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ALGORITHM AES -  STRUCTURE, 
TRANSFORMATIONS AND PERFORMANCE

Abstract
Today’s cryptographic algorithms are designed in a way that they combine 

mathematical theory and practice o f  computer science in order to improve 
resistance to cryptanalysis. Cryptographic algorithms are designed around the 
binary data form at keeping in mind the presumption o f hardening possibility 
o f cracking the algorithm. One o f the algorithms whose resistance to cryptanalysis 
during the past 16 years is extensively tested algorithm AES. The Advanced 
Encryption Standard (AES) is the first cryptographic standard aroused as the 
result o f public competition established by U.S. National Institute o f Standards 
and Technology (NIST). AES has emerged as restriction on winner o f this com­
petition, called Rijndael algorithm on the block size o f 128 bits. From the moment 
o f its acceptance o f the standard in 2001, testing and research o f its resistance 
on cryptanalysis and research focused on improving its performance are made. 
This paper presents a detailed overview o f the algorithm AES, together with all 
its transformations and with ideas to speed up its work.
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Today's cryptographic algorithms are designed in a way that they com­
bine complex mathematical procedures and the theory and practice of 
computer science in order to improve resistance to cryptanalysis. As stated 
in [1] AES (Advanced Encryption Standard) algorithm is a complex cipher 
whose resistance to cryptanalysis has been extensively tested over the last 
15 years. This algorithm has become the de facto global standard for com­
mercial and open source software and hardware. In addition to the U.S. 
administration, a number of institutions and individuals around the world 
use this algorithm. Advanced Encryption Standard (AES) is the first cryp­
tographic standard aroused as a result of public competition that was esta-
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blished by U.S. National Institute of Standards and Technology. Standard 
can theoretically be divided into three cryptographic algorithms: AES-128, 
AES-192 and AES-256.

In January 1997, the US National Institute of Standards and Technology 
(NIST) announced the start of an initiative to develop a new encryption 
standard: the AES . The new encryption standard was to become a Federal 
Information Processing Standard (FIPS), replacing the old Data Encryption 
Standard (DES) and triple-DES. Unlike the selection of prior cryptographic 
algorithms, NIST had announced that the AES selection process would be 
open. Anyone could submit a candidate cipher. Each submission, provided 
it met the requirements, would be considered on its merits. NIST would not 
perform any security or efficiency evaluation itself, but instead invited the 
cryptology community to mount attacks and try to crypt analyse the different 
candidates, and anyone who was interested to evaluate implementation cost. 
All results could be sent to NIST as public comments for publication on the 
NIST AES web site or be submitted for presentation at AES conferences. 
NIST would merely collect contributions using them to base their selection. 
NIST would motivate their choices in evaluation reports [2].

NIST has prescribed the following rules [3]:
• AES shall be publicly defined.
• AES shall be a symmetric block cipher.
• AES shall be designed so that its key length may be increased as needed.
• AES shall be implementable in both hardware and software.
• AES shall either be

• freely available, or
• available under terms consistent with the ANSI Patent Policy.

• Algorithms which meet the above requirements will be judged based on 
the following factors:
• security (resistance to cryptanalysis),
• computational efficiency,
• memory requirements,
• hardware and software suitability,
• simplicity,
• flexibility, and
• licensing requirements

The required effort to produce a 'complete and proper' submission pac­
kage would already filter out several of the proposals. The 15 submissions 
that were completed in time and accepted were: CAST-256, Crypton, DEAL, 
DFC, E2, Frog, HPC, LOKI97, Magenta, Mars, RC6, Rijndael, SAFER+, 
Serpent and Twofish [1, 2, 4, 5, 6].
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After the series of workshops (Ventura-California, august 1998., Rome, 
march 1999.) and researchs conducted and papers published, there was a 
relatively calm period that ended with the announcement of the five candi­
dates by NIST in August 1999. The finalists were: MARS, RC6, Rijndael, 
Serpent and Twofish [1, 2, 4, 5, 6].

Next round of testing was held in April 2000 in New York at a conferen­
ce that was dedicated to this algorithm. The conference was combined with 
the results of the next workshop titled Fast Software Encryption Workshop, 
which was also held in New York [1, 2].

