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FREE VIBRATION ANALYSIS OF SINGLY CURVED CLAMPED
SHELLS USING THE ISOGEOMETRIC FINITE STRIP METHOD

Abstract

A hybrid method for the spatial discretization of two-dimensional domains is recently derived and
applied to the problem of free vibrations of simply-supported singly curved shells. This new method
follows from a tensor product of NURBS functions and a carefully selected series that satisfies
boundary conditions a priori. The formulation unifies spatial discretization schemes of the semi-
analytical Finite strip method and the Isogeometric analysis. In this paper, the method is improved
by implementing the capability to deal with clamped-clamped boundary conditions. The numerical
analysis shows that the method has favorable accuracy per DOF, in comparison with the standard
finite elements.
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AHAJIN3A CJI0OBOJJHUX BUBPAIIMJA JEAHOCTPYKO
3AKPUB/BEHUX YK/BEHITEHUX JbYCKH IPUMJEHOM
N30TEOMETPUJCKOI' METOJIA KOHAYHUX TPAKA

Carxcemax

XuOpUIHN METO/ 32 TPOCTOPHY AUCKPETH3ANN]y IBOANMEH3HOHAIHUX JOMEHA je HeJaBHO N3BEJCH
U TpUMHjEHeH Ha TpoOsieM cnoOoMHUX BHOpaldja jeTHOCTPYKO 3aKpPHUBJHEHHX CIIOO0IHO
ociosbeHNX Jbyckd. IlocTymak je 3acHOBaH Ha TeH3opckoM mnpousBony HYPBC dyskumja n
NaXJbUBO 0Ja0paHMX penoBa KOjU a NMPHUOPH 33/10BOJbaBajy TpaHmuHe yciose. dopmymanmja
o0jenumyje 1Ba MPUCTYTIA TPOCTOPHE TUCKPETU3ALM]jE JOMEHA: MTOJTyaHATUTHYKH METO]T KOHAYHNX
Tpaka M M30reoMeTpHjcKy aHaimuzy. Kpo3 oBaj pax, meron je yHampeheH yBolhemeM rpaHHMIHHX
ycioBa ykJbemTema. Hymepuuka aHanm3a mokasyje 7a METOA INpYy)ka OJUIMYaH OJHOC TaYHOCTH
pjemema u Opoja crenenu ciaobone, y nopehemy ca craHIapAHUM KOHAYHUM €JIEMEHTHMA.

Kwyune pujeuu: uzoceomempujcka ananusa, KOHauHe mpake, jeOHOCMPYKO 3aKPUGHEHE
VK/beumene bycke, ciobo0He subpayuje



1. INTRODUCTION

Singly curved shells are readily found in engineering structures in the form of thin-walled beams,
roofs, storage tanks, etc. Due to their specific geometric properties, the application of general doubly
curved shell models is inefficient in comparison with the reduced models, specifically designed for
singly curved shells.

One of the well-established methods for the analysis of such structures is the finite strip method
(FSM) which discretizes cross section with polynomials and approximates fields in longitudinal
direction with trigonometric series [1], [2]. Recently, the isogeometric analysis (IGA) is combined
with the FSM in a way to discretize the cross section with the NURBS functions, which returned the
finite-strip isogeometric (FSIGA) formulation [3]. The method is successfully applied in [4] for the
analysis of singly curved shells that are simply supported on both ends.

In this paper, the FSIGA is improved so that it can model clamped-clamped boundary conditions.
To avoid classic free-vibration mode shapes of a clamped-clamed beam which consist of hyperbolic
functions, a different series is utilized, employing only trigonometric functions [5], [6]. In this way,
the numerical issues, inherent for the hyperbolic functions, are avoided.

Brief review of the FSIGA and its application to thin singly curved shells is given in the next section.
The numerical analysis and conclusions are delivered in the last two sections.

2. FINITE STRIP ISOGEOMETRIC FORMULATION FOR A SINGLY
CURVED SHELL

2.1. METRIC OF THE MIDSURFACE

The present analysis is conducted using the convective frame of reference while the complete shell
kinematics is defined by the Cartesian components of translation of midsurface.

