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Abstract: When simulating various physical phenomena, the law of the phenomenon is often known in
advance, in the form of a partial differential equation, that needs to be solved. Numerical methods, such as
the finite element method, have been developed over decades, and these methods approximate the solution
to the partial differential equation. However, these methods can be computationally demanding. On the oth-
er hand, neural networks, can provide predictions that approximate the given partial differential equation.
Neural networks are computationally more efficient than numerical methods, but they often face issues of
generalization and consequently problems with solution accuracy. Insufficient generalization, among other
things, can result from data collected from numerical simulations. In the last few years, physics-informed
neural networks are being developed, for which it’s not necessary to gather data from simulations. These
networks use automatic differentiation and during training, they minimize the residuals of the partial differ-
ential equation, its initial, and boundary conditions. After training, these neural networks can be used as a
replacement for traditional numerical solvers.
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1. INTRODUCTION as constraints during training, PINNs can signifi-
cantly enhance their predictive accuracy, even when
data is sparse or noisy. This hybrid approach enables
them to provide reliable solutions, especially in cases
where purely data-driven models might struggle.

The applications of Physics-Informed Neural
Networks are wide-ranging and impactful. They find
use in fields such as fluid dynamics, heat transfer,
structural mechanics, geophysics, quantum mechan-
ics, medical imaging, renewable energy, material sci-
ence, climate modeling, and more. By marrying the
strengths of machine learning and physics, PINNs
offer a versatile toolset to tackle complex, real-world
problems that demand both accurate data-driven in-
sights and a deep understanding of the underlying
physical phenomena.

Physics-Informed Neural Networks (PINNs)
represent a powerful synergy between machine
learning and physics, blending the predictive capa-
bilities of neural networks with the governing laws
of the physical world. PINNs are designed to solve
problems that involve partial differential equations
(PDEs) or other physics-based constraints, making
them particularly suitable for scenarios where accu-
rate modeling of underlying physical processes is
essential.

Unlike traditional neural networks that solely
learn from data, PINNs embed domain knowledge
and fundamental physics principles directly into
their architecture. By incorporating these principles
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2. METHODS

Physics-informed neural networks (PINNs)
are trained to solve supervised learning tasks while
respecting any given law of physics described by
general nonlinear partial differential equations [1-5].

These neural networks form a new class of
data-efficient universal function approximators that
naturally encode any underlying physical laws as
prior information [1]. The major innovation with
PINN is the introduction of a residual network that
encodes the governing physics equations, takes the
output of a deep-learning network, called surrogate,
and calculates a residual value [2]. The residual of
the differential equation is minimized by training the
neural network. PINNs calculate differential opera-
tors on graphs using automatic differentiation.

The basic formulation of the PINN training
does not require labeled data, results from other sim-
ulations or experimental data, and is unsupervised.
PINNs only require the evaluation of the residual
function. Providing simulation data or experimental
data for training the network in a supervised manner
is also possible and necessary in some cases, espe-
cially inverse problems. The supervised approach is
often used for solving ill-defined problems when for
instance we lack boundary conditions or an Equation
of State to close a system of equations.

Once a PINN is trained, the inference from the
trained PINN can be used to replace traditional nu-
merical solvers in scientific computing [2]. PINNs
are a gridless method because any point in the do-
main can be taken as input without requiring the defi-

nition of a mesh. Moreover, the trained PINN net-
work can be used for predicting the values on simu-
lation grids of different resolutions without the need
of being retrained [2,3]. PINNs can also be used for
time-dependent problems. Since time is represented
as any other variable, it’s possible to have a predic-
tion of output at the specified time without solving
for previous time steps.

3. APPLICATIONS

In this section we will list some of the applica-
tions of physics-informed neural networks, divided
into following categories:

1. Fluid Dynamics and Aerodynamics:
PINNSs Fluid dynamics and aerodynamics represent
fields where Physics-Informed Neural Networks
(PINNs) have demonstrated remarkable potential.
In these areas, understanding the behavior of fluid
flows around complex geometries is crucial for de-
signing efficient and safe transportation systems, op-
timizing energy usage, and enhancing performance
in various applications. PINNs provide a unique ad-
vantage by combining data-driven learning with the
governing equations of fluid dynamics, such as the
Navier-Stokes equations. The Navier-Stokes equa-
tions describe the motion of fluid substances and are
fundamental in understanding fluid flow behavior.
PINNs incorporate these equations as constraints
during training, allowing the neural network to learn
not only from available data but also from the un-
derlying physical laws. This hybrid approach enables
accurate predictions and simulations of fluid flows
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Figure 1. Schematic of the Physics-informed neural network
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that can be challenging to achieve using tradition-
al methods alone. One noteworthy application is in
predicting aerodynamic characteristics [6]. By lever-
aging PINNSs, researchers can analyze and optimize
the shapes of aircraft, vehicles, and other objects
interacting with a fluid medium. This leads to im-
proved efficiency, reduced drag, and enhanced over-
all performance. PINNs have also shown promise
in simulating turbulent flows, which are notorious-
ly complex and computationally demanding. Their
ability to capture turbulent behavior accurately and
efficiently has the potential to revolutionize aerody-
namic research and design processes.

2. Heat Transfer: PINNs can model heat
conduction, convection, and radiation in various
materials. This is useful in designing cooling sys-
tems, predicting temperature distributions, and op-
timizing thermal management in electronic devices.
In the context of heat transfer, PINNs allow the in-
corporation of governing equations such as the heat
equation or the energy conservation equation [7].
These equations describe how heat is transferred
within materials and between different mediums.
By embedding these physics-based constraints into
the neural network architecture, PINNs can accu-
rately predict temperature profiles, heat fluxes, and
other thermal characteristics in complex scenarios.
One of the key advantages of using PINNs in heat
transfer analysis is their ability to handle intricate
geometries and material properties. Traditional an-
alytical or numerical methods often struggle with
complex geometries and nonlinear material behav-
ior, which can be common in real-world applica-
tions. PINNs, however, can learn and adapt to these
complexities from data, making them versatile tools
for simulating heat transfer in a wide range of sit-
uations.