On 2 October, 2000, NIST officially announced that Rijndael would be­
come Advanced Encryption Standard [1, 2].

AES algorithm, as defined by FIPS-197 document [7] cites a data block 
must be always 128 bit-long, while the key sizes could be 128, 192 or 256 
bits. On the other hand, Rijndael (from which AES evolved) allows for both 
key and block sizes to be chosen from the set of {128, 160, 192, 224, 256} 
bits. The very fact that AES is really just a subset of Rijndael emphasize its 
large flexibility.

As mentioned, AES algorithm described in FIPS-197 document [7, 8, 9] 
transforms 128 bit block of data during 10, 12 or 14 rounds using the initial 
key lengths of 128, 192 and 256 bit. The initial key is then enlarged to 
(10+1)*16, (12+1)*16 or (14+1)*16 bytes in the key expansion routine. Each 
round repeats the SubBytes(), MixColumns(), ShiftRows() and AddRoundKey() 
transformations. AES authors redefine both addition operation within the 
GF(28), which is then conducted by XOR operation at the byte level and 
multiplication operation which is thus conducted as polynomial multiplica­
tion with the conditional modulo polynomial 0x11B. The mentioned multi­
plication is the most time consuming in the aspect of optimization, because 
it is intensively used during the MixColumns() transformation.

Inverse cipher transforms 128 bit block of ciphertext during 10, 12 or 14 
rounds using the same keys as cipher. Each round repeats the InvSubBytes(), 
InvMixColumns(), InvShiftRows() and AddRoundKey() transformations.

In the following text, the theoretical assumptions and basic transforma­
tion of this algorithm will be displayed.

MATHEMATICAL PRELIMINARIES

The field GF(28)
Every byte of data in the AES algorithm is treated as a series of bits whi­

ch are elements of a finite field. A byte b, consisting of bits b7 b6 b5 b4 b3 b2 
b1 b0, is considered as a polynomial with coefficient in {0,1} [10]:
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(1)

X

For example, {01100011} identifies the specific finite field element [7]

6 +  *5  +  x  +  1 (2)

Addition
Authors of the AES algorithm redefine the addition operation. The addition 

[7] of two elements in a finite field is achieved by “adding” the coefficients for 
the corresponding powers in the polynomials for the two elements. The addi­
tion is performed with the XOR operation (denoted by © ) - i.e., modulo 2 - so 
that

1©1 = 0 , 1©0 = 1, and 0© 0 = 0 .
For example:

(x6 + x4 + x2 + x  + 1) + (x7 + x  + 1) = x7 + x6 + x4 + x2 , as polynomial:
{01010111} © {1 0 0 0 0 0 1 1 } = {11010100} , binary (3)
{5 7 } © { 8 3 }  = {d4} , hexadecimal.

Consequently, subtraction of polynomials is identical to addition of 
polynomials.

Multiplication
In the polynomial representation, multiplication in GF(28) (denoted by 

♦) corresponds with the multiplication of polynomials modulo an irreduci­
ble polynomial of degree 8. A polynomial is irreducible if its only divisors 
are one and itself. For the AES algorithm, this irreducible polynomial is
m(x) = x8 + x4 + x3 + x + 1 (4)

or in hexadecimal representation.:
{01}{1b} (5)

For example:
57h • 83h

{57} • {83} = {c l}
1010111 • 10000011 = 11000001
(x6 + x4 + x2 + x + 1) (x7 + x + 1) = x13 + x11 + x9 + x8 + x7 + ,

7 5 3 2  (6)x7 + x5 + x3 + x2 + x + 
x6 + x4 + x2 + x + 1
= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

12
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Finally:
(x13 + x 11 + x9 + x8 + x6 + x5 + x4 + x3 + 1) mod (x8 + x4 + x3 + x + 1) 
x7 + x6 + 1 (7)

Dividing with this polynomial ensures that the result will always be a 
binary polynomial of degree less than 8 so that it can be represented by a 
single byte.