The boldface lowercase and uppercase letters are used for vectors and tensors/matrices, respectively.
The asterisk symbol designates a deformed configuration while the overbar indicates an equidistant
surface. The quantities measured with respect to the local, curvilinear, coordinates are labeled with
the caret symbol. The Greek index letters take values of 1 and 2 while the Latin indices take values
of 1, 2, and 3. The covariant and partial derivatives with respect to the m™ coordinate are designated
with ()m and (),m, respectively.

The displacement vector of the shell midsurface is r={x=x*, y=x?, z=x%}, Fig. 1, which is here
expressed as a tensor product of two families of lines:

r=r(sn) :ink :ZRI (é:)z_ F (n)rm X :ZR| (f)z_ ka(U)X:(J’ My ZXEik: (1)

where Ri(&) is NURBS basis function of 1™ control point. Fy(7) is J" term of a series, which for the
approximation of reference geometry of singly curved shells reduces to the ones used in the semi-
analytical FSM, [6]:

F, :{fall sz, ff}={1ﬂ7,1}- 2

ryis the position vector of the 1™ control point for the J" series term, N is the total number of control
points along the & direction while M is the total number of series terms. im are the base vectors of

the Cartesian coordinate system and 0" =& is local curvilinear coordinate, see Fig. 1.
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Figure 1. An isogeometric finite strip model. The mapping between the reference and deformed
configurations in physical space (left), and parameter space (right). An example of general basis
functions is shown next to the parameter space.

The base vectors of the midsurface are:
g, ={x1,0.} 9, ={010}, g, ={x;,0,x3}, ®3)

where X' are the partial derivatives of the midsurface position with respect to 0" coordinates. For
the adopted description of geometry, components of the base vector g; are:

N M
Xy =2 > [R (O ]x;. )

1=1J=1
Since the second and the third coordinates, 0 = n and 0° = ¢, are straight lines, the base vectors
g2 and gz, and its reciprocal counterparts g2 and g° are the same and have unit length. The third
coordinate 6° = ¢ is orthogonal to the &* coordinates and the base vector gs represents the normall

of a midsurface:
_3__1 _ymi mo_ _1 k! S I 1

g;=0"=n —_(g1xgz)— X,3 Lo X,3 =X __X,lx,zeklm - X,1|1+X,1|3l (5)
Jo

m,3 \/a

where emnk is the permutation symbol and g is the determinant of metric tensor of midsurface:

00
1 0|, g=detg; =09, (6)
01

X

1 Xm.
k
O = XiX ;= 0
0

The reciprocal metric tensor of midsurface is:

1 1 0 O g" 0 0
9"=9g; =={0 g, 0 (=0 1 0| detg’=1/g, ()
0 0 g, 0 01
and the reciprocal tangent vector g! is:
1 1 1:n 1 1 myk 3 1
g :ﬁ(gzxgs)zxnl v X :ﬁx,zxﬁemkn =Xl = X515 (8)

The derivatives of the base vector g; are calculated as:
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where T, and I'}, are the Christoffel symbols of the first and the second kind, respectively. For
the introduced tensor product, Eq. Error! Reference source not found., these derivatives are, [3]:

N M M
O, = Z[é‘i R, 11 &) z F@mr, + 5§R| 1 (5)2 F 2 (mr, 1 (10)
1=1 J=1 J=1
The Christoffel symbols I;3, are the components of the curvature tensor and we will mark them as
Fagﬁ = ba[)’:
g3,a = _Fgag;z = _b;lg,u’ boltl = gl“’bva, (11)

where b’ and b, are the mixed and covariant components of the curvature tensor, respectively,
[3]. For singly curved shells, components of the curvature tensor at initial configuration are, Fig. 1:

bf#0, b?=b, =b’=0. (12)
2.2. METRIC OF THE EQUIDISTANT SURFACE

The position vector of an equidistant surface is:
r=r+4g,, (13)

while its base vectors are:

_or . , , = _ _
0, =ﬁ=gl _é/bl g, = (51 _gbl )gv =C/9,, Cll :1_é’b11, Clz =0, (14)
gz =0, §3 =0s
where the only non-zero component of the shift tensor which is Clv [7]. The covariant metric tensor
at an equidistant surface is:

X1,

X, 00

. _ o 2

g; = X,li(xk,j = 0 1 0], g=det 9; =0 :(1_4/b11) 0y~ 0y, — 28Dy, (15)
0 01

In the previous equation the quadratic term with respect to £ coordinate is neglected, which is often
for thin and moderately thick shells, [8].

