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GEOIDS AS TWO DIMENSIONAL HYPERSURFACES 

Abstract  
We propose a research of geoids as real hypersufaces. Moreover, we give adjustment of some 
classical results on hyperusrfaces to CR submanifolds. Our main focus is to study the properties of 
second fundamental form which give us information on the shape of a hypersurface.  
Keywords: geoids, hypersurfaces, shape operator, CR submanifolds. 

ГЕОИД ПОСМАТРАН КАО ДВОДИМЕНЗИОНАЛНА ХИПЕРПОВРШ 

Сажетак 
У овом раду предлажемо проучавање геоида као реалне хиперповрши. Поред тога, 
показујемо да неки од класичних резултата на хиперповршима вриједе и на Коши-Римановим 
подмногострукостима. Изучавамо особине друге фундаменталне форме која нам даје 
информације о облику хиперповрши.  
Кључне ријечи: геоид, хиперповрши, оператор облика, Коши-Риманове подмногострукости. 
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1. INTRODUCTION 

The Earth’s geoid can be explained as the shape that the ocean surface would take under the 
influence of the gravity of Earth. That is to say the geoid is an imaginary sea level surface. Together 
with ellipsoid, the geoid determines one of the geophysical actual shape of the Earth. Geoids are 
mostly studied in gravitational physics. Moreover, they are used for GPS satellites, for studying 
climate patterns and related fields. It is interesting to say that such an important object is studied 
only in the context of Newtonian gravity so far. In the context of general relativity, the authors in 
[3] obtained the partial differential equation that the geoid satisfies in their observed model of the 
Earth. A relatively recent research ([5]) gives new method for studying geoids, called quasi local 
frames. There we can see a representation of geoid as a two dimensional hypersurface. By far, there 
are no studies of geoids as purely differential geometry objects. 
In this paper we give an idea, an open problem, on what information can we get from geoid studied 
as a hypersurface in an ambient manifold using differential geometry methods. We would like to 
know what properties geoid hypersurface has, or does it belong to one of the familiar classes of 
hypersurfaces, such as hypersurfaces from Takagi classification ([7]). Problems like finding 
principal curvatures, parallelism of the shape operator of the hypersurface normal are of great 
importance to solve.  
We will show one of the famous results on real hypersurfaces in complex space forms and our 
original result, which gives a generalization to CR submanifolds. In our settings, an ambient 
manifold is complex space form, i.e. a Kähler manifold of constant holomorphic sectional curvature. 
The most important examples of complex space forms are complex Euclidean space, complex 
projective space and complex hyperbolic space. 
Let 𝑀𝑀� be an (𝑛𝑛 + 𝑝𝑝)-dimensional complex space form, i.e. a Kähler manifold of constant 
holomorphic sectional curvature 4𝑐𝑐, endowed with metric g. Let 𝑀𝑀 be an n-dimensional real 
submanifold of 𝑀𝑀� and 𝐽𝐽 be the complex structure of 𝑀𝑀�. For a tangent space 𝑇𝑇𝑥𝑥(𝑀𝑀) of 𝑀𝑀 at 𝑥𝑥, we put 
𝐻𝐻𝑥𝑥(𝑀𝑀) = 𝐽𝐽𝑇𝑇𝑥𝑥(𝑀𝑀) ∩ 𝑇𝑇𝑥𝑥(𝑀𝑀). Then, 𝐻𝐻𝑥𝑥(𝑀𝑀) is the maximal complex subspace of 𝑇𝑇𝑥𝑥(𝑀𝑀) and is called 
the holomorphic tangent space to 𝑀𝑀 at 𝑥𝑥. If the complex dimension 𝑑𝑑𝑑𝑑𝑑𝑑ℂ𝐻𝐻𝑥𝑥(𝑀𝑀) is constant over 𝑀𝑀, 
𝑀𝑀 is called a Cauchy-Riemann submanifold or briefly a CR submanifold and the constant  
𝑑𝑑𝑑𝑑𝑑𝑑ℂ𝐻𝐻𝑥𝑥(𝑀𝑀) is called the CR dimension of 𝑀𝑀. If, for any 𝑥𝑥 ∈ 𝑀𝑀, 𝐻𝐻𝑥𝑥(𝑀𝑀) satisfies 𝑑𝑑𝑑𝑑𝑑𝑑ℂ𝐻𝐻𝑥𝑥(𝑀𝑀) =
𝑛𝑛−1
2

