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GEOIDS AS TWO DIMENSIONAL HYPERSURFACES

Abstract

We propose a research of geoids as real hypersufaces. Moreover, we give adjustment of some
classical results on hyperusrfaces to CR submanifolds. Our main focus is to study the properties of
second fundamental form which give us information on the shape of a hypersurface.
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IF'EONJ ITOCMATPAH KAO JIBOAMMEH3UOHAJIHA XUITEPITOBPIII

Casxicemax

Y oBOM paay mpellaxeMO NpoydaBame TIeoMaa Kao peanHe xwurnepnospmu. [lopen Tora,
MI0Ka3yjeMo Jla HeKH OJ1 KIIACHYHHX pe3yJITaTa Ha XUIIepIoBpInMa Bpujeae U Ha Komu-PruManoBum
MMOIMHOTOCTpYKOCTHMa. M3ydaBamo ocoOmHe apyre ¢yHIaMeHTamHe (opMe Koja HaM [aje
nHpopManyje 0 00IUKY XUTIEPIOBPIIH.

Kmwyune pujeyu: eeoud, xunepnospuu, onepamop obauxa, Kowu-Pumarnose noomrnozocmpyrkocmu.



1. INTRODUCTION

The Earth’s geoid can be explained as the shape that the ocean surface would take under the
influence of the gravity of Earth. That is to say the geoid is an imaginary sea level surface. Together
with ellipsoid, the geoid determines one of the geophysical actual shape of the Earth. Geoids are
mostly studied in gravitational physics. Moreover, they are used for GPS satellites, for studying
climate patterns and related fields. It is interesting to say that such an important object is studied
only in the context of Newtonian gravity so far. In the context of general relativity, the authors in
[3] obtained the partial differential equation that the geoid satisfies in their observed model of the
Earth. A relatively recent research ([5]) gives new method for studying geoids, called quasi local
frames. There we can see a representation of geoid as a two dimensional hypersurface. By far, there
are no studies of geoids as purely differential geometry objects.

In this paper we give an idea, an open problem, on what information can we get from geoid studied
as a hypersurface in an ambient manifold using differential geometry methods. We would like to
know what properties geoid hypersurface has, or does it belong to one of the familiar classes of
hypersurfaces, such as hypersurfaces from Takagi classification ([7]). Problems like finding
principal curvatures, parallelism of the shape operator of the hypersurface normal are of great
importance to solve.

We will show one of the famous results on real hypersurfaces in complex space forms and our
original result, which gives a generalization to CR submanifolds. In our settings, an ambient
manifold is complex space form, i.e. a K&hler manifold of constant holomorphic sectional curvature.
The most important examples of complex space forms are complex Euclidean space, complex
projective space and complex hyperbolic space.

Let M be an (n + p)-dimensional complex space form, i.e. a Kahler manifold of constant
holomorphic sectional curvature 4c, endowed with metric g. Let M be an n-dimensional real
submanifold of M and J be the complex structure of M. For a tangent space T, (M) of M at x, we put
H,(M) = JT,(M) n T,(M). Then, H, (M) is the maximal complex subspace of T,,(M) and is called
the holomorphic tangent space to M at x. If the complex dimension dim¢H, (M) is constant over M,
M is called a Cauchy-Riemann submanifold or briefly a CR submanifold and the constant
dim¢H, (M) is called the CR dimension of M. If, for any x € M, H, (M) satisfies dim¢H,,(M) =

"T_l then M is called a CR submanifold of maximal CR dimension. It follows that there exists a unit

vector field € normal to M such that JT,,(M) c T, (M) @ spané,, foranyx € M.

A real hypersurface is a typical example of a CR submanifold of maximal CR dimension. The study
of real hypersurfaces in complex space forms is a classical topic in differential geometry and the
generalization of some results which are valid for real hypersurfaces to CR submanifolds of maximal
CR dimension may be expected. For instance, nonexistence of real hypersurfaces with the parallel
shape operator and real hypersurfaces with the second fundamental form satisfying h(JX,Y) —
Jh(X,Y) = 0, in nonflat complex space forms, is proven.

In this paper we study the conditions that the shape operator of the distinguished vector field § is
parallel on CR submanifolds of maximal CR dimension in complex space forms.