2.3. KIRCHHOFF-LOVE THEORY OF A SINGLY CURVED SHELL
The deformed midsurface is defined with the position vector:
r’=r+u, (16)

where the displacement u is approximated with the tensor product of the NURBS functions and a
series which satisfies boundary conditions for z=const. Here, this series is the same as that used for
the description of the geometry, Eq. (1):

U=u"ip =2 RELF MU, " =R €)X . (17)

uyy is the vector of displacement components of the I™ control point for the J™ series term. It can be
written as:

u=Nq (18)

where N is the matrix of basis functions defined in [4].
The acceleration field is obtained as the second material derivative of the displacement field:



U=u"i =Ng (19)

According to the KL hypothesis, the expressions for the reference strains of the midsurface for singly
curved shells within the scope of the linear theory are, [4]:

&n = Xk,lu,l; = X1,1u,11 + X3,1U,317

Ep = Xk,zu,kz = u,zzv

26, = Xk,Zu,l:(L + Xk,lu,kz = u,21 + X1,1u,12 + X3,1u,327 (20)
Ky = X3 (Uil - rﬁu,k,,) = X1,3U,111 + X3,3U,311 - ril(xlﬁu,ll + X3,3u,31)a
Ky = X3 (u,kzz _Félzu,ij) = X1,3u,122 + X3,3u,3221

2Ky, = 2%, 5 (Uﬁz _Ffzu,k#) = 2(X1,3U,112 + Xs,suiz)-

while the relations between the equidistant and reference strains are:
_ 1. _ 1, . .
Eop = Eap )= E o — gaﬁ) ~ E(gaﬁ - gaﬁ) _é/(baﬁ _baﬂ) =& _gKaﬁ' (21)

The stress-strain relation is defined with the classic Saint Venant-Kirchhoff material model for the
plane stress and plane strain conditions:

Q av V (27 (27
o =2u(g" 9" +7—9”g")s, =D""e,, (22)
where D" are the components of the constitutive tensor while .z and v are Lamé constants.

2.4. PRINCIPLE OF VIRTUAL WORK

The principle of virtual work, when the external effects are neglected, can be written as:

W :J.5”6§ijdv+jpﬁi6qdv:J.6:85dv+J'pi‘i-6ﬁdv=0, (23)

where ¢ is the Cauchy stress tensor, € is the strain tensor, and ii is the vector of accelerations.
After integration of Eq. (23) along the thickness, the internal term reduces to:

[578z,,dv = [(N*3e,, + M*bx,, )da, (24)

v

where N#" and M#" are the stress resultants and stress couples which are energetically conjugated

with the reference strains of the midsurface, ¢, and x,, .

By assuming that the material is homogenous and that the effect of rotational inertia is negligible,
the inertial term of virtual work reduces to:

J pU'ST,dv = ph_[U‘Buida. (25)

Now, Eqg. (23) can be written in matrix form as:

oW = [fT3eda+ ph|ii"suda =0, (26)

where fT and eT are the the vectors of generalized section forces and reference strains of the shell
midsurface:

fT=|:N11 sz N12 M“ Mzz Miz:l
. ’ (27)
€ = [511 &y 2512 Ky Ky 2K12 ]

The constitutive relations between the energetically conjugated section forces and reference strains
can be represented in a compact form as:

f =De, (28)



where D is the constitutive tensor:

D 0 D" 0
D:{ OM 5 }:{ ’\6 Daﬁyl}gu@)gﬁ@gy@gi. (29)
B B

2.5. DISCRETE EQUATION OF MOTION

The relation between the reference strains and the displacements of control points for one
isogeometric finite strip can be represented with the strain-displacement matrix B, defined in [4]:

e=Bqg=LHaq, (30)
and Eq. (26) can be written as:

SW = j e'Ddeda+ phj i"suda=q" j B'DBdasq+ phg” j N'Ndasq=0, (31)

or:
Mg+ Kq =0,
K =[B'DBda, M=ph[N"Nda, (32)

where K and M are the stiffness and mass matrices of one isogeometric finite strip, respectively.
Solving the equation (32) yields a well-known eigenvalue problem:

(K-0’M)g=0, (33)
with 3NM nontrivial solutions of eigenpairs of eigenfrequencies a; and corresponding eigenvectors
Qi
2.6. SERIES PART OF BASIS FUNCTION

The presented FSIGA, applied to the analysis of singly curved shells, uses series only for the
kinematic field. This is analogous to the semi-analytical FSM that enables modeling of all types of
classic boundary conditions, [2, 6]. Here, only the clamped-clamped boundary conditions are
considered.

