,2 ,1 ,1 ,2 ,1 1,1 ,2 3,1 ,2

1 3 1 1 3

11 ,3 ,11 11 , 1,3 ,11 3,3 ,11 11 1,3 ,1 3,3 ,1

1

22 ,3 ,22 22 , 1,3 ,22

,

,

2 ,

( ) ( ),

( )

k

k

k

k

k k

k k

k k

k

k k

k

x u x u x u

x u u

x u x u u x u x u

x u u x u x u x u x u

x u u x u x



















= = +

= =

= + = + +

= −  = + −  +

= −  = + 3

3,3 ,22

1 3

12 ,3 ,12 12 , 1,3 ,12 3,3 ,12

,

2 2 ( ) 2( ).k k

k

u

x u u x u x u

 = −  = +

           (20) 

while the relations between the equidistant and reference strains are: 

 * * *1 1
( ) ( ) ( ) ( ) .

2 2
g g g g b b              = = −  − − − = −         (21) 

The stress-strain relation is defined with the classic Saint Venant-Kirchhoff material model for the 

plane stress and plane strain conditions: 

2 ( ) ,
1

g g g g D     

 


   


= + =

−
                 (22) 

where D
 are the components of the constitutive tensor while  and ν are Lamé constants. 

2.4. PRINCIPLE OF VIRTUAL WORK 

The principle of virtual work, when the external effects are neglected, can be written as: 

δ δ δ : δ δ 0,ij i

ij i

v v v v

W dv u u dv dv dv   = + = +  =   σ ε u u              (23) 

where σ is the Cauchy stress tensor, ε is the strain tensor, and 𝐮̈ is the vector of accelerations. 

After integration of Eq. (23) along the thickness, the internal term reduces to: 

 δ d ( δ δ )d ,
v a

v N M a  

     = +                      (24) 

where N and M are the stress resultants and stress couples which are energetically conjugated 

with the reference strains of the midsurface,   and  .  

By assuming that the material is homogenous and that the effect of rotational inertia is negligible, 

the inertial term of virtual work reduces to: 

δ δ .i i

i i

v a

u u dv h u u da =                             (25) 

Now, Eq. (23) can be written in matrix form as: 

 
T Tδ d δ d 0,

a a

W a h a = + = f e u u                        (26) 

where fT and eT are the the vectors of generalized section forces and reference strains of the shell 

midsurface: 

 
 

T 11 22 12 11 22 12

T

11 22 12 11 22 12

,

2 2 .

N N N M M M

     

 =  

=

f

e
                  (27) 

The constitutive relations between the energetically conjugated section forces and reference strains 

can be represented in a compact form as: 

  ,=f De                                  (28) 
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where D is the constitutive tensor: 

 
0

.
0

M M

B B

D

D



   

  
= =     

   

D 0
D g g g g

0 D
               (29) 

2.5. DISCRETE EQUATION OF MOTION 

The relation between the reference strains and the displacements of control points for one 

isogeometric finite strip can be represented with the strain-displacement matrix B, defined in [4]: 

 ,= =e Bq LHq                               (30) 

and Eq. (26) can be written as: 

 
T T T T T Tδ d δ d d δ d δ 0,

a a a a

W a h a a h a  = + = + =   e D e u u q B DB q q N N q       (31) 

or: 

 T T

0,

d , d ,
a a

a h a

+ =

= = 

Mq Kq

K B DB M N N                       (32) 

where K and M are the stiffness and mass matrices of one isogeometric finite strip, respectively. 

Solving the equation (32) yields a well-known eigenvalue problem: 

( )2 ,− =K M q 0                              (33) 

with 3NM nontrivial solutions of eigenpairs of eigenfrequencies i and corresponding eigenvectors 

.iq  

2.6. SERIES PART OF BASIS FUNCTION 

The presented FSIGA, applied to the analysis of singly curved shells, uses series only for the 

kinematic field. This is analogous to the semi-analytical FSM that enables modeling of all types of 

classic boundary conditions, [2, 6]. Here, only the clamped-clamped boundary conditions are 

considered. 