3. Structural Mechanics: PINNs can sim-
ulate the behavior of structures under mechanical
loads. By incorporating principles from mechanics
and elasticity, they can predict stress, strain, defor-
mation, and failure in structures, aiding in design op-
timization and safety analysis. In structural mechan-
ics, PINNs allow the incorporation of fundamental
equations governing the behavior of materials and
structures, such as the equations of linear elasticity.
By encoding these equations as constraints during
training, the neural network can learn how different
forces and loads affect the mechanical response of

structures. One significant advantage of using PINNs
in this context is their ability to handle complex ge-
ometries and nonlinear material behavior. They can
predict structural responses in scenarios where tra-
ditional analytical or numerical methods may fall
short. Moreover, PINNs can reduce the computa-
tional cost associated with solving complex structur-
al problems, making them an efficient tool for design
and analysis.

4. Geophysics and Seismic Imaging: In the
field of geophysics, PINNs can help solve inverse
problems related to seismic imaging. By incorporat-
ing wave equations and boundary conditions, they
can enhance the accuracy and speed of seismic im-
age reconstruction.

5. Quantum Mechanics and Chemistry:
PINNs can be used to solve Schrodinger’s equa-
tion to predict molecular and quantum mechani-
cal properties of materials. This has applications
in drug discovery, material design, and quantum
chemistry.

6. Inverse Problems in Medical Imaging:
PINNS can help in solving inverse problems encoun-
tered in medical imaging, such as tomography. By
incorporating knowledge of the imaging physics and
constraints, they can enhance the quality of recon-
structed images and reduce the required measure-
ments.

7. Renewable Energy Modeling: PINNs can
simulate and optimize the behavior of renewable en-
ergy systems, such as solar panels and wind turbines.
They can predict power output, efficiency, and opti-
mal operating conditions.

8. Material Science and Engineering: By
integrating material properties and physical behav-
ior into the network, PINNs can help design new
materials with desired properties or optimize exist-
ing ones.

9. Oceanography and Climate Modeling:
PINNs can model ocean currents, heat transfer in
oceans, and interactions between oceanic and atmo-
spheric processes. This aids in climate modeling and
predicting the effects of climate change.

10. Optimization in Engineering: PINNs can
be used for shape optimization and design in vari-
ous engineering domains. By incorporating phys-
ics-based constraints, they can find optimal designs
that meet specific performance criteria.
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4. CONCLUSIONS

In all these applications, Physics-Informed

Neural Networks bridge the gap between data-driv-
en machine learning techniques and the underlying
physical principles governing the systems. They of-
fer a way to leverage both data and domain knowl-
edge to achieve accurate and reliable predictions in
complex physical scenarios.
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OCBPT HA YHHOTPEBY HEYPOHCKHUX MPEXA

HOAPKAHUX PUINYKUM 3AKOHUMA

Caskerak: 3akoH (DYHKIMOHHCama (PU3HYKE TOjaBe KOja ce CHMYIIHpPA YECTO je ITO3HAT Y BU/TY TTapIifjaHe
TdepeHIrjatHe jeIHaYHe, KOjy Tpeba pemmtu. Hymepudke MeToze 3a pelaBame OBUX jeIHAYMHA, Kao
IITO je METO/I KOHAYHMX eJeMeHaTa, pa3BHjaHe Cy JiereHrnjamMa. MelyTiM, oBe MeTozie Mory OuTH BeoMa
padyHcku 3axTeBHe. Ca apyre cTpaHe, HEypOHCKE MpeKe, HAKOH 00yKe, MOTY JIaTH MPEANKIHjE KOje PH-
OVOKHO pelaBajy aary napuujanHy audepeHiyjanty jeaHadrty. HeypoHcke Mpexe cy padyHcKu edu-
KacHHUje OJ] HyYMEPHUYKUX METO/a, ajli CE YCCTO jaBJbhajy MPOOJICMU TeHEpAIU3aIfje U MOCICIUYHO MMPO-
Onemu ca npenusHomihy pemema. HemoBosbHO 100pa reHepanu3saimja, u3Mel)y octanor, Moke OUTH T0-
clie/Iiia MPUKYIJbEHUX T10/IaTaka U3 HyMEpUUKHX cuMyrnanuja. [Tociaeamux HeKOJIMKO roiHa, pa3BHjajy
ce HEeypOHCKe Mpexe noapkaHe (PU3MIKUM 3aKOHMMa, 32 KOje HHje HEOINXOIHO MPUKYIIbATH TIOJaTKe U3
cumynanyja. OBe Mpeke KOpPUCTE ayTOMAaTCKy Au(epeHIMjaly]jy 1 IPIITHKOM 00yKe ce MUHIMU3Y]y Pe3H-
Jlyauy apryjaitae audepeHnyjaiHe jeqHadnHe, BbeHNX MMOYeTHIX U TPAaHNIHIX yciaoBa. HakoH oOyke oBe
HEYPOHCKE MpEeKe MOTY ce KOPHCTUTH Kao 3aMeHa 3a TpaIuIMOHaIHe HyMEePHUUKEe COIBEpE.

K.rl,que pedn: HCYPOHCKE MPEKE MOAPKAHE (l)I/I3I/I‘~IKI/IM 3aKOHMMa, HYMEpHUYKa aHaj13a, MalllMHCKO

yueme.
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