It is convenient to utilize two different series. One approximates the two components of a
displacement vector in a transverse plane of a shell while the other series approximates the
longitudinal (along the #-axis) component of a displacement vector, Fig. 1 [6]. If the longitudinal
ends of a strip are clamped, a simple choice for the basis functions f* and 2 is suggested in [5]:

fy =) =sin(Jzay/L)sin(zy/L), J=12..M, (34)

which satisfies boundary  conditions:  UG'(&,0) =G'(&,L) =0%(£,0)=0°(£,L)=0  and

U,(&,0)=0,(5,L) =0%(£,0)=05(,L)=0. Regarding the approximation of displacement
component along the longitudinal direction, a simple sine series is considered:

f2=sin(Jan/L), J=12,.M, (35)

Let us simplify the notation with: f,ﬁ = fn? =Z,, frf =Y,,. In this way, the thirteen integrals with
respect to the series terms which should be solved in the Eq. (32) are:
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The integration of trigonometric functions is here done analytically, cf. Appendix.
3. NUMERICAL EXAMPLES

The aim of the present numerical analysis is to verify and validate the developed FSIGA regarding
the singly curved shells with clamped-clamped boundary conditions, and to examine its convergence
properties. The numerical reference solutions obtained with highly refined FSIGA meshes are
utilized in each experiment. A designation for an IGFSM mesh is mh-np-ik-jt, where m, n, i, and j
are the number of strips (knot spans), the order of NURBS, the interstrip continuity, and the number
of series terms, respectively.

The validation tests are done by the comparison with the results found with dense uniform meshes
of STRI3 shell elements. This element is the only one in the Abaqus library which imposes KL
constraints analytically, [9].

Additional comparison is made with the standard flat shell finite strips LO2 and HO3 [1, 6].

3.1 AN OPEN CIRCULAR CYLINDER

An open circular cylinder as in Fig. 2 is studied first. The reference FSIGA frequencies for the first
eight modes are calculated with 80h-4p-1k-40t mesh and given in Table. 1 The results obtained with
a smaller number of degrees of freedom are presented only for the purpose of comparing with the
results found with Abaqus. Excellent accuracy per DOF of the FSIGA is evident. Regarding the
mode shapes, they are virtually indistinguishable from those in Abaqus, and only the FSIGA results
are visualized, Fig. 3.

The results of h-refinement tests are given in Fig. 4. They imply that an increase in the NURBS
order and interstrip continuity significantly increases the order of convergence. The convergences
of LO2 and HOS3 strips are displayed in Fig 5. These flat shell strips have inferior orders of
convergence in comparison with the curved NURBS strips of similar order.

The results of t-refinement tests for cubics and quartics NURBS with the lowest and the highest
continuities are given in Fig. 6 and Fig. 7. Similar orders of convergence are detected for both
models, near 2. The same influence of odd and even series terms as in [4] is observed.

h=0.001 m
E=210 GPa
v=0.3

p=7800 kg/m’

Figure 2. The open circular cylinder.
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Table 1. The open circular cylinder. Comparison of the lowest eight eigenfrequencies [Hz].

Abaqus STRI3 Present
Mode 1680 167200 20h-2p-1k-10t  80h-4p-1k-40t
elements elements
(nDOF:5412) (nDOF:505260) (nDOF:660) (nDOF:29040)
1 523.81 505.62 509.58 506.09
2 577.03 569.19 572.10 569.41
3 1011.7 984.35 989.97 984.84
4 1101.3 1070.7 1079.70 1071.84
5 1555.6 1549.6 1562.99 1550.83
6 1587.3 1564.5 1577.03 1565.26
7 1662.2 1632.1 1655.80 1637.02
8 1689.5 1650.5 1665.76 1652.28

a) 25 b)
-3

35 B

:lf é=

31 32 33 3.4 35 36 23 2.4 25 2.6 2.7 28
log,y(npor) log;y(npop)