Multiplication by x
As stated in [1, 7], if we have to multiply the following polynomial:

b(x) = b x7 + h x 6 + b x5 + b x4 + b x3 + b x2 + b x1 + b' ' 7 6 5 4 3 2 1 0 (8)

With polynomial x, we get the result:
b7x8 + b6x7 + b5x6 + b4x5 + b3x4 + b2x3 + b1x2 + b0x1 (9)

The result of multiplication of the x*b(x) is then reduced to the degree 8 
by applying the modulo operation with irreducible polynomial m(x). If b7 
= 0, the polynomial is already in the reduced form. If b7 = 1, the reduction 
is carried out by subtracting (using an XOR operation) the polynomial m (x) 
[1].

At the bit level, multiplication by x ({00000010} or {02}) can be done by 
using the left Shift after which the (conditional) follows with xor {00011011} 
or {1b}.

For example, to multiply {57} • {13} = {fe}, we wil use [1]:
{57} • {01} = {57} 1
{57} • {02} = xtim e({57}) = {ae} 1
{57} • {04} = xtime({ae}) = {47} 0 (10)
{57} • {08} = xtim e({47}) = {8e} 0
{57} • {10} = xtim e({8e}) = {07} 1

Bearing in mind that the {13h} is equal to {10011b}, if we need to multi­
ply {57} • {13} = {fe}, we will use:
{57} • {13} = {57} • ( {01} © {0 2 } © {1 0 } )
= {57} © {a e} © {0 7 } (11)
= {fe}

Alternativelly, description of AES multiplicatio is given in [11], where is 
stated that the finite field element {00000010} is the polynomial x, which 
means that multiplying another element by this value increases all it's powers 
of x by 1. This is equivalent to shifting its byte representation up by one bit 
so that the bit at position i moves to postion i+1. If the top bit is set prior to 
this move it will overflow to create an x8 term, in which case the modular 
polynomial is added to cancel this additional bit to leave a result that fits 
within a byte. When {11001000} is multiplied by x, {00000010}, the initial
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result is 1{10010000}. The 'overflow' bit is then removed by adding the mo­
dular polynomial, 1{00011011}, using an exclusive-or operation to give the 
final result as {10001011}.

Polynomials with coefficients in gf(28)
Four term polynomials can be defined with coefficients that are finite 

field elements as [7, 11]:
a(x) = a3x3 + a2x2 + a1x1 + a0 (12)

where the four coefficients will be denoted as a word in the form [a0 , a1 
, a2 , a3] (note that the index increases from left to right in this notation) 
[11]. With a second polynomial:
b(x) = b3x3 + b2x2 + b1x1 + b0 (13)

define a second four-term polynomial.
Multiplication is achieved in two steps. In the first step, the polynomial 

product c(x) = a(x) ♦ b(x) is algebraically expanded, and like powers are 
collected to give
c(x) = c x 6 + crxs + c x 4 + c x3 + c x 2 + c x1 + c„ (14)' ' 6  5 4 3 2 1 0 ' '

where
c0 = (a0 • bo)=
C1 = (ao • b t ) ©  (a j  • bo),
c2 = (a0  ̂b2) ©  (a i   ̂b1 ) ©  (a2  ̂b0)=
c3 = (a0  ̂b3) © (a i   ̂b2) © (a2  ̂b 1 ) © (a3  ̂b0)= (15)
c4 = (a i  • b3) ©  (a2 • b2) ©  (a3 • b i ),
C5 = (a2 • b3) ©  (a3 • b2),
c6 = (a3 • b3).

The result, c(x), does not represent a four-byte word. Therefore, the second 
step of the multiplication is to reduce c(x) modulo a polynomial of degree 
4; the result can be reduced to a polynomial of degree less than 4. For the 
AES algorithm [1, 11], this is accomplished with the polynomial
x4 + 1 (16)

so that:
xi mod (x4 +1) = xi mod 4 (17)

The modular product of a(x) and b(x), denoted by a(x) ®  b(x), is given by 
the four-term polynomial d(x), defined as follows [1, 11]:
d(x) = d3x3 + d2x2 + d3x4 + d0 (18)

where
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d(x) = c(x) mod (x4 +1) = (c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x 1 + c0 ) mod (x4 +1) =
C x̂  mod 4 + c x5 mod 4 + c x4 mod 4 + c x̂  mod 4 + c x̂  mod 4 + c x1 mod 4 + c x0 mod 4 =