 then 𝑀𝑀 is called a CR submanifold of maximal CR dimension. It follows that there exists a unit 
vector field ξ normal to 𝑀𝑀 such that 𝐽𝐽𝑇𝑇𝑥𝑥(𝑀𝑀) ⊂ 𝑇𝑇𝑥𝑥(𝑀𝑀) ⊕ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜉𝜉𝑥𝑥, for any 𝑥𝑥 ∈  𝑀𝑀.  
A real hypersurface is a typical example of a CR submanifold of maximal CR dimension. The study 
of real hypersurfaces in complex space forms is a classical topic in differential geometry and the 
generalization of some results which are valid for real hypersurfaces to CR submanifolds of maximal 
CR dimension may be expected. For instance, nonexistence of real hypersurfaces with the parallel 
shape operator and real hypersurfaces with the second fundamental form satisfying ℎ(𝐽𝐽𝐽𝐽,𝑌𝑌) −
𝐽𝐽ℎ(𝑋𝑋,𝑌𝑌) = 0, in nonflat complex space forms, is proven.  
In this paper we study the conditions that the shape operator of the distinguished vector field ξ is 
parallel on CR submanifolds of maximal CR dimension in complex space forms. 
Our paper is organized as follows. In the first part we give some basic definitions and properties of 
hypersurfaces and geoids. After that, a generalization of the famous result of R. Niebergall and P.J. 
Ryan ([4]) is given. 

2. PRELIMINARIES 

2.1. GEOIDS 

The gravity on the Earth is defined as a resultant force of universal gravitational attraction and 
Earth’s rotation; 

grad𝑊𝑊 = grad 𝑈𝑈 + grad Φ, 

where 𝑊𝑊 is the potential function of gravity, 𝑈𝑈 is the potential of universal gravitation and Φ is the 
potential of the rotational force of the Earth.  
Definition 2.1. For a function f: U ⊂ ℝ3 → ℝ the level surface of value c is the surface S in U on 
which f = c. 
Equipotentials are surfaces of constant gravitational potential. The Earth's gravity potential field 
contains infinity many level surfaces, which are parallel to each other. The geoid is one of those 
surfaces with a special potential value. Let 𝑈𝑈0 be a potential of reference ellipsoid, of which level 
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surface well approximate the mean sealevel (a “tentative geoid”). Then geoid is defined as the level 
surface 𝑊𝑊 = 𝑈𝑈0 (See Figure 1). 
Usually, the potential function of gravity is calculated by considering Dirichlet problem with 
regarding geoid locally as a sphere. Then the potential is given as a surface spherical harmonics with 
undetermined coefficients. To determine the coefficients, we need surveys of position and gravity 
anomaly.  
Satellite orbit analysis and steady gravity survey enable us to map the geoid accurately ([6]) (See 
Figure 2). You can read more on mathematical geodesy in [2]. 

 
 Contrast of the Geoid model with an Ellipsoid and cross-section of the Earth's surface 

(from a webpage of US government: https://www.usgs.gov/) 

 

 
 Global Geographical Mapping of Geoid (from the webpage of International Centre for 

Global Earth Model: \http://icgem.gfz-potsdam.de/home) 

2.2. REAL HYPERSURFACES AND CR SUBMANIFOLDS 

Let 𝑀𝑀 be an (𝑛𝑛 + 𝑝𝑝)-dimensional complex space form with Kähler structure (𝐽𝐽,𝑔𝑔) and of constant 
holomorphic sectional curvature 4𝑐𝑐. Let 𝑀𝑀 be an 𝑛𝑛-dimensional CR submanifold of maximal CR 
dimension in 𝑀𝑀 and ι:𝑀𝑀 → 𝑀𝑀 an immersion. Also, we denote by ι the differential of the immersion. 
The Riemannian metric 𝑔𝑔 of 𝑀𝑀 is induced from the Riemannian metric 𝑔𝑔 of 𝑀𝑀 in such a way that 
𝑔𝑔(𝑋𝑋,𝑌𝑌) = 𝑔𝑔(ι𝑋𝑋, ι𝑌𝑌), where 𝑋𝑋,𝑌𝑌 ∈ 𝑇𝑇(𝑀𝑀). We denote by 𝑇𝑇(𝑀𝑀) and 𝑇𝑇⊥(𝑀𝑀) the tangent bundle and 
the normal bundle of 𝑀𝑀, respectively. 
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On 𝑀𝑀 we have the following decomposition into tangential and normal components: 