It is convenient to utilize two different series. One approximates the two components of a 

displacement vector in a transverse plane of a shell while the other series approximates the 

longitudinal (along the η-axis) component of a displacement vector, Fig. 1 [6]. If the longitudinal 

ends of a strip are clamped, a simple choice for the basis functions f1 and f3 is suggested in [5]: 

   ( ) ( )1 3 sin / sin / , 1,2,... ,J Jf f J L L J M = = =                 (34) 

which satisfies boundary conditions: 
1 1 3 3ˆ ˆ ˆ ˆ( ,0) ( , ) ( ,0) ( , ) 0u u L u u L   = = = =  and 

1 1 3 3

,2 ,2 ,2 ,2
ˆ ˆ ˆ ˆ( ,0) ( , ) ( ,0) ( , ) 0u u L u u L   = = = = . Regarding the approximation of displacement 

component along the longitudinal direction, a simple sine series is considered: 

( )2 sin / , 1,2,... ,Jf J L J M= =                        (35) 

Let us simplify the notation with: 
1 3 2,m m m m mf f Z f Y= = = . In this way, the thirteen integrals with 

respect to the series terms which should be solved in the Eq. (32) are: 
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1 2 ,22 3 ,22 ,22 4 ,2 ,2

0 0 0 0

5 ,2 6 ,2 7 ,2 ,2

0 0 0

8 9 ,22 ,2 10 ,22 ,2

0 0 0

11 ,2 ,2

0

, , , ,

, , ,

, , ,

L L L L

mn m n mn m n mn m n mn m n

L L L

mn m n mn m n mn m n

L L L

mn m n mn m n mn m n

L

mn m n

I Z Z d I Z Z d I Z Z d I Z Z d

I Y Z d I Y Z d I Y Y d

I Y Y d I Z Z d I Z Y d

I Z Y d

   

  

  



= = = =

= = =

= = =

=

   

  

  

12 13 ,2

0 0

, , .

L L

mn m n mn m nI Y Z d I Z Y d = =  

     (36) 

Тhe integration of trigonometric functions is here done analytically, cf. Appendix. 

3. NUMERICAL EXAMPLES 

The aim of the present numerical analysis is to verify and validate the developed FSIGA regarding 

the singly curved shells with clamped-clamped boundary conditions, and to examine its convergence 

properties. The numerical reference solutions obtained with highly refined FSIGA meshes are 

utilized in each experiment. A designation for an IGFSM mesh is mh-np-ik-jt, where m, n, i, and j 

are the number of strips (knot spans), the order of NURBS, the interstrip continuity, and the number 

of series terms, respectively. 

The validation tests are done by the comparison with the results found with dense uniform meshes 

of STRI3 shell elements. This element is the only one in the Abaqus library which imposes KL 

constraints analytically, [9].  

Additional comparison is made with the standard flat shell finite strips LO2 and HO3 [1, 6]. 

3.1 AN OPEN CIRCULAR CYLINDER 

An open circular cylinder as in Fig. 2 is studied first. The reference FSIGA frequencies for the first 

eight modes are calculated with 80h-4p-1k-40t mesh and given in Table. 1 The results obtained with 

a smaller number of degrees of freedom are presented only for the purpose of comparing with the 

results found with Abaqus. Excellent accuracy per DOF of the FSIGA is evident. Regarding the 

mode shapes, they are virtually indistinguishable from those in Abaqus, and only the FSIGA results 

are visualized, Fig. 3.  

The results of h-refinement tests are given in Fig. 4. They imply that an increase in the NURBS 

order and interstrip continuity significantly increases the order of convergence. The convergences 

of LO2 and HO3 strips are displayed in Fig 5. These flat shell strips have inferior orders of 

convergence in comparison with the curved NURBS strips of similar order. 

The results of t-refinement tests for cubics and quartics NURBS with the lowest and the highest 

continuities are given in Fig. 6 and Fig. 7. Similar orders of convergence are detected for both 

models, near 2. The same influence of odd and even series terms as in [4] is observed.  

 

 The open circular cylinder. 
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Table 1. The open circular cylinder. Comparison of the lowest eight eigenfrequencies [Hz]. 