6 5 4 3 2 1 0
c.x2 + r x1 + c,x° + c x3 + c x 2 + c x 1 + c„x° = (19)6 5 4 3 2 1 0
c x3 + c x2 + c x2 + c x 1 + c x 1 + c x0 + c x0 =3 6 2 5 1 4 0
d3x3 + d2x2 + d1x1 + d0

and
d0 = c0 ® C4 = (a0 • bc) ®  (ai • bs) ®  (a2 • bl) ®  (a3 • bl)=
d1 = C1 ® C5 = (a0  ̂b1) ®  (ai  ̂b0) ®  (a2  ̂b3) ®  (a3  ̂b2)=
d2 = C2 ® C6 = (a0  ̂b2) ®  (ai  ̂b1) ®  (a2  ̂b0) ®  (a3  ̂b3)=
d3 = C3 = (a0  ̂b3) ® (ai ̂ b2) ® (a2  ̂b1) ® (a3  ̂b0).

(20)

When a(x) is a fixed polynomial, the operation defined in equation (18) 
can be written in matrix form as [1, 7, 11]:

Figure 1: Modular product a(x) ®  b(x)

Because x4 +1 is not an irreducible polynomial over GF(28), multiplica­
tion by a fixed four-term polynomial is not necessarily invertible. However, 
the AES algorithm specifies a fixed four-term polynomial that does have an 
inverse [1, 7, 11]
a(x) = {03}x3 + {01}x2 + {01}x + {02}
a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e} ( )

Another polynomial used in the AES algorithm (RotWord function) has 
coefficients [1]: 

a0a1a2 = {00} i 
a3 = {01}
which is the polynomial x3. If this polynomial is inserted in the previous 

matrix, we have [1]

d 0 I 3 0 2 0 i " "b0 " 0 *  b 0 + 1 *  b1 +  0 *  b 2 +  0 *  b 3 "b 1 "

d l 0 i 0 0 I 3 0 2 bi 0 *  b 0 +  0 *  b 1 + 1 *  b 2 +  0 *  b 3 b 2

d 2 O2 0 l 0 0 13 b 2 0 *  b 0 +  0 *  b 1 +  0 *  b 2 + 1 *  b 3 b 3

d 3 _ . I 3 0 2 0 l 0 0  _ b3 _ 1 *  b 0 +  0 *  b 1 +  0 *  b 2 +  0 *  b 3 _b0 _

Figure 2: RotWord
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which gives the effect of rotation of bytes in word. Polynomial [b0, b1, 
b2, b3] is transformed into [b1, b2, b3, b0].
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Array state
As stated in [11], Rijndael operations are internally performed on a two 

dimensional array of bytes called the state that consists of 4 rows of bytes, 
each of which contains Nb bytes, where Nb is the input sequence length 
divided by 32. In the state array, denoted by the symbol s, each individual 
byte has two indexes: its row number r, in the range 0 £ r < 4, and its column 
number c, in the range 0 £ c < Nb, hence allowing it to be referred to either 
as sr,c or as s[r, c]. For AES the range for c is 0 £ c < 4 since Nb has a fixed 
value of 4.

At the start (end) of an encryption or decryption operation the bytes of 
the cipher input (output) are copied to (from) this state array in the order 
shown in Figure 1.

input bytes state array output bytes

o c o c o c o cino in 1 in2 ini5

Figure 3: Input to the cipher state array and output from it

ALGORITHM SPECIFICATION

Rijndael is a key-iterated block cipher: it consists of the repeated appli­
cation of a round transformation on the state. The number of rounds is 
denoted by N r and depends on the block length and the key length. [2].

The cipher transformation
Encryption function encompasses four AES transformations. Pseudo 

code encryption functions can be represented in the next few lines [7].
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/* in out keys w */
Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) 
begin
byte state[4, Nb] 
state = in
/* initial mixing with key */
AddRoundKey( state, w[0, Nb-1])

/* „common“ rounds */
For round = 1 step 1 to Nr-1 
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
End for

/* final round */
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

Out = state
.End_____________________________________________________

Listing 1: Pseudo code for Cipher() function

As stated in [7], individual transformations SubBytes() ShiftRows() Mix- 
Columns(), and AddRoundKey() transform the buffer State during each 
round. From the pseudo code can be seen that only the final round is diffe­
rent from previous Nr rounds, in that it does not perform the MixColumns() 
function. The article [2] states that the authors changed the names of some 
transformations according to the suggestions Dr. B.Gladmana in relation to 
the original document filed.