𝐽𝐽ι𝑋𝑋 = ι𝐹𝐹𝐹𝐹 + 𝑢𝑢(𝑋𝑋)ξ,   𝑋𝑋 ∈ 𝑇𝑇(𝑀𝑀). (1) 

Here 𝐹𝐹 is a skew-symmetric endomorphism acting on 𝑇𝑇(𝑀𝑀) and 𝑢𝑢:𝑇𝑇(𝑀𝑀) → 𝑇𝑇⊥(𝑀𝑀).  
Since 𝑇𝑇1⊥(𝑀𝑀) =  {η ∈ 𝑇𝑇⊥(𝑀𝑀)|g(η, ξ)  =  0} is 𝐽𝐽-invariant, from now on we will denote the 
orthonormal basis of 𝑇𝑇⊥(𝑀𝑀) by ξ, ξ1, … , ξq, ξ1∗, … ξq∗, where ξa∗ = Jξa and q = p−1

2
. Also, 𝐽𝐽ξ is the 

vector field tangent to 𝑀𝑀 and we write 

𝐽𝐽ξ = −ι𝑈𝑈. (2) 

Furthermore, using (1), (2) and the Hermitian property of 𝐽𝐽 implies 

𝐹𝐹2𝑋𝑋 = −𝑋𝑋 + 𝑢𝑢(𝑋𝑋)𝑈𝑈, (3) 

𝐹𝐹𝐹𝐹 = 0, (4) 

𝑔𝑔(𝑋𝑋,𝑈𝑈) = 𝑢𝑢(𝑋𝑋). (5) 

Next, we denote by ∇ and ∇ the Riemannian connection of 𝑀𝑀 and 𝑀𝑀, respectively, and by 𝐷𝐷 the 
normal connection induced from ∇ in the normal bundle of 𝑀𝑀. They are related by the following 
Gauss equation 

∇ι𝑋𝑋ι𝑌𝑌 = ι∇𝑋𝑋𝑌𝑌 + ℎ(𝑋𝑋,𝑌𝑌), (6) 

where ℎ denotes the second fundamental form, and by Weingarten equations 

∇ι𝑋𝑋ξ = −ι𝐴𝐴𝐴𝐴 + 𝐷𝐷𝑋𝑋ξ = −ι𝐴𝐴𝐴𝐴 + �{𝑠𝑠𝑎𝑎(𝑋𝑋)ξ𝑎𝑎

𝑞𝑞

𝑎𝑎=1

+ 𝑠𝑠𝑎𝑎∗(𝑋𝑋)ξ𝑎𝑎∗}, (7) 

∇ι𝑋𝑋ξ𝑎𝑎 = −ι𝐴𝐴𝑎𝑎𝑋𝑋 + 𝐷𝐷𝑋𝑋ξ𝑎𝑎 = −ι𝐴𝐴𝑎𝑎𝑋𝑋 − 𝑠𝑠𝑎𝑎(𝑋𝑋)ξ + �{𝑠𝑠𝑎𝑎𝑎𝑎(𝑋𝑋)ξ𝑏𝑏

𝑞𝑞

𝑏𝑏=1

+ 𝑠𝑠𝑎𝑎𝑏𝑏∗(𝑋𝑋)ξ𝑏𝑏∗}, (8) 

∇ι𝑋𝑋ξ𝑎𝑎∗ = −ι𝐴𝐴𝑎𝑎∗𝑋𝑋 + 𝐷𝐷𝑋𝑋ξ𝑎𝑎∗ = −ι𝐴𝐴𝑎𝑎∗𝑋𝑋 − 𝑠𝑠𝑎𝑎∗(𝑋𝑋)ξ + �{𝑠𝑠𝑎𝑎∗𝑏𝑏(𝑋𝑋)ξ𝑏𝑏

𝑞𝑞

𝑏𝑏=1

+ 𝑠𝑠𝑎𝑎∗𝑏𝑏∗(𝑋𝑋)ξ𝑏𝑏∗}, (9) 

where the s's are the coefficients of the normal connection 𝐷𝐷 and 𝐴𝐴,𝐴𝐴𝑎𝑎,𝐴𝐴𝑎𝑎∗; 𝑎𝑎 = 1, … , 𝑞𝑞, are the 
shape operators corresponding to the normals ξ, ξ𝑎𝑎, ξ𝑎𝑎∗ , respectively. They are related to the second 
fundamental form by 