Mode 

Abaqus STRI3 Present 

1680 167200  20h-2p-1k-10t  80h-4p-1k-40t 

elements elements  
 

(nDOF=5412) (nDOF=505260) (nDOF=660) (nDOF=29040) 

1 523.81 505.62 509.58 506.09 

2 577.03 569.19 572.10 569.41 

3 1011.7 984.35 989.97 984.84 

4 1101.3 1070.7 1079.70 1071.84 

5 1555.6 1549.6 1562.99 1550.83 

6 1587.3 1564.5 1577.03 1565.26 

7 1662.2 1632.1 1655.80 1637.02 

8 1689.5 1650.5 1665.76 1652.28 

 

 

 The open circular cylinder. Mode shapes of the lowest eight modes. 

 

 

 The open circular cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the h-refinement: a) mh-3p-2k-40t; b) mh-4p-1k-40t  
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 The open circular cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the h-refinement and forty series terms: a) LO2 strip; b) HO3 strip. 

 

 

 The open circular cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the t-refinement: a) 80h-3p-1k-jt; b) 80h-3p-2k-jt  

 

 The open circular cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the t-refinement: a) 80h-4p-1k-jt; b) 80h-4p-3k-jt 
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3.2 A QUARTIC CYLINDER WITH SYMMETRIC CROSS SECTION 

In this example we consider a shell with symmetric circumferential profile, described with the 

quartic NURBS, Fig. 8. Its parametric equations are: 
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   (37) 

The reference mesh is the same as in the previous example, 80h-4p-1k-40t. The lowest eight 

eigenfrequencies are scrutinized with respect to the results obtained with STRI3 elements in Table 

2 while the mode shapes are displayed in Fig. 9. 

The convergences of eigenfrequencies with respect to the h-refinement are presented in Fig. 10 and 

Fig. 11. An astonishing improvement of accuracy per DOF is obtained for meshes with increased 

smoothness. The t-refinement results are given in Fig. 12 and Fig. 13. The orders of convergences 

are similar to those estimated in the previous example, close to 2. 

 

 The quartic cylinder. Geometry and material properties. The weights of control points 

are designated with wi. 

Table 2. The quartic cylinder. Comparison of the lowest eight eigenfrequencies [Hz]. 

Mode 

Abaqus STRI3 Present 

1608 89000  20h-4p-1k-10t  80h-4p-1k-40t 

elements elements  
 

(nDOF=5304) (nDOF=270540) (nDOF=1860) (nDOF=29040) 

1 32.74 32.87 32.89 32.87 

2 35.97 33.57 33.93 33.64 

3 37.78 36.98 37.04 36.96 

4 47.38 44.15 44.30 44.10 

5 56.41 54.15 55.24 54.81 

6 58.95 55.79 56.42 55.89 

7 61.51 56.29 56.47 56.33 

8 64.16 63.83 63.99 63.82 
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 The quartic cylinder. Mode shapes of the lowest eight modes.  

 

 The quartic cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the h-refinement: a) mh-4p-1k-40t; b) mh-4p-3k-40t. 

 

 The quartic cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the h-refinement: a) mh-5p-1k-40t; b) mh-5p-4k-40t. 
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 The quartic cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the t-refinement: a) 80h-4p-1k-jt; b) 80h-4p-3k-jt.  

 

 The quartic cylinder. Convergence of the relative error for the lowest eight 

eigenfrequencies using the t-refinement: a) 80h-5p-1k-jt; b) 80h-5p-4k-jt. 

4 CONCLUSIONS 

The recently developed FSIGA hybrid metod is revised and improved by implementing the clamped-

clamped isogeometric finite strip. A pure trigonometric series is used and the numerical issues with 

hyperbolic functions are avoided. As in the previous work, excellent results are obtained in 

comparison with the finite element method. 

The presented method provides improved orders of convergence and allows the analytical 

integration of trigonometric functions. Additionally, an arbitrarily curved reference geometry can 

be exactly represented by the NURBS functions. These properties make the FSIGA well-suited for 

the analysis of singly curved shells.  
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Appendix A.  

Closed-form solutions of the thirteen integrals in Eq. (36) are given here.  
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