Subbytes transformation
The SubBytes() transformation is a non-linear byte substitution that 

operates independently on each byte of the State using a substitution table 
(S-box). This invertible S-box is constructed by composing two transforma­
tions [1, 7]:

1 .Take the multiplicative inverse in the finite field GF(28), the element 
{00} is mapped to itself.

2. Apply the following affine transformation

6 u =  6 u ©  6 (u+4) mod 8 @  6 (u+5)mod8 @  6 (u+6)mod8 ©  6 (u+7)mod8 ©  Cu (22)

for 0 <= i < 8 , where bi is the ith bit of the byte, and c  is the ith bit of a 
byte c with the value {63} or {01100011}.
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" B 0 "1 0 0 0 1 1 1 1 " b 0 "1"

B 1 1 1 0 0 0 1 1 1 b 1 1

B 2 1 1 1 0 0 0 1 1 b 2 0

B 3 1 1 1 1 0 0 0 1 b 3
+

0

B 4 1 1 1 1 1 0 0 0 b 4 0

B 5 0 1 1 1 1 1 0 0 b 5 1

B 6 0 0 1 1 1 1 1 0 b 6 1

B 7 _ 0 0 0 1 1 1 1 1 _b 7 _ 0

Figure 4: Single S-Box element

Effect of the SubBytes() transformation on the State is

Figure 5: Applying SubBytes on single State element 

Shiftrows transformation
As stated in [7], in the ShiftRows() transformation, the bytes in the last 

three rows of the State are cyclically shifted over different numbers of bytes 
(offsets). The first row, r = 0, is not shifted.
S’ = S1 r,c r, ( c + shift(r, Nb) ) mod Nb
za 0 < r < 4 i (23)
0 < c < Nb,

Figure 6 illustrates the ShiftRows() transformation.
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S

So,o So,i So,2 So,3

Si,o Si,i Si,2 Si,3

S2,0 S2,1 S2,2 S2,3

S3,o S3,i S3,2 S3,3

S'

c0 0 0 So,i So,2 So,3

Si,i Si,2 Si,3 Si,o

S2,2 S2,3 S2,o S2,i

S3,3 OCO

<J) S3,i S3,2

Figure 6: Applying SubBytes on single State element

Mixcolumns transformation
The MixColumnsO transformation operates on the State column-by­

-column, treating each column as a four-term polynomial. The columns are 
considered as polynomials over GF(28) and multiplied modulo x4 + 1 with a 
fixed polynomial a(x), given by [1, 7]
a(x) = {03}x3 + {01}x2 + {01}x + {02} (24)

this can be written as a matrix multiplication. Let
s’(x) = a(x) ® s(x) (25)

---
---

---
---

-1
c

r

•0 J=
__

__
__

__
_1

" Q 0 0 0 "

---
---

---
---

1
O

•0 J= __
__

__
_

1

(D Q 0 0
c m

(D 0 Q 0

1--
---

---
---

--
c

r

J= 1__
__

__
__

1--
---

---
---

© 0 0

----------1

O

-----------1
¡=r

0
_______

1

Figure 7: MixColumns transformation as matrix

The four bytes in a column are replaced by the following
S ’0 c  = ( {02} • s0 c) ® ({0 3 } • sl c ) ®  ({01} • s2 c ) ®  ({01} • S3 c)
S ’ l 'c = ( {01} • v )  ®  ({02} • sl c ) ®  ({03} • S2 c ) ®  ({01} • S3 c) (26)
S ’2 c  = ( {01} • V )  ®  ({01} • s j  ®  ({02} • S2'c) ®  ({03} • s j  ( )
S j  = ( {03} • s j  ®  ({01} • s j  ®  ({01} • s j  ®  ({02} • s j