ℎ(𝑋𝑋,𝑌𝑌) = 𝑔𝑔(𝐴𝐴𝐴𝐴,𝑌𝑌)ξ + �{𝑔𝑔(𝐴𝐴𝑎𝑎𝑋𝑋,𝑌𝑌)ξ𝑎𝑎

𝑞𝑞

𝑎𝑎=1

+ 𝑔𝑔(𝐴𝐴𝑎𝑎∗𝑋𝑋,𝑌𝑌)ξ𝑎𝑎∗}. (10) 

Since the ambient manifold is a Kähler manifold, using (1), (2), (8) and (9), it follows that 

𝐴𝐴𝑎𝑎∗𝑋𝑋 = 𝐹𝐹𝐴𝐴𝑎𝑎𝑋𝑋 − 𝑠𝑠𝑎𝑎(𝑋𝑋)𝑈𝑈, (11) 

𝐴𝐴𝑎𝑎𝑋𝑋 = −𝐹𝐹𝐴𝐴𝑎𝑎∗𝑋𝑋 + 𝑠𝑠𝑎𝑎∗(𝑋𝑋)𝑈𝑈, (12) 

𝑠𝑠𝑎𝑎∗(𝑋𝑋) = 𝑢𝑢(𝐴𝐴𝑎𝑎𝑋𝑋), (13) 

𝑠𝑠𝑎𝑎(𝑋𝑋) = −𝑢𝑢(𝐴𝐴𝑎𝑎∗𝑋𝑋), (14) 

for all 𝑋𝑋,𝑌𝑌 tangent to 𝑀𝑀 and a =  1, … , 𝑞𝑞. 

Moreover, since 𝐹𝐹 is skew-symmetric and 𝐴𝐴𝑎𝑎 and 𝐴𝐴𝑎𝑎∗; 𝑎𝑎 = 1, … , 𝑞𝑞, are symmetric, (11) and (12) 
imply 

𝑔𝑔�(𝐴𝐴𝑎𝑎𝐹𝐹 + 𝐹𝐹𝐴𝐴𝑎𝑎)𝑋𝑋,𝑌𝑌� = 𝑢𝑢(𝑌𝑌)𝑠𝑠𝑎𝑎(𝑋𝑋) − 𝑢𝑢(𝑋𝑋)𝑠𝑠𝑎𝑎(𝑌𝑌), (15) 

𝑔𝑔�(𝐴𝐴𝑎𝑎∗𝐹𝐹 + 𝐹𝐹𝐴𝐴𝑎𝑎∗)𝑋𝑋,𝑌𝑌� = 𝑢𝑢(𝑌𝑌)𝑠𝑠𝑎𝑎∗(𝑋𝑋) − 𝑢𝑢(𝑋𝑋)𝑠𝑠𝑎𝑎∗(𝑌𝑌), (16) 

for all 𝑎𝑎 =  1, … ,𝑞𝑞. Finally, the Codazzi equation for the distinguished vector field ξ becomes of 
the following form 
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(∇𝑋𝑋𝐴𝐴)𝑌𝑌 − (∇𝑌𝑌𝐴𝐴)𝑋𝑋 = 𝑐𝑐{𝑢𝑢(𝑋𝑋)𝐹𝐹𝐹𝐹 − 𝑢𝑢(𝑌𝑌)𝐹𝐹𝐹𝐹 − 2𝑔𝑔(𝐹𝐹𝐹𝐹,𝑌𝑌)𝑈𝑈} + �{𝑠𝑠𝑎𝑎(𝑋𝑋)𝐴𝐴𝑎𝑎

𝑞𝑞

𝑎𝑎=1

𝑌𝑌 − 𝑠𝑠𝑎𝑎(𝑌𝑌)𝐴𝐴𝑎𝑎𝑋𝑋}

+�{𝑠𝑠𝑎𝑎∗(𝑋𝑋)𝐴𝐴𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

𝑌𝑌 − 𝑠𝑠𝑎𝑎∗(𝑌𝑌)𝐴𝐴𝑎𝑎∗𝑋𝑋} (17)

 

for all 𝑋𝑋,𝑌𝑌 tangent to 𝑀𝑀. 