Figure 4. The open circular cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the h-refinement: a) mh-3p-2k-40t; b) mh-4p-1k-40t
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Figure 5. The open circular cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the h-refinement and forty series terms: a) LO2 strip; b) HO3 strip.
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Figure 6. The open circular cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the t-refinement: a) 80h-3p-1k-jt; b) 80h-3p-2k-jt

a)-1.5 b) -1.5

lOgml(D::/(D“-ll
log,g|wh/w,-1|

36 37 38 39 4 41 42 3.2 3.3 34 3.5 3.6 3.7
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Figure 7. The open circular cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the t-refinement: a) 80h-4p-1k-jt; b) 80h-4p-3k-jt



3.2 AQUARTIC CYLINDER WITH SYMMETRIC CROSS SECTION
In this example we consider a shell with symmetric circumferential profile, described with the
quartic NURBS, Fig. 8. Its parametric equations are:

0.08-0.32 £+1.2 £ -1.76 £ +0.88 &*
02+08&-18&2+2 8¢
—0.45 £2+0.1 £ +0.25 &*
—02-08&+1.8 822 &8 +&4

(&)= ,

@37
2(8) =

The reference mesh is the same as in the previous example, 80h-4p-1k-40t. The lowest eight
eigenfrequencies are scrutinized with respect to the results obtained with STRI3 elements in Table
2 while the mode shapes are displayed in Fig. 9.

The convergences of eigenfrequencies with respect to the h-refinement are presented in Fig. 10 and
Fig. 11. An astonishing improvement of accuracy per DOF is obtained for meshes with increased
smoothness. The t-refinement results are given in Fig. 12 and Fig. 13. The orders of convergences
are similar to those estimated in the previous example, close to 2.

h=0.005 m
£=210 GPa
v=0.3

p=7800 kg/m®

/7
)C4:0, 2420.5 .’:5:0.4, 25:0.5 //'
11)4:2 1~1/5: 1 "Q///
_ _ 5>
X=0.4,2025  \7
wy=1.5 7
// Zn ¥
p TZ',
x>=0, z,=0 x=0.4, z=0 X
w=2 wi=1

Figure 8. The quartic cylinder. Geometry and material properties. The weights of control points
are designated with w;.

Table 2. The quartic cylinder. Comparison of the lowest eight eigenfrequencies [Hz].

Abaqus STRI3 Present
Mode 1608 89000 20h-4p-1k-10t  80h-4p-1k-40t
elements elements
(nDOF:5304) (nDOF:270540) (nDo|:=1860) (nDOF:29O4O)
1 32.74 32.87 32.89 32.87
2 35.97 33.57 33.93 33.64
3 37.78 36.98 37.04 36.96
4 47.38 44.15 44.30 44.10
5 56.41 54.15 55.24 54.81
6 58.95 55.79 56.42 55.89
7 61.51 56.29 56.47 56.33
8 64.16 63.83 63.99 63.82
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Figure 9. The quartic cylinder. Mode shapes of the lowest eight modes.

-3.5 b) -3
4 =35
-4
-4.5 4 =
g 45 7
5 z
S -5
g
-5.5 -
-5.5
——n=1 ——n=2
6 | en=3 ——n=4 -6
n=5 —-n=06
65 o=l —n=8 6.5
365 37 375 38 385 39 395 4 34 345 35 355 36 365 37
logp(npor) logy(npor)

IOng"")}:"‘wll—]I

laglo|mglm“- 1|

. IS .

wn wn ey
/

10g10|(ﬂ1}:/(1)“-1|

n & s

wn w n
//

Figure 10. The quartic cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the h-refinement: a) mh-4p-1k-40t; b) mh-4p-3k-40t.
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Figure 11. The quartic cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the h-refinement: a) mh-5p-1k-40t; b) mh-5p-4k-40t.
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Figure 12. The quartic cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the t-refinement: a) 80h-4p-1k-jt; b) 80h-4p-3k-jt.
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Figure 13. The quartic cylinder. Convergence of the relative error for the lowest eight
eigenfrequencies using the t-refinement: a) 80h-5p-1k-jt; b) 80h-5p-4k-jt.

4 CONCLUSIONS

The recently developed FSIGA hybrid metod is revised and improved by implementing the clamped-
clamped isogeometric finite strip. A pure trigonometric series is used and the numerical issues with
hyperbolic functions are avoided. As in the previous work, excellent results are obtained in
comparison with the finite element method.

