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1. INTRODUCTION

Physics-Informed Neural Networks (PINNs) 
represent a powerful synergy between machine 
learning and physics, blending the predictive capa-
bilities of neural networks with the governing laws 
of the physical world. PINNs are designed to solve 
problems that involve partial differential equations 
(PDEs) or other physics-based constraints, making 
them particularly suitable for scenarios where accu-
rate modeling of underlying physical processes is 
essential.

Unlike traditional neural networks that solely 
learn from data, PINNs embed domain knowledge 
and fundamental physics principles directly into 
their architecture. By incorporating these principles 

as constraints during training, PINNs can signifi-
cantly enhance their predictive accuracy, even when 
data is sparse or noisy. This hybrid approach enables 
them to provide reliable solutions, especially in cases 
where purely data-driven models might struggle.

The applications of Physics-Informed Neural 
Networks are wide-ranging and impactful. They find 
use in fields such as fluid dynamics, heat transfer, 
structural mechanics, geophysics, quantum mechan-
ics, medical imaging, renewable energy, material sci-
ence, climate modeling, and more. By marrying the 
strengths of machine learning and physics, PINNs 
offer a versatile toolset to tackle complex, real-world 
problems that demand both accurate data-driven in-
sights and a deep understanding of the underlying 
physical phenomena.
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2. METHODS 

Physics-informed neural networks (PINNs) 
are trained to solve supervised learning tasks while 
respecting any given law of physics described by 
general nonlinear partial differential equations [1-5]. 

These neural networks form a new class of 
data-efficient universal function approximators that 
naturally encode any underlying physical laws as 
prior information [1]. The major innovation with 
PINN is the introduction of a residual network that 
encodes the governing physics equations, takes the 
output of a deep-learning network, called surrogate, 
and calculates a residual value [2]. The residual of 
the differential equation is minimized by training the 
neural network. PINNs calculate differential opera-
tors on graphs using automatic differentiation.

The basic formulation of the PINN training 
does not require labeled data, results from other sim-
ulations or experimental data, and is unsupervised. 
PINNs only require the evaluation of the residual 
function. Providing simulation data or experimental 
data for training the network in a supervised manner 
is also possible and necessary in some cases, espe-
cially inverse problems. The supervised approach is 
often used for solving ill-defined problems when for 
instance we lack boundary conditions or an Equation 
of State to close a system of equations. 

Once a PINN is trained, the inference from the 
trained PINN can be used to replace traditional nu-
merical solvers in scientific computing [2]. PINNs 
are a gridless method because any point in the do-
main can be taken as input without requiring the defi-

nition of a mesh. Moreover, the trained PINN net-
work can be used for predicting the values on simu-
lation grids of different resolutions without the need 
of being retrained [2,3]. PINNs can also be used for 
time-dependent problems. Since time is represented 
as any other variable, it’s possible to have a predic-
tion of output at the specified time without solving 
for previous time steps.

3. APPLICATIONS 

In this section we will list some of the applica-
tions of physics-informed neural networks, divided 
into following categories: 

1. Fluid Dynamics and Aerodynamics: 
PINNs Fluid dynamics and aerodynamics represent 
fields where Physics-Informed Neural Networks 
(PINNs) have demonstrated remarkable potential. 
In these areas, understanding the behavior of fluid 
flows around complex geometries is crucial for de-
signing efficient and safe transportation systems, op-
timizing energy usage, and enhancing performance 
in various applications. PINNs provide a unique ad-
vantage by combining data-driven learning with the 
governing equations of fluid dynamics, such as the 
Navier-Stokes equations. The Navier-Stokes equa-
tions describe the motion of fluid substances and are 
fundamental in understanding fluid flow behavior. 
PINNs incorporate these equations as constraints 
during training, allowing the neural network to learn 
not only from available data but also from the un-
derlying physical laws. This hybrid approach enables 
accurate predictions and simulations of fluid flows 

Figure 1. Schematic of the Physics-informed neural network 
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that can be challenging to achieve using tradition-
al methods alone. One noteworthy application is in 
predicting aerodynamic characteristics [6]. By lever-
aging PINNs, researchers can analyze and optimize 
the shapes of aircraft, vehicles, and other objects 
interacting with a fluid medium. This leads to im-
proved efficiency, reduced drag, and enhanced over-
all performance. PINNs have also shown promise 
in simulating turbulent flows, which are notorious-
ly complex and computationally demanding. Their 
ability to capture turbulent behavior accurately and 
efficiently has the potential to revolutionize aerody-
namic research and design processes.