Addroundkey transformation
In this transformation , the state is modified by combining it with a round 

key with the bitwise XOR operation [2]. Nb words from the key schedule 
are each added (XOR'd) into the columns of the state so that [1, 7]:
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Pro{ireni (Expanded) kljuD
Wl +c

Figure 8: AddRoundKey transformation

The key schedule
As in [11] the round keys are derived from the cipher key by means of a 

key schedule with each round requiring Nb words of key data with an extra 
initial set making Nb(Nr + 1) words in total. The resulting key schedule 
consists of a linear array of 4-byte words, denoted [wi ], with i in the range

0 <= i < Nb(Nr + 1).
The function RotWord(x) takes a word [b0 , b: , b2 , b3] as input and returns 

the word
[b1 , b2 , b3 , b0].
The word array Rcon[i] contains the values given by [xi-1, 0, 0, 0] with xi-1 

being powers of x in the field GF(256) (note that i starts at 1, not 0).
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KeyExpansion( byte key[4*Nk], word w[Nb*(Nr + 1)], Nk) 
begin 
word temp 
i = 0
while (i < Nk)
w[i] = word( key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]) 
i = i + 1
end while 
i = Nk
while ( i < Nb*(Nr + 1) ) 
temp = w[i-1] 
if ((i mod Nk) = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk] 
else if ( (Nk > 6) and ((i mod Nk) = 4) 
temp = SubWord(temp)
end if
w[i] = w[i - Nk] xor temp 
i = i + 1
end while 
end

Listing 2: Pseudo code for KeyExpansion

INVERSE CIPHER

AES Decryption computes the original plaintext of an encrypted cipher­
text. During the decryption, the AES algorithm reverses encryption by 
executing inverse round transformations in reverse order. The round trans­
formation of decryption uses the functions AddRoundKey, InvMixColumns, 
InvShiftRows, and InvSubBytes [12]. The Inverse Cipher is described in 
following pseudo code [1]:
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InvCipher (byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) 
begin
byte state[4, Nb] 
state = in
AddRoundKey( state, w[Nr*Nb, (Nr+1)*Nb-1])

For round = Nr-1 step -1 downto 1 
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) 
InvMixColumns(state)
End for

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])

Out = state
.End________________________________________________________

Listing 3: Pseudo code for InvCipher() function

PERFORMANCE IMPROVEMENT

Today's cryptographic algorithms are designed in a way that they com­
bine mathematical theory and practice of computer science in order to 
improve resistance to cryptanalysis. Complexity of cryptographic algorithms 
caused the respective requirements in terms of processing power.

In order to increase performance, hardware manufacturers today are 
using multiprocessor systems or hardware accelerators. The first request 
requires a special way of code writing from the manufacturers of the system 
as well as cryptographic software. The second request from the software 
manufacturer imposes an obligation to adapt to the specific drivers or spe­
cial instruction sets. A special kind of improvements is represented by the 
research of potential acceleration of modes of operations by using paralle­
lization.

When it comes to performance of this algorithm, there is the potential 
use of specific solutions, such as eg. assembler language or C / C ++ for the 
AES-NI instruction set. There are a number of works that examine the pos­
sibility of algorithm AES acceleration [9, 13, 14, 15, 16] on different platforms 
and programming languages.

Recently, there have been emerged three programming paradigm con­
nected with AES algorithm acceleration. There are a number of studies [17, 
18, 19] that have focused on the performance improvement of this algorithm 
by using parallelization of its execution.
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In terms of performance improvements, there are solutions that use the 
GPU parallelization and performance improvement as [1, 20, 21, 22].

In his study Manavski [22] discusses the possibility of the implementati­
on of the algorithm AES using at that time traditional approach, that is 
based on the OpenGL library as well as the implementation using the NVI­
DIA CUDA platform and determine the benefits that are achieved using the 
new architecture.

The existence of different modes of operations has already served as an 
idea for parallelization of execution of some algorithms. According to Lipmaa 
et al. [23] blocks C1, C2, ... can also be encrypted at the same time and the­
refore CTR mode can be paralelized.

