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ABSTRACT

This paper presents one approach for the analsisap behaviour of simply supported elastic shall
shells. Structure is discretized with the finiteéps method. Displacement field is approximatedhwit
series of products of polynomials and harmonicfioms. Only geometric nonlinearity of von Karman
type is considered. Equilibrium equations arewdgtivia principle of stationary value of total patiel
energy and solved with arc-length method. Totaraagian approach is used. Detailed analysis of one
shallow shell is performed. Obtained results argaod correspondence with the ones from the finite
element method.
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INTRODUCTION

Cylindrical shells are very popular in contemporanyil engineering. Due to their favourable
stiffness/weight ratio, they are almost irrepladedbr long spans. These structures are charaeteriz
with regular geometry, i.e. they have arbitraryssr@gection which runs constantly in longitudinal
direction. Special class of these constructionsshedlow shells, whose specific behaviour is sttbjec
of many present-day researches. In fact, elasatiosh shells subjected to vertical loading follow
complex equilibrium paths which may include snamtigh and shap-back behaviour. Snap-through is
observed when structure reaches load limit poimtl @nap-back when the structure reaches
displacement limit point. Although not common iraglice, this behaviour is experimentally proved

[1].

Behaviour of mechanical systems is described wétigd differential equations which have closed
form solutions for just few simple cases. Thishis teason why the approximative solution is looked
for. Domain is usually discretized, and nonlinegstesm of algebraic equations is obtained. This
system is commonly solved with incremental-itemtprocedures, such as Newton-Raphson method,
where the load or displacement control is appliénfortunately, these procedures cannot describe
booth kind of snap behaviour. On the other handsleaxgth method can describe both load and
displacement limit points [1].

Finite strip method (FSM) is suitable for analysislong' structures because of adopted discréizat
of continuum. It proves more efficient than fingeement method (FEM) for the analysis of certain
classes of structures [2,3]. While FEM uses polyiadsrfor discretization of plane structures in both
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directions, FSM uses fast converging trigonomeftinctions for approximation in longitudinal
direction. It follows that FSM is semi-analyticaiogedure, unlike the FEM which is purely numerical.
Geometric nonlinear analysis of structures usirgFiSM is occupying researchers for many years.
Nonlinear behaviour of rectangular plates is aralym [4, 5]. However, for structures with more
complex geometry, authors commonly use spline fanst[6]. According to available literature, this
is the first paper which deals with snap behavigiushells using the harmonic functions. Shells are
modelled with plane finite strips which are derivadcording to Kirchhoff's presumption for the
bending of the thin plates where the displacemietd bf the plate is described as the functionhef t
displacements of the middle plane

Adopted finite strip and assumed displacement faaiel briefly presented. Derivation of nonlinear
equations of equilibrium and arc-length method described concisely. At the end, detailed
numerical example of one shallow shell is giverhvadbmparison of the FSM/FEM results.

FINITE STRIP INTERPOLATING FUNCTIONS

Finite strip of flat shell with eight degrees oéédom is given in Figure 1. Unlike the finite elense
degrees of freedom of finite strip are displacenpamameters in nodal lines.

boundary conditions T 7y

nodal lines j and j+/

z

Figure 1 Finite strip interpolating function andpliacement parameters for=1

Displacement components are approximated withsefiproducts of polynomials and trigonometric
functions

nst nst nst

LOCD=D U (AN M XY=2 M XY W% W)X ). ®

wherenstis the number of series terms considered in aisalysigonometric functions are chosen as
the free vibration eigenfunctions of Bernoulli-Bulbeam which areY,=sin(ms/a) for simply
supported boundary conditianBecause of their nature, these functions arecesdpeefficient for
dynamical analysis of structurgg]. In order to satisfy boundary conditionf0)£0 and v(a)#0,
functionsY,,” are usually taken as casy/a). Wang and Dawe [4] shown that this function canno
adequately represent absolutely free displacemandlirection when nonlinear effects are considered.
They proposed other functions which are used here:

Y'=al2-y Y'=sif(mLzy &, m23..n (2)
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This kind of boundary conditions describes supporting on diaphragms. Eml szosons have
restrained displacements in its own plane and absolutelpditesf it. Strip displacement in transverse
direction is approximated with polynomials which are linearifigplane and cubic for out-of-plane
displacement components

uOm(X):(l_E) l"Ijm-|_é’l"lj+l)m: N-Lquum E: x/'b
VOm(X) = (1_ E) ij + gv(j+1)m= N-[quum