2. Heat Transfer: PINNs can model heat 
conduction, convection, and radiation in various 
materials. This is useful in designing cooling sys-
tems, predicting temperature distributions, and op-
timizing thermal management in electronic devices. 
In the context of heat transfer, PINNs allow the in-
corporation of governing equations such as the heat 
equation or the energy conservation equation [7]. 
These equations describe how heat is transferred 
within materials and between different mediums. 
By embedding these physics-based constraints into 
the neural network architecture, PINNs can accu-
rately predict temperature profiles, heat fluxes, and 
other thermal characteristics in complex scenarios. 
One of the key advantages of using PINNs in heat 
transfer analysis is their ability to handle intricate 
geometries and material properties. Traditional an-
alytical or numerical methods often struggle with 
complex geometries and nonlinear material behav-
ior, which can be common in real-world applica-
tions. PINNs, however, can learn and adapt to these 
complexities from data, making them versatile tools 
for simulating heat transfer in a wide range of sit-
uations.

3. Structural Mechanics: PINNs can sim-
ulate the behavior of structures under mechanical 
loads. By incorporating principles from mechanics 
and elasticity, they can predict stress, strain, defor-
mation, and failure in structures, aiding in design op-
timization and safety analysis. In structural mechan-
ics, PINNs allow the incorporation of fundamental 
equations governing the behavior of materials and 
structures, such as the equations of linear elasticity. 
By encoding these equations as constraints during 
training, the neural network can learn how different 
forces and loads affect the mechanical response of 

structures. One significant advantage of using PINNs 
in this context is their ability to handle complex ge-
ometries and nonlinear material behavior. They can 
predict structural responses in scenarios where tra-
ditional analytical or numerical methods may fall 
short. Moreover, PINNs can reduce the computa-
tional cost associated with solving complex structur-
al problems, making them an efficient tool for design 
and analysis.

4. Geophysics and Seismic Imaging: In the 
field of geophysics, PINNs can help solve inverse 
problems related to seismic imaging. By incorporat-
ing wave equations and boundary conditions, they 
can enhance the accuracy and speed of seismic im-
age reconstruction.

5. Quantum Mechanics and Chemistry: 
PINNs can be used to solve Schrödinger’s equa-
tion to predict molecular and quantum mechani-
cal properties of materials. This has applications 
in drug discovery, material design, and quantum 
chemistry.

6. Inverse Problems in Medical Imaging: 
PINNs can help in solving inverse problems encoun-
tered in medical imaging, such as tomography. By 
incorporating knowledge of the imaging physics and 
constraints, they can enhance the quality of recon-
structed images and reduce the required measure-
ments.

7. Renewable Energy Modeling: PINNs can 
simulate and optimize the behavior of renewable en-
ergy systems, such as solar panels and wind turbines. 
They can predict power output, efficiency, and opti-
mal operating conditions.

8. Material Science and Engineering: By 
integrating material properties and physical behav-
ior into the network, PINNs can help design new 
materials with desired properties or optimize exist-
ing ones.

9. Oceanography and Climate Modeling: 
PINNs can model ocean currents, heat transfer in 
oceans, and interactions between oceanic and atmo-
spheric processes. This aids in climate modeling and 
predicting the effects of climate change.

10. Optimization in Engineering: PINNs can 
be used for shape optimization and design in vari-
ous engineering domains. By incorporating phys-
ics-based constraints, they can find optimal designs 
that meet specific performance criteria.
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4. CONCLUSIONS

In all these applications, Physics-Informed 
Neural Networks bridge the gap between data-driv-
en machine learning techniques and the underlying 
physical principles governing the systems. They of-
fer a way to leverage both data and domain knowl-
edge to achieve accurate and reliable predictions in 
complex physical scenarios.
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ОСВРТ НА УПОТРЕБУ НЕУРОНСКИХ МРЕЖА  
ПОДРЖАНИХ ФИЗИЧКИМ ЗАКОНИМА

Сажетак: Закон функционисања физичке појаве која се симулира често је познат у виду парцијалне 
диференцијалне једначине, коју треба решити. Нумеричке методе за решавање ових једначина, као 
што је метод коначних елемената, развијане су деценијама. Међутим, ове методе могу бити веома 
рачунски захтевне. Са друге стране, неуронске мреже, након обуке, могу дати предикције које при-
ближно решавају дату парцијалну диференцијалну једначину. Неуронске мреже су рачунски ефи-
касније од нумеричких метода, али се често јављају проблеми генерализације и последично про-
блеми са прецизношћу решења. Недовољно добра генерализација, између осталог, може бити по-
следица прикупљених података из нумеричких симулација. Последњих неколико година, развијају 
се неуронске мреже подржане физичким законима, за које није неопходно прикупљати податке из 
симулација. Ове мреже користе аутоматску диференцијацију и приликом обуке се минимизују рези-
дуали парцијалне диференцијалне једначине, њених почетних и граничних услова. Након обуке ове 
неуронске мреже могу се користити као замена за традиционалне нумеричке солвере. 
Kључне речи: неуронске мреже подржане физичким законима, нумеричка анализа, машинско 
учење.
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