The rapid development of GPU (Graphic Processing Unit) units and user 
environments such as NVidia CUDA or OpenCL has led to various attempts 
AES algorithm parallelization using CTR mode. Thus, according to Tran et 
al. [24] the authors first increase the size of the block in relation to the stan­
dards defined by AES algorithm, and then use the coarse grained granula­
rity for algorithm parallelization. Authors in the solution shown in (Di Bia­
gio et al. 2009) using a fine (fine grained) and internal granularity parallelism 
of each round by independently manipulating with 4 32-bit words (T-word) 
that occur in each AES-this round. Authors in [21] are using a fine grained 
granularity and internal parallelism of each round by independently mani­
pulating with 4 32-bit words (T-word) that occur in each AES-this round.

In an Intel document [25] author present the source code of programs 
that are generated keys and 128-bit, 192-bit and 256-bit encryption and 
decryption in ECB, CBC and CTR cryptographic modes. This text presents 
the source code for the simultaneous (parallel) processing of 4 blocks of data 
in the ECB, and the CTR mode and decryption in CBC mode. All examples 
can be compiled using Intel C/C ++ compiler v11 or later.

Hoban et al. [26] in exploring the possibility of improving the method for 
encryption within the operating system Linux provide a solution for the 
performance of this algorithm parallelization using XTS encryption mode. 
In [27] authors examine possibilities of achieving performance improvement 
by using new parallel tweakable OFB modes of operation. In creation of 
these new modes, XEX and XE constructions and XTS-AES multiplication 
are used.

As stated in [1], research has shown that the greatest acceleration in the 
execution of the algorithm can be achieved using aes-ni instruction set. In 
addition, use of GPU units for AES algorithm parallelization has enormous 
potential for the performance acceleration of this algorithm. Use of the GPU 
units in programs have shown almost equal performance with programs 
using Ni-AES instruction set.
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CONCLUSION

In this paper gives an overview of the algorithm AES with its transfor­
mations and basic directions and methods used to accelerate its execution. 
A characteristic of today’s conventional computer system is slowing the 
growth rate of single-processor systems and focusing hardware manufactu­
rers on multi-processor systems and hardware accelerators. In order to 
increase AES algorithm performance, programmers and hardware manu­
facturers today are using parallel programming or hardware accelerators. 
There are great number of researches that have been focused on the perfor­
mance improvement of this algorithm by using parallelization of its execu­
tion. A substantial part of this research is devoted to parallelization using 
GPU devices, where they achieved very significant results. Exploration of 
the possibilities for parallelization of individual modes of operation is another 
direction in which they move numerous studies. However, hardware acce­
leration, such as AES-NI acceleration is currently unmatched when it comes 
to speeding up AES algorithm.

Sazetak
Moderna kriptografija se u velikoj mjeri oslanja na kompleksne algoritme 

koji su zasnovani na matematickoj teoriji i na praksi racunarskih nauka. 
Danasnji kriptografski algoritmi se dizajniraju oko binarnog form ata poda- 
taka imajuci pri tome u vidu i pretpostavku tezine izracunavanja da bi sto 
vise otezali mogucnost njihovog razbijanja. Jedan od algoritama cija je  otpor- 
nost na kriptoanalizu tokom prethodnih 16 godina intenzivno testirana je  
algoritam AES.

Advanced Encryption Standard (AES) je  prvi kriptografski algoritam koji 
je  nastao kao rezultat javno objavljenog i odrzanog takmicenja od strane NIST 
instituta (National Institute o f  Standards and Technology) 1997. godine da 
bi se pronasao algoritam koji ce postati slijedeci standard americke vlade. 
AES je  nastao restrikcijom pobjednika ovog takmicenja, algoritma p od  nazi- 
vom Rijndael, na blok velicine 128 bita. Od momenta njegovogprihvatanja 
za standard 2001. godine traju neprekidna testiranja i istrazivanja njegove 
otpornosti na kriptoanalizu ali i testiranja i istrazivanja skoncentrisana na 
poboljsanje njegovih performansi. Ovaj rad predstavlja detaljan pregled al­
goritma AES zajedno sa svim njegovim transformacijama u i sa idejama za 
ubrzanje njegovog rada.

Kljucne rijeci: kriptografija, algoritam AES, performanse
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