Our paper is organized as follows. In the first part we give some basic definitions and properties of
hypersurfaces and geoids. After that, a generalization of the famous result of R. Niebergall and P.J.
Ryan ([4]) is given.

2. PRELIMINARIES

2.1. GEOIDS

The gravity on the Earth is defined as a resultant force of universal gravitational attraction and
Earth’s rotation;

gradW = grad U + grad @,

where W is the potential function of gravity, U is the potential of universal gravitation and ® is the
potential of the rotational force of the Earth.

Definition 2.1. For a function f: U < R® — R the level surface of value c is the surface S in U on
which f = c.

Equipotentials are surfaces of constant gravitational potential. The Earth's gravity potential field
contains infinity many level surfaces, which are parallel to each other. The geoid is one of those
surfaces with a special potential value. Let U, be a potential of reference ellipsoid, of which level



surface well approximate the mean sealevel (a “tentative geoid”). Then geoid is defined as the level
surface W = U, (See Figure 1).

Usually, the potential function of gravity is calculated by considering Dirichlet problem with
regarding geoid locally as a sphere. Then the potential is given as a surface spherical harmonics with
undetermined coefficients. To determine the coefficients, we need surveys of position and gravity
anomaly.

Satellite orbit analysis and steady gravity survey enable us to map the geoid accurately ([6]) (See
Figure 2). You can read more on mathematical geodesy in [2].
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Figure 1. Contrast of the Geoid model with an Ellipsoid and cross-section of the Earth's surface
(from a webpage of US government: https://www.usgs.gov/)

Figure 2. Global Geographical Mapping of Geoid (from the webpage of International Centre for
Global Earth Model: \http://icgem.gfz-potsdam.de/home)

2.2. REAL HYPERSURFACES AND CR SUBMANIFOLDS

Let M be an (n + p)-dimensional complex space form with Kahler structure (J, g) and of constant
holomorphic sectional curvature 4c. Let M be an n-dimensional CR submanifold of maximal CR

dimension in M and : M — M an immersion. Also, we denote by 1 the differential of the immersion.

The Riemannian metric g of M is induced from the Riemannian metric g of M in such a way that
gX,Y) =g(X,1Y), where X,Y € T(M). We denote by T(M) and T+(M) the tangent bundle and
the normal bundle of M, respectively.



On M we have the following decomposition into tangential and normal components:
JX =FX +uX)E X € T(M). (@D)]

Here F is a skew-symmetric endomorphism acting on T(M) and w: T(M) - T+(M).

Since T (M) = {n € TH(M)|g(n, &) = 0} is J-invariant, from now on we will denote the
orthonormal basis of T*(M) by &, ..., &, &, ... §q+, Where &« = J&, and q = pz;l. Also, JE is the
vector field tangent to M and we write

J&=—w. 2
Furthermore, using (1), (2) and the Hermitian property of J implies
F2X = —X + u(X)U, 3)
FU =0, 4
9&X, U0) = uX). (5)

Next, we denote by V and V the Riemannian connection of M and M, respectively, and by D the

normal connection induced from V in the normal bundle of M. They are related by the following
Gauss equation

V¥ = VY + h(X,Y), (6)
where h denotes the second fundamental form, and by Weingarten equations
q
Tk = —UX + Dy = —UX + Y {54008 + S0 (), ™)
a=1
q
vLXEa = _LAaX + DXEa = _lAaX - Sa(X)E + Z{Sab (X)Eb + Sab*(X)Eb*}r (8)
b=1

q
vLXEa" = _LAa*X + DXEa* = _LAa*X - Sa*(X)E + Z{Sa*b(X)Eb + Sa*b*(X)Eb*}' (9)
b=1
where the s's are the coefficients of the normal connection D and A4,4,,A,;a =1, ...,q, are the
shape operators corresponding to the normals &, &, €.+ , respectively. They are related to the second
fundamental form by

q
ROY) = gUAX, I+ D {g(AeX, )Ea + 9(AgX, VEer) (10)
a=1
Since the ambient manifold is a Kahler manifold, using (1), (2), (8) and (9), it follows that
AgX = FAX —s,(X)U, (11)
A X = —FApX + s, (X)U, (12)
50 (X) = u(4X), (13)
sa(X) = —u(4,-X), (14)

forall X,Y tangentto M anda= 1,...,q.