3
W, (X) = (1-38 + 28°) w,, +( x- 265°+ )¢, ©
+(3£2 + Zfa)w(jﬂ)m +(_w2 + tf3)¢( j+)m = N Ig wnt
EQUILIBRIUM EQUATIONS
Following Kirchhoff's theory, thin plate has only three stramponents
‘gx u0,>< - Z\N,xx (1/2)(%x+ \;0,><+ V\;x)
&€= 6‘y = VO,y - Z\N,yy + (1/2)(%y+ \%,y+ V\;y) =€ L+8 NL (4)
gxy uO,y + VO,x - zzvv,xy (uo,xuo,y+ VO,xVO,y+ W,xW,)

which can be decomposed into linear and nonlinear in displacemsehéngs. Strain vector can also
be decomposed into membrane and bending part

2 2
Ex é‘xO Kx uO,x + (1/ 2)(uo,x + VO,x+ \Nzx) W,xx
— — 2 2
£, = &0 |~7 «, |= Vo, t(112)(U5,+ Vg, + W) -2 w, (5)
6-xy Exyo 2ny uO, y+ VO,x+ (UO,)UO, y+ VO,yO,y+ w )yV) 22W,x

where it is observed that nonlinear members influence onlybrara strain, while the curvatures
remain the same as in linear analysis. This paper aenssionly addends which are nonlinear in
deflection gradient which matches von Karman theory [3].

Total potential energy of elastic system is equal to sumask of external forces and strain energy
[T=W+U. Strain energy is defined as integral of product of stres®vaad strain vector over the
volume of the body

— 1 T - 1 T
U _5;[8 odV —Ejs DedV. (6)

\

In Eq. (6) vectorsy ande consist of components of second Piola-Kirchhoff stress temsbGaeen-
Lagrange strain tensor, respectivel). is constitutive matrix, derived according to generalized
Hooke's law. All quantities are measured in referenaentieformed configuration which means that
the total Lagrangian approach is used. For a system inkequil, gradient of total potential energy
must have stationary value. In fact, it proves that this vauminimal. Appling this principle,
equilibrium equations are obtained

m:a_na'q:o Jq;to:a—n:‘l'(q):R(q)—F:O. (7)
aq daq

Expression (7) represents system of nonlinear emsvhered is the vector of residual (unbalanced)
forces; R is the vector of internal nodal forces;is the vector of externally applied load, here
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presupposed independent of displacement. This maysse usually solved using the successive
linearization by Taylor series expansion where igratdof W should be found

—=K T (8)
result of which is well-known tangent stiffness mat

SOLVING EQUATIONS

In order to follow complex equilibrium paths whicbnsist of snap-through and snap-back behaviour,
linearised arc-length method is used for solutibequilibrium equations [1]. This method introduces
load proportionality factod as the new variable

¥(q,1) =R(q,A)-AF = 0. (9)

Because of a new unknown variable, new constrajoagon is necessary. According to simplified
linearised arch-length approach, constraint eqnasio

Aq; 30 = Aq7(3q +A1dq,) =0 (10)
and the iterative load fact@vl is calculated as

_-Agyaq

N=—
quJQt

(11)

whereAq, is incremental predictor displacement vecday,is vector of tangential displacements and
oqll is iterative residual displacement vector

59 =-K, ¥ o9, =K, 'F. (12)

After the new load factor is calculated, updatexpldicements are obtained and equation (9) checked.
Because of numerical nature of procedure, equilibriwill never be satisfied and appropriate
convergence criterion must be employed. Here ihtioduced via ratio of Euclidian norms of the
vector of unbalanced forces and the vector of atiregternal load

[¥l/F|<a, (13)

wherea is some prescribed value, usually betweefhdfd 10°, depending on the problem considered
and desired accuracy. Presented solution procaduvased on predictor-corrector technique where
arc-length method iterations act as correctorseyhiiedictor solution is determined from

Y T (14)

N ETE

where Al is the given incremental arc-length. Problem obading sign in Eq. (14) is heavily

addressed in literature and sign of the minimumemiglue of tangent stiffness matrix is
recommended as the most accurate [1, 6]. In tlsisareh it is found that this criterion can lead to
wrong solution, and the sign of current stiffneasgmeter is used instead.
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NUMERICAL EXAMPLE AND DISCUSSION

Presented procedure is programmed into softwarkagacWolfram Mathematica by upgrading the
program presented in [7], and the result is codeathNOLA (nonlinear analysis). This program is
now able to conduct geometric nonlinear analysisnahy engineering structures such as: rectangular
plates, thin-walled beams, cylindrical shells etc.