3. CR SUBMANIFOLDS WITH PARALLEL SHAPE OPERATOR 

Here, we will give one well known result about hypersurfaces with the parallel shape operator. 
Theorem 3.1. Let M be an n-dimensional, where n ≥ 3, hypersurface in a complex space form of 
constant holomorphic sectional curvature 4c ≠ 0. Then the shape operator A of M cannot be parallel. 
We will study the same condition on CR submanifolds of maximal CR dimension in complex space 
forms. Therefore, we have the next two theorems. 
Theorem 3.2. Let M be an n-dimensional CR submanifold of maximal CR dimension in an (𝑛𝑛 + 𝑝𝑝)-
dimensional complex space form �M, J, g�, where n ≥ 3 and the constant holomorphic sectional 
curvature of M equals 4c. Let the distinguished vector field ξ be parallel with respect to the normal 
connection D and A be the shape operator of ξ. If ∇A =  0 on M, then M is a Euclidean space. 
Proof. Putting 𝑌𝑌 =  𝑈𝑈 in Codazzi equation (17), we get 

(∇𝑋𝑋𝐴𝐴)𝑌𝑌 − (∇𝑌𝑌𝐴𝐴)𝑋𝑋 = −𝑐𝑐𝑐𝑐𝑐𝑐 + �{𝑠𝑠𝑎𝑎(𝑋𝑋)𝐴𝐴𝑎𝑎

𝑞𝑞

𝑎𝑎=1

𝑈𝑈 − 𝑠𝑠𝑎𝑎(𝑈𝑈)𝐴𝐴𝑎𝑎𝑋𝑋} + �{𝑠𝑠𝑎𝑎∗(𝑋𝑋)𝐴𝐴𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

𝑈𝑈 − 𝑠𝑠𝑎𝑎∗(𝑈𝑈)𝐴𝐴𝑎𝑎∗𝑋𝑋}. 

From the assumption of the theorem and the last equation, we get 

𝑐𝑐𝑐𝑐𝑐𝑐 = 0, 

from which we conclude that 𝑐𝑐 = 0. □ 
Theorem 3.3. Let M be an n-dimensional CR submanifold of maximal CR dimension in an (n + p)-
dimensional complex space form �M, J, g�, where n ≥ 3 and the constant holomorphic sectional 
curvature of M equals 4c. Let p <  n and A be the shape operator of the distinguished vector field 
ξ. If ∇A =  0 on M, then M is a Euclidean space. 
Proof. After putting 𝑌𝑌 =  𝑈𝑈 in (17) and using the assumption of the theorem, we get  

−𝑐𝑐𝑐𝑐𝑐𝑐 + �{𝑠𝑠𝑎𝑎(𝑋𝑋)𝐴𝐴𝑎𝑎

𝑞𝑞

𝑎𝑎=1

𝑈𝑈 − 𝑠𝑠𝑎𝑎(𝑈𝑈)𝐴𝐴𝑎𝑎𝑋𝑋} + �{𝑠𝑠𝑎𝑎∗(𝑋𝑋)𝐴𝐴𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

𝑈𝑈𝑠𝑠𝑎𝑎∗(𝑈𝑈)𝐴𝐴𝑎𝑎∗𝑋𝑋} = 0. (18) 

After multiplying the equation (18) by an arbitrary 𝑌𝑌 ∈ 𝑇𝑇(𝑀𝑀), we get 

−𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹,𝑌𝑌) + �{𝑠𝑠𝑎𝑎(𝑋𝑋)𝑔𝑔(𝐴𝐴𝑎𝑎𝑈𝑈,𝑌𝑌)
𝑞𝑞

𝑎𝑎=1

− 𝑠𝑠𝑎𝑎(𝑈𝑈)𝑔𝑔(𝐴𝐴𝑎𝑎𝑋𝑋,𝑌𝑌)}

+�{𝑠𝑠𝑎𝑎∗(𝑋𝑋)𝑔𝑔(𝐴𝐴𝑎𝑎∗𝑈𝑈,𝑌𝑌)
𝑞𝑞

𝑎𝑎=1

− 𝑠𝑠𝑎𝑎∗(𝑈𝑈)𝑔𝑔(𝐴𝐴𝑎𝑎∗𝑋𝑋,𝑌𝑌)} = 0. (19)

 