The presented method provides improved orders of convergence and allows the analytical
integration of trigonometric functions. Additionally, an arbitrarily curved reference geometry can
be exactly represented by the NURBS functions. These properties make the FSIGA well-suited for
the analysis of singly curved shells.
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Appendix A.

Closed-form solutions of the thirteen integrals in Eg. (36) are given here.



3L _(1+n2)7r2 B (1+6n2+n“)7r4 B
5 m=n=t TR 40 L m=n
L 2 2 4 4
= m=n=1 (1+n) 7 , m=n+2 _ _m] m=n+2
Ilmn_ 4 1 I2mn 8|_ ' I3mn_ 8L3 '
L _ 2 5 _ 4 4
g’ m—n|=2 —( 1+8T_) z ,N=m+2 ——( 1;23) z , N=m+2
0, other 0, other 0, other
(1+n2)7r2
T —w, m=n+1 (l+:)”, m=n+1
(1+n)27r2 _ _
I4mn: - 8L ! m:n+2' I5mn: ﬂ,n:m+l, Ismn —( 1Zn)7z—,n:m+1,
_(—1+n)27TZ Nema?2 0, other 0, other
8L ’
0, other
n’z? L
, m=n =, m=n
I7mn 2L ) Ian 2 1l
0, m#n 0, m=n
8| —1+(-1)"" || =3+ n? +m?(1+n?) |m-n- 72
_ - [ = J[ ( )] , |m-n|=1.35K
lomn = L*(-2+m—-n)(m-n)(2+m-n)(-2+m+n)(m+n)(2+m+n) )
0, other
3_3
—nﬂz ,m=n+1
41
n®z®
IlOmn: 412 , N=m+1,
0, other
2[1+(-1)"" |m-n®- 7
T [ Y } . |m-n|=0,2,4,K
um =) L(=1+m-n)(1+m-n)(-1+m+n)(1+m+n) )
0, other
2/1+(-1)"" |m-n-L
T b [ = } , |[m-n|=0,2,4K
m =) (-1+m-n)(l+m-n)(-1+m+n)(1+m+n)z )
0, other
4| -1+(-1)"" |(-2+m? +n?)m-n
Lol [ = J< ) . |m-n|=135K
m =) (-2+m-n)(m-n)(2+m-n)(-2+m+n)(m+n)(2+m+n) :
0, other
LITERATURE

[1] Y. Cheung and L. Tham, The finite strip method, CRC Press, 1997.

[2] D. D. Milasinovi¢, The Finite Strip Method in Computational Mechanics, Faculties of
Civil Engineering: University of Novi Sad, Technical University of Budapest and
University of Belgrade: Subotica, Budapest, Belgrade, 1997.

[31 G. Radenkovi¢, Finite rotation and finite strain isogeometric structural analysis (in
Serbian), Belgrade: Faculty of Architecture, 2017.



[4]

(5]
(6]

(7]
(8]

(9]

A. Borkovi¢, G. Radenkovi¢, D. Majstorovi¢, S. Milovanovi¢, D. Milasinovi¢ and R.
Cviji¢, “Free vibration analysis of singly curved shells using the isogeometric finite strip
method,” Thin-Walled Structures, vol. 157, p. 107125, 2020.

M. A. Bradford and M. Azhari, “Buckling of plates with different end conditions using
the finite strip method,” Computers & Structures, vol. 56, no. 1, pp. 75-83, 1995.

A. Borkovi¢, S. Kovaéevi¢, D. D. Milasinovié¢, G. Radenkovi¢, O. Mijatovi¢ and V.
Golubovi¢-Bugarski, “Geometric nonlinear analysis of prismatic shells using the semi-
analytical finite strip method,” Thin-Walled Structures, vol. 117, pp. 63-88, 2017.

M. Bischoff, K. Bletzinger, W. Wall and E. Ramm, “Models and Finite Elements for Thin-
Walled Structures,” Encyclopedia of Computational Mechanics, 2004.

J. Kiendl, M.-C. Hsu, M. C. H. Wu and A. Reali, “Isogeometric Kirchhoff-Love shell
formulations for general hyperelastic materials,” Computer Methods in Applied
Mechanics and Engineering, vol. 291, pp. 280-303, 2015.

Abaqus Documentation. Dassault Systemes, 2014.