Moreover, since F is skew-symmetric and A, and 4,+; a = 1, ..., q, are symmetric, (11) and (12)

imply
9((AF + FADX,Y) = u(Y)s.(X) — u(X)s. (1), (15)
9((AgF + FAX,Y) = u(¥)se(X) — uX)sq (Y), (16)

foralla = 1,...,q. Finally, the Codazzi equation for the distinguished vector field & becomes of
the following form



q
(V4 A)Y — (VyA)X = c{u(X)FY —u(Y)FX — 2g(FX,Y)U} + Z{Sa (ALY — s,(V)AX}

a=1
q
) (50 DA ¥ = 50N A ) (a7
a=1
for all X,Y tangent to M.

3. CR SUBMANIFOLDS WITH PARALLEL SHAPE OPERATOR

Here, we will give one well known result about hypersurfaces with the parallel shape operator.
Theorem 3.1. Let M be an n-dimensional, where n > 3, hypersurface in a complex space form of
constant holomorphic sectional curvature 4c # 0. Then the shape operator A of M cannot be parallel.
We will study the same condition on CR submanifolds of maximal CR dimension in complex space
forms. Therefore, we have the next two theorems.

Theorem 3.2. Let M be an n-dimensional CR submanifold of maximal CR dimension inan (n + p)-
dimensional complex space form (M, ],g), where n > 3 and the constant holomorphic sectional
curvature of M equals 4c. Let the distinguished vector field £ be parallel with respect to the normal
connection D and A be the shape operator of £. If VA = 0 on M, then M is a Euclidean space.
Proof. Putting Y = U in Codazzi equation (17), we get

q q
(VLAY — (VyA)X = —cFX + Z{sa (X)A, U — s,(U)AX} + Z{sa* (X)Ag: U — 5,-(U) Ay X},

a=1 a=1
From the assumption of the theorem and the last equation, we get
cFX =0,

from which we conclude that ¢ = 0. [

Theorem 3.3. Let M be an n-dimensional CR submanifold of maximal CR dimension inan (n + p)-
dimensional complex space form (M, ],g), where n = 3 and the constant holomorphic sectional
curvature of M equals 4c. Let p < nand A be the shape operator of the distinguished vector field
£ If VA = 0on M, then M is a Euclidean space.

Proof. After putting Y = U in (17) and using the assumption of the theorem, we get

q q
—CFX + Z{sa ()AL U — 5,(DAX} + Z{sa*(X)Aa* Usg- (DA, X} = 0. (18)

a=1 a=1

After multiplying the equation (18) by an arbitrary Y € T(M), we get

q
—cg(FX, 1) + ) {5(g(Al, V) = 5, (N)g(AeX, 1}

a=1

q
+ ) (500U U, V) = 50 WDGALX, 1} = 0. (19)

a=1

Interchanging X and Y in (19) and subtracting (19) and the resulting
equation, we get

q
269 (FX,V) + ) {s()g(Aal, V) + 50 U)g(Ae U, 1)}

a=1

q
) (500N GAGU,X) + 5 (g (g U, X)} = 0. (20)

a=1

Now, using (5), (13) and (14), from the last equation it follows that



q
CFX = Z{sa*(X)Aa* U+ s,(X)A,U}. 1)

a=1

On the other hand, if we put

q
0= > e (g U+ 54(D)AUY, (22)

where c,+ and c, are constants; a = 1, ..., q, by scalar multiplication of (22) with an arbitrary X €
T(M) using g(l4,X,\Y) = g(h(X,Y),&,), g(lA-X,Y) = gh(X,Y),&+);a = 1,...,q, and (6), it
follows that

q
0= Z{Ca* E(VLUX' Ea*) + Cag(vLUX' Ea)}'

a=1

q
0= z{ca* €ar + Calal

a=1

From the last equation and the factthat £,+,€,,a = 1, ..., q, are linearly independent, it follows that
i =¢C,=0;a =1,..,q. Then, we can conclude that A,-U, A,U; a = 1,...,q, are linearly
independent vector fields. It is known that rank F = n — 1 (see [1]), that is why from (21) it follows
that there exist a vector field Y € T(M) such that Y = FX and that Y is orthogonal to the vector
fields A, U, A,-U; a = 1,...,q. Multiplying (21) with Y = FX, we get

cg(FX,FX) =0,

from which we conclude that ¢ = 0. [
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