In order to validate the presented method, detailederical analysis of the shell given in Figuris 2
performed. Shell is discretized with finite striped finite elements. Using the conditions of
symmetry, only half of the shell is modelled. Résubbtained with NOLA are given for two
discretizations, designated as D1 and D2. D1 mddiscretized with 12 strips and 7 series terms,
while the model D2 has 36 strips and 15 seriesge8ince every nodal line has 4 degrees of freedom,
it follows that model D1 has 364 (13x4x7), and mdo 2220 (37x4x15) degrees of freedom.

12m

Figure 2 Geometric and material characteristicshaflow shell with load disposition

Finite element analysis is performed using the cenoial software package Abaqus with the mesh of
1500 finite elements. STRI3 element of flat shathvsix degrees of freedom per node is used. This
element is the only one in Abaqus library which asgs Kirchhoff's assumption analytically [8].
Adopted model has 816 nodes which gives total 8648=grees of freedom used in analysis.

From presented results it is clear that analysetl dbes not show snap-back, but only snap-through
behaviour. Figure 3 shows excellent agreement @écteon of middle point for all three models.
Slight discrepancy is observed for discretizatiof. This discrepancy is more pronounced for
longitudinal displacements, i.e. end shorteningegiin Figure 4. Good correspondence of moments
in the middle of the shell is observed in Figurearel 6. While moment®l, are almost identical,
momentsM, show some differences. One of the most interegiiaghs is given in Figure 7 where the
increment of normal forcél, changes sign after the snap. The largest disagmeof the results
occurs here, exclusively for the discretization Bimilar observation can be made for the moments
M,, given in the Figure 8. Convergence of normatdsrby number of finite strips and number of
series terms is given in Figures 9 and 10. Convexgge of quantities which require denser meshes are
given intentionally. Moments and displacements enge much faster. According to this convergence
tests, discretizations D1 and D2 are adopted. Ggewee of normal forces in Abaqus is given in
Figure 11, according to which the mesh of 150Gdieiements is adopted.

Discretization D1 gives excellent results before #econd limit point is reached, i.e. just before
hardening of the shell. However, for the normakés; at the end of the loading, there are severe
discrepancies and the D2 mesh is required for atewalues. This disagreements occur due to low
degree of adopted polynomials and slow convergeidbe function which describes structure end-
shortening.

Discrete points which are designated on the graj@pend on adopted minimal and maximal arc-
length. Desired smoothness of the curve can beingataby variation of these parameters. It is
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interesting to notice that it is a problem to obtealues of the desired quantity for the exact eaiti
applied load because procedure always passes thgete load, 1-20 %, depending on the maximal

arc length. Therefore, it was necessary to use smll arc-length in order to obtain presentedltesu
for convergence.
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CONCLUSION

Using the FSM with harmonic functions, complex babar of idealised elastic structures can be
described. However, in order to obtain realistiacural response it is necessary to include effett
material nonlinearity. If the structural response geometrically nonlinear, material will behave
elastically for only few specific cases. Also, & important to include influence of geometrical
imperfections and non-ideal boundary conditions drder to describe structural behaviour.
Appropriate introduction of all of these effectsaiglifficult task which is still not completely s@ld in
structural analysis.

FSM and FEM give identical results if the modellirgg done carefully. Definition of boundary
conditions has the most influence on the relatibresults of these methods. In order to reach same
degree of accuracy FSM requires significantly lessber of degrees of freedom, for some types of
structures. Comparison of results between FEM &Ml kvith harmonic functions did not receive
much attention in literature. According to avaimliterature, snap analysis of shells, using thB1FS
with harmonic functions, is presented for the finste in this paper.

Further research will include definition of diffeteboundary conditions, modelling of structureshwit
longitudinally variable characteristics, and intnotion of material nonlinearity.
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