FREE VIBRATION ANALYSIS OF SINGLY CURVED CLAMPED SHELLS USING THE ISOGEOMETRIC FINITE STRIP METHOD

Authors

  • Aleksandar Borković University of Banja Luka, Graz University of Technology
  • Dijana Majstorović University of Banja Luka
  • Snježana Milovanović University of Banja Luka
  • Duy Vo , Thammasat University and Department of Civil and Environmental Engineering, Tokyo Institute of Technology,

DOI:

https://doi.org/10.7251/STP2215112B

Abstract

A hybrid method for the spatial discretization of two-dimensional domains is recently derived and applied to the problem of free vibrations of simply-supported singly curved shells. This new method follows from a tensor product of NURBS functions and a carefully selected series that satisfies boundary conditions a priori. The formulation unifies spatial discretization schemes of the semi-analytical Finite strip method and the Isogeometric analysis. In this paper, the method is improved by implementing the capability to deal with clamped-clamped boundary conditions. The numerical analysis shows that the method has favorable accuracy per DOF, in comparison with the standard finite elements.

References

Y. Cheung and L. Tham, The finite strip method, CRC Press, 1997.

D. D. Milašinović, The Finite Strip Method in Computational Mechanics, Faculties of

Civil Engineering: University of Novi Sad, Technical University of Budapest and

University of Belgrade: Subotica, Budapest, Belgrade, 1997.

G. Radenković, Finite rotation and finite strain isogeometric structural analysis (in

Serbian), Belgrade: Faculty of Architecture, 2017.

A. Borković, G. Radenković, D. Majstorović, S. Milovanović, D. Milašinović and R. Cvijić, “Free vibration analysis of singly curved shells using the isogeometric finite strip method,” Thin-Walled Structures, vol. 157, p. 107125, 2020.

M. A. Bradford and M. Azhari, “Buckling of plates with different end conditions using the finite strip method,” Computers & Structures, vol. 56, no. 1, pp. 75–83, 1995.

A. Borković, S. Kovačević, D. D. Milašinović, G. Radenković, O. Mijatović and V. Golubović-Bugarski, “Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method,” Thin-Walled Structures, vol. 117, pp. 63–88, 2017.

M. Bischoff, K. Bletzinger, W. Wall and E. Ramm, “Models and Finite Elements for Thin‐Walled Structures,” Encyclopedia of Computational Mechanics, 2004.

J. Kiendl, M.-C. Hsu, M. C. H. Wu and A. Reali, “Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials,” Computer Methods in Applied Mechanics and Engineering, vol. 291, pp. 280–303, 2015.

Abaqus Documentation. Dassault Systèmes, 2014.

Downloads

Published

2022-06-16

How to Cite

[1]
A. Borković, D. Majstorović, S. Milovanović, and D. Vo, “FREE VIBRATION ANALYSIS OF SINGLY CURVED CLAMPED SHELLS USING THE ISOGEOMETRIC FINITE STRIP METHOD”, STEPGRAD, vol. 1, no. 15, pp. 112-125, Jun. 2022.

Most read articles by the same author(s)

link situs slot gacor terbaru Situs toto togel 4D Toto Situs agen toto togel 4D Situs toto togel terpercaya slot deposit pulsa bandar togel 4d bandar togel 4d situs togel slot bandar togel resmi bandar togel 4d slot online gacor bandar slot pulsa situs togel 4d situs togel macau bandar togel macau situs togel hk judi slot online situs toto togel 4d situs toto togel keluaran toto togel slot togel 4d situs toto togel toto togel resmi togel resmi 4d bandar togel 4d toto macau 4d bandar togel 4d slot deposit pulsa situs toto togel 4d situs togel terpercaya situs toto togel situs slot online situs togel 4d situs togel toto toto togel 4d slot togel 4d situs togel terpercaya togel toto slot bandar togel terpercaya toto togel situs toto 4d resmi situs togel toto 4d bandar toto macau terpercaya bo toto togel 4d resmi