Interchanging 𝑋𝑋 and 𝑌𝑌 in (19) and subtracting (19) and the resulting 
equation, we get 

−2𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹,𝑌𝑌) + �{𝑠𝑠𝑎𝑎(𝑋𝑋)𝑔𝑔(𝐴𝐴𝑎𝑎𝑈𝑈,𝑌𝑌)
𝑞𝑞

𝑎𝑎=1

+ 𝑠𝑠𝑎𝑎∗(𝑈𝑈)𝑔𝑔(𝐴𝐴𝑎𝑎∗𝑈𝑈,𝑌𝑌)}

+�{𝑠𝑠𝑎𝑎(𝑌𝑌)𝑔𝑔(𝐴𝐴𝑎𝑎𝑈𝑈,𝑋𝑋)
𝑞𝑞

𝑎𝑎=1

+ 𝑠𝑠𝑎𝑎∗(𝑌𝑌)𝑔𝑔(𝐴𝐴𝑎𝑎∗𝑈𝑈,𝑋𝑋)} = 0. (20)

 

Now, using (5), (13) and (14), from the last equation it follows that 
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𝑐𝑐𝑐𝑐𝑐𝑐 = �{𝑠𝑠𝑎𝑎∗(𝑋𝑋)𝐴𝐴𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

𝑈𝑈 + 𝑠𝑠𝑎𝑎(𝑋𝑋)𝐴𝐴𝑎𝑎𝑈𝑈}. (21) 

On the other hand, if we put 

0 = �{𝑐𝑐𝑎𝑎∗(𝑋𝑋)𝐴𝐴𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

𝑈𝑈 + 𝑠𝑠𝑎𝑎(𝑋𝑋)𝐴𝐴𝑎𝑎𝑈𝑈}, (22) 

where 𝑐𝑐𝑎𝑎∗ and 𝑐𝑐𝑎𝑎 are constants; 𝑎𝑎 =  1, … , 𝑞𝑞, by scalar multiplication of (22) with an arbitrary 𝑋𝑋 ∈
𝑇𝑇(𝑀𝑀) using g(ι𝐴𝐴𝑎𝑎𝑋𝑋, ι𝑌𝑌) = 𝑔𝑔(ℎ(𝑋𝑋,𝑌𝑌), ξ𝑎𝑎), g(ιAa∗X, ιY) = g(h(X, Y), ξa∗); 𝑎𝑎 =  1, … , 𝑞𝑞, and (6), it 
follows that 

0 = �{𝑐𝑐𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

𝑔𝑔�∇ι𝑈𝑈𝑋𝑋, ξ𝑎𝑎∗� + 𝑐𝑐𝑎𝑎𝑔𝑔�∇ι𝑈𝑈𝑋𝑋, ξ𝑎𝑎�}, 

i.e. 

0 = �{𝑐𝑐𝑎𝑎∗
𝑞𝑞

𝑎𝑎=1

ξ𝑎𝑎∗ + 𝑐𝑐𝑎𝑎ξ𝑎𝑎}. 

From the last equation and the fact that ξ𝑎𝑎∗ , ξ𝑎𝑎, 𝑎𝑎 =  1, … , 𝑞𝑞, are linearly independent, it follows that 
𝑐𝑐𝑎𝑎∗ = 𝑐𝑐𝑎𝑎 = 0; 𝑎𝑎 =  1, … , 𝑞𝑞. Then, we can conclude that 𝐴𝐴𝑎𝑎∗𝑈𝑈, 𝐴𝐴𝑎𝑎𝑈𝑈; 𝑎𝑎 =  1, … , 𝑞𝑞, are linearly 
independent vector fields. It is known that rank 𝐹𝐹 = 𝑛𝑛 − 1 (see [1]), that is why from (21) it follows 
that there exist a vector field 𝑌𝑌 ∈ 𝑇𝑇(𝑀𝑀) such that 𝑌𝑌 = 𝐹𝐹𝐹𝐹 and that 𝑌𝑌 is orthogonal to the vector 
fields 𝐴𝐴𝑎𝑎𝑈𝑈, 𝐴𝐴𝑎𝑎∗𝑈𝑈; 𝑎𝑎 =  1, … , 𝑞𝑞. Multiplying (21) with 𝑌𝑌 = 𝐹𝐹𝐹𝐹, we get 

𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹) = 0, 

from which we conclude that 𝑐𝑐 = 0